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ABSTRACT 

In this paper, vorticity confinement parameters are successfully developed for compressible flows. The first new 
confinement parameter is proportional to spectral radii of the flux Jacobian matrix. Therefore, the confinement 
parameter implicitly contains the local conditions of the flow field. This new method is named as lambda vorticity 
confinement method. In order to gain confidence in the applicability of vorticity confinement, it would be ideal to 
completely eliminate constant coefficients from confinement parameters. Because these constant coefficients should 
be determined for every problem by trial and error and it takes a long time. In the next part of this paper, a suitable 
relation is introduced for the vorticity confinement parameter that doesn’t need any constant coefficient. This new 
method is named as adaptive vorticity confinement method. Then the capability of these new methods is compared  
with the other vorticity confinement methods for solving shock-vortex interaction and three dimensional moving 
vortex problems.   
 
Keywords: Adaptive, Artificial dissipation, Numerical dissipation, Vorticity confinement. 

NOMENCLATURE 

A, B flux Jacobians QgQf  // ,  

 D numerical viscosity 

e  stagnation enthalpy per unit mass 

cE  Scalar vorticity confinement parameter 

ccE  Matrix vorticity confinement parameter 

cLE  Lambda vorticity confinement parameter 

  f horizontal flux vector 

bf  vector body force per unit mass 

 g         vertical flux vector   

j,i ˆˆ
     unit vectors in Cartesian coordinates 

J          Jacobian 

k ,k(2) (4)  small positive numbers 

cn̂
    unit vector in the direction opposite to the  

gradient of the vorticity magnitude 
  p   pressure 
Q    vector of conservative variables 

cR    vortex core radius 

oR    vortex outer radius 

S   vorticity confinement vector 

T    matrix whose elements are composed of the 
eigenvectors of A 

 cU    vortex core velocity 

U     free stream velocity 

I   u, v    Cartesian velocity components 
x, y    Cartesian coordinates 
Greek Symbols 

,     Curvilinear coordinates 

  xε     horizontal vorticity confinement parameter  

of adaptive method    

yε    vertical vorticity confinement parameter  of 

adaptive method  
       spectral radii of A 
        sensor 

VΔ    volume of each cell 

I   (2) (4),   second and fourth order dissipation 

parameters for SCDS, MADS 
      diagonal matrix whose elements are the 

eigenvalues of A 
  ρ       density 

 ω     vorticity vector  
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1. INTRODUCTION 

Many flows of interest are characterized by large 
regions of concentrated vortical structures that persist 
and can convect over long distances. Flows of this 
nature include those associated with aircrafts in 
particular rotorcrafts, ships, automobiles, bridges, and 
buildings. Conventional CFD methods tend to dissipate 
vortical structures, degrading the overall accuracy of 
the computed flows. This dissipation can be reduced 
through the use of fine grids, but at the expense of 
greatly increased computational demands. 
 
Therefore, vorticity confinement method has been 
proposed to reduce the diffusive property of the 
incompressible and compressible vortical flow 
simulations by Steinhoff et al. (1992). In this method, 
the source term added to the Navier-Stokes equations 
works as it convects the discretization error back into 
the vortex center and thus confines the vortex. This has 
the effect of adding a velocity correction that convects 
vorticity in the opposite direction of the numerical 
diffusion (Malek Jafarian and Pasandideh Fard 2007).  
 
However, in spite of the success of the method with 
regard to its goals, the confinement term is proportional 
to an empirical parameter )( cE that is constant over the 

entire flow field and has a dimension of velocity. Using 
a constant value over the entire flow field is 
questionable.   
 
In order to make confinement parameter dependent on 
flow and computational parameters, several studies 
attempted different ideas: Fedkiw et al. (2001) 
introduced the mesh size h to guarantee the 
computational consistency with mesh refinement. 
Lohner and Yang (2002) devised a formulation where a 
proper length scale h is computed by considering the 
gradient of vorticity magnitude and the confinement 
term is proportional to 2h . Robinson (2004) suggested a 
formulation where the confinement term is proportional 
to helicity. Malek Jafarian and Pasandideh Fard (2007) 
proposed new general formulations for the 
compressible confinement parameter which have the 
velocity dimension. Butsuntorn and Jameson (2008) 
devised a formulation where the confinement term is 
proportional to the logarithm of cell-volume ratio and 
helicity magnitude in their rotor-blade simulation using 
the time-spectral method. 
 
In order to make confinement parameter dependent on 
flow and computational parameters, Hu et al. (2002) 
suggested a formulation that the confinement term was 
proportional to the flux Jacobian matrix. This method 
was called as matrix vorticity confinement method. But 
the calculation of flux Jacobian matrix is complicated 
and needs a long time in contrast to the other vorticity 
confinement methods. So a new confinement parameter 
is suggested in this paper which is proportional to 
spectral radii of the flux Jacobian matrix. This new 
confinement parameter has almost the accuracy of 
matrix vorticity confinement method and needs one half 
time of that. So this method is useful enough. This new 
confinement parameter is indicated with cLE . The 

above mentioned studies introduce an improved 

dependency of the confinement terms on flow and mesh 
properties, but they don’t completely eliminate the 
proportionality constant )( cE .   

  
Hahn and Iaccarino (2008) suggested a procedure for an 
improved prediction of vortical fields in the presence of 
numerical dissipation that was the adaptive vorticity 
confinement and the strength of the confinement term is 
computed without any need for an arbitrary constant. 
That formulation was suggested for incompressible 
flows. The Hahn and Iaccarino’s  formulation will be 
developed to the compressible vortical flow fields, in 
this paper. 

2. GOVERNING EQUATIONS FOR 

DIFFERENT VORTICITY CONFINEMENT 

METHODS 

Considering the Euler equations in Cartesian 
coordinates: 

t x y
S
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Q  is the vector of conserved variables, f and g  are 

the flux vectors and S  is vorticity confinement vector. 
The independent variables are time ( t ) and Cartesian 
coordinates ),( yx . evu ,,,  and P  denote non-

dimensional density, Cartesian velocity components, 
energy and pressure, respectively. bf  is a body force 

per unit mass which tries to balance the numerical 
diffusion inherently related to numerical discretization 
and conserves momentum in vortical regions: 

c
ˆEb cf n ω              (5)   

Where  
2 2

x y xs ys
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xs ys2 2 2 2

x y x y

φ ˆ ˆˆ ˆ, φ ω ω φ i φ j
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c cn ω n


       


 
 

 

 
(6) 

 
 

(7) 

 
Finally, the vorticity confinement term in a 
compressible flow can be expressed as follows: 
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Where cE  is the scalar confinement parameter with the 

dimension of velocity. Also it is an empirical constant 

coefficient. z  is the z-component of  the vorticity 

vector )(ω .   Assuming a constant coefficient for the 

scalar confinement parameter )( cE is questionable, 

because it has the dimension of velocity and should 
depend on the local conditions of flow field.                                  
 
For solving this problem, the matrix confinement 
parameter was derived from the flux Jacobian matrix by 
Hu et al. (2001). The local conditions of flow field exist 
in the formulation of matrix vorticity confinement by 
flux Jacobian matrices. This is the preference of matrix 
vorticity confinement in contrast to the scalar vorticity 
confinement.  
 
The matrix vorticity confinement term is defined as: 

x y S S S                       (9)               
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(10)  

Where ccE  is the matrix confinement parameter with 

the dimension of velocity. 

A  and B  are Jacobian matrices . 
Q

f




A  and A  is 

evaluated as 1TΛT  with Ta matrix whose columns 
are composed of the eigenvectors of A and Λ a 
diagonal matrix whose elements are eigenvalues of A .  
 The flux Jacobian matrix B is similarly defined as 

Q

g




B (Swanson and Turkel 1992). Althogh the local 

conditions of flow field exist in the formulation of 
matrix vorticity confinement by flux Jacobian matrices, 
but the calculation of flux Jacobian matrices needs a 
long time and great memory storage. 
 
For solving this problem, we suggest a new formulation 
for vorticity confinement parameter. The flux Jacobian 
matrix is replaced with the spectral radii of flux 
Jacobian matrix in this new formulation. So the new 
confinement parameter has the following formulation: 

c cLE λ E 
                                   

(11)  

λ  is the spectral radii of flux Jacobian matrix and has 

the dimension of 
s

m3

. We describe about λ  at the 

next section. cE has the dimension of 
s

m . Thus 

according to Eq. (11), cLE has the dimension of 
2

1

m
. If 

we use cE according to Eq. (11) in Eq. (8), the local 

conditions of flow field exist in the vorticity 
confinement term. This new vorticity confinement 
method is named as lambda method.  
 
The accuracy of the lambda vorticity confinement 
method (Eq. 11) is almost equal to the matrix vorticity 
confinement method. But the required CPU time for the 
lambda method is almost one half of the matrix method. 
So the lambda formulation for vorticity confinement is 
an effective method.  
 
Robinson (2004) carried out further dimensional 
analysis of confinement parameter for compressible 
flow and suggested the following formulation: 

ερ .
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ε  is a dimensionless confinement parameter. 
According to Eq. (12), the vorticity confinement term 

(S) is proportional to the magnitude of helicity ( ωu. ). 

The magnitude of helicity is equal to zero at two 
dimensional problems, thus the Robinson method is 
used at three dimensional problems.  
 
Although the formulation provided by Robinson (2004) 
was an improvement over the previous works in some 
ways, it failed to take into account the length scale in 
the flow field. Thus Butsuntorn and Jameson (2008) 
tried to develop a new formulation for dynamic 
vorticity confinement method as an anti-diffusion term 
and proposed the following formulation: 
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(13)  

Where V is the volume of each cell in the grid and 

averageV is the average volume of cells. 

This formulation has the following properties: 
1) The vorticity confinement term vanishes as the mesh 

size gets smaller (
3

1













averageV

V
S ). In other words 

the length scale of the grid exists in the vorticity 
confinement term.  

2)  Its strength is proportional to the gradient of the 

vorticity ( ωS  ). 
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The local conditions of flow field and the mesh size 
exist in Eq. (13). The vorticity confinement term is 
proportional to the magnitude of helicity, thus the 
Jameson method is used at three dimensional problems. 
 
The conventional vorticity confinement methods have 
an empirical constant parameter (confinement 
parameter such as ( ,εE,,EE cLccc )) that should be 

determined for every problem by trial and error. 
Different constant values should be examined for every 
problem and the best value should be selected for that 
problem. Selecting the best value for these constant 
coefficients needs a long time. In order to gain 
confidence in the applicability of vorticity confinement, 
it would be ideal to completely eliminate such constant 
parameters. Hahn and Iaccarino (2008) suggested a 
procedure for an improved prediction of incompressible 
vortical flow fields in the presence of numerical 
dissipation. That was the adaptive vorticity 
confinement, where the strength of the confinement 
term is computed without any need for an arbitrary 
constant. They proved this formulation by a balance 
between dissipation errors and vorticity confinement: 

i j j i ijk kε(n ω n ω ) e D 
                 

(14)  

Where kD denotes the numerical viscosity. 

As is used in the standard dynamic LES procedure 
(Lilly 1992) the least square error between both sides 
would lead to a good estimation for ε and yields the 
following expression: 
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Hahn and Iaccarino (2008) estimated dissipation errors 
considering the difference between central and upwind 
discretizations of convection terms in the given flow 
field, as follows: 
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UDCD ,δδ denote the central and upwind differences,  

respectively. 
 For 2-D problems: 
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xsφ and ysφ  are calculated by using Eq. (7).  

This formulation is developed for compressible flows in 
this part. The value of numerical viscosity at each point 
of the grid can be estimated by the value of artificial 
dissipation. So vorticity confinement parameters are 
introduced as follows: 
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Where 21 , DD  are the horizontal and vertical 

components of artificial dissipation term related to the 
x-momentum equation and 3D , 4D

 are the horizontal 

and vertical components of artificial dissipation term 
related to the y-momentum equation. These variables 
are defined as follows: 
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Bracketed superscripts for the vector Q  in Eqs. (21) to 

(24) refer to the various components of this vector. So 

that 
(2)

ji,Q  and 
)3(

ji,Q are the values of ρu and ρv at 

the point (i,j), respectively. 

These vorticity confinement parameters ( x , y ) have 

the velocity dimension and they don’t need any 
constant coefficient. They can be used at the following 
equation to determine the value of vorticity 
confinement at every point: 
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This new vorticity confinement method doesn’t need 
any constant coefficient. Thus it is faster in contrast to 
the other vorticity confinement methods and it’s an 
effective method. We call this new vorticity 
confinement method as adaptive method.  

3. NUMERICAL FORMULATION 

If Eq. (1) is transformed to arbitrary curvilinear 
coordinates, then we obtain: 

t
ˆ ˆˆ

   Q F G S                                 (26)                                       

where 



H. Bagheri Esfe et al. / JAFM, Vol. 5, No. 3, pp. 89-98, 2012.   

93 
 

x

y

x

y

ρ ρU

ρu ρuU ξ Pˆ ˆ,
ρv ρvU ξ P

e (e P)U

ρV

ρuV η Pˆ
ρvV η P

(e P)V

Q F

G

 



   
       
   
   

      
 
  
 
 

  

1 1

1

J J

J

                    

(27)  

and 

x y x yU ξ u ξ v , V η u η v   
                  

(28)  

where U  and V are contravariant velocities written 

without metric normalization and 1J  is the inverse 
transformation Jacobian. Then we obtain: 

 
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   1J Q F G S                           (29)                                  

with 
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(30)  

In a cell-centered finite volume method, Eq. (29) is 
integrated over an elemental volume in the discretized 

computational domain, and 1J  is identified as the 

volume of the cell. Assuming 1J  to be independent of 
time, Eq. (29) can be written as follows: 
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where A  and B  are the flux Jacobian matrices 
defined by: 
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To advance the solution in time the multi-stage scheme 
is applied. A typical step of a Runge-Kutta (5-stages) 
approximation to Eq. (31) is: 
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D  and D are spatial differencing operators, and 

AD is the artificial dissipation term. VΔ is the volume 
of each cell and bracketed superscript in Eq. (33) refers 
to the stages of the Runge-Kutta scheme.  In addition, 
local time stepping and implicit residual averaging are 
utilized to accelerate convergence. 
The artificial dissipation schemes have been developed 
to remove the spurious oscillations for the robustness of 
stability and the fast convergence of the solutions in the 
steady-state aerodynamic problems. A combination of 
second and fourth differences of the flow variables is 
used to form the dissipation operator AD. The second 
difference terms are used to prevent oscillations at 
shock waves, while the fourth difference terms are 

important in stability and convergence of the steady 
state solution.  
 
Two common artificial dissipation schemes are as the 
following:  

1. SCalar Dissipation Scheme (SCDS) 

Where the dissipation model is divided into two terms 
in the   and   directions (Swanson and Turkel 1992). 

These two terms are written as: 
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where the numerical dissipation flux at the horizontal 
direction is as follows: 
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(37) 

where λ  is proportional to the largest eigenvalue of 

the Jacobian matrix which is called the spectral radii of 
Jacobian matrix. The absolute eigenvalue is as the 
following: 

 1
i , j i 1, j i,j

2

1
λ

2
 

 
 

                      

(38)  

where 

i,j
λ a a  2 2

1 2cq                             (39)                     

And 

x ya ξ , a ξ , a u a vq    1 1
1 2 1 2J J             (40)         

and c  is the speed of sound. The nonlinear dissipation 

functions (2)

2

1
ji ,

  and (4)

2

1
j,i

  in Eq. (37) determine 

the magnitude of the second and fourth order 
dissipation terms based on the density gradient.  

i i
i ,j,k
ε k γ ,γ


(2) (2)

1 1

2

max( )

                        

(41)  

i ,j,k i ,j,k
ε ,k ε

 
 (4) (4) (2)

1 1

2 2

max(0 )

                     

(42)  

where (2)k and (4)k are small positive numbers and i  

is sensor. The role of the sensor is identification the 
regions near the shock waves, so that the high value of 
this variable indicates the regions near shock waves. In 
these regions the second order term is dominant. i  is 

defined as follows: 
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where  is a very small positive number to be used to 
avoid zero denominators in the smooth region. 

We can write the numerical dissipation flux in the 
vertical direction as follows: 
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The horizontal and vertical   numerical dissipation 

fluxes (
j,i

2

1


d̂  and

2

1
ji,

d̂ ) are 14 vectors for 2-D 

problems. The first component of these vectors is 
related to the continuity equation. The second and third 
components are related to the x and y momentum 
equation, respectively and the fourth component of 
these vectors are related to the energy equation.   

The SCalar Dissipation Scheme (SCDS) has an 
excellent shock capturing property and gives sufficient 
numerical stability to the central difference schemes. 

2. MAtrix Dissipation Scheme (MADS) 

The MADS scheme is very similar to the SCDS 
scheme, but the Jacobian matrix A is replaced instead 
of 

j,
2

1
i

 in its formulation. (Swanson and Turkel 

1992). 

4. RESULTS AND DISCUSSIONS 

In this part, different vorticity confinement methods are 
compared for two problems: 

1) Shock- vortex interaction 
2) Three dimensional moving vortex 

As pointed earlier, the helicity term is equal to zero for 
two dimensional problems. Thus Robinson and Jameson 
methods are used for three dimensional moving vortex 
problem. 

4.1 Shock-Vortex Interaction 

We want to compute the problem of a moving shock 
over a circular vortex shown in Fig. 1. The Mach 
number of the shock wave is set to 1.5.  
 
An inviscid vortical velocity distribution between an 
outer radius ( oRr  ) and a core radius ( cRr  ) is 

prescribed for the vortex. Outside oR  ( oRr  ) the 

tangential velocity is set to zero. Inside the core (

cRr  ) the velocity goes linearly to zero at 0r . 

Thus the tangential velocity distribution is as follows: 

c
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(45)  

where   

c o cc c

o c o c

U R RU R
A , B

R R R R
  

 

2

2 2 2 2

              

(46)  

 The maximum tangential velocity of the circular vortex 
( cU ) is 0.5 times the velocity behind the moving shock 

wave. 

 
Fig. 1. A moving shock over a circular vortex 

As we know, the inner region of the vortex has less 
density relative to the outer region. Thus the relative 
density is introduced as follows: 

1D
h

L 
ρ

ρ
 

Where Lρ is the density of region inside the vortex and 

hρ is the density of region outside the vortex. 

Some assumptions are considered to solve the problem 
as the following: 

2.0,12  DRR co  

The computational grid is oo R20R50  . The grid is 

uniform along the x-axis and is distributed according to 
an exponential function along the y-axis, so that the 
grid becomes finer as the y coordinate limits to zero.  
 
Table 1 The time related to the different steps of shock-

vortex interaction 

Time )s(  Different steps

50 a-1,b-1,c-1 
70 a-2,b-2,c-2
90  a-3,b-3,c-3 
110  a-4,b-4,c-4 
157  a-5,b-5,c-5 
203  a-6,b-6,c-6 

 
Figure 2 shows the density contours related to different 
steps of shock-vortex interaction. The density contours 
shown here are for two different grids 

)100300,2001000(   using scalar vorticity 

confinement )02.0( cE and scalar artificial 

dissipation scheme.  
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a-5 
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b-5 
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c-4 

 
c-5 

 
c-6 

Fig. 2. Comparison the density contours related to 300 ١٠٠×  grid: (a-1 to  a-6) 
and 1000 ٢٠٠×  grid: ( b-1 to  b-6) with adaptive unstructured algorithm 

by Povitsky et al. (1998): (c-1 to  c-6) 
 

They are compared to the adaptive unstructured 
algorithm results of Povitsky et al. (1998), in Fig. 2. 
This figure shows the results of different time steps. 
These time steps are shown in Table 1. The results are 
similar and they get closer to the adaptive unstructured 
algorithm results as the grid becomes finer

)2001000(  . If we simulate the shock-vortex 

interaction using different vorticity confinement 
methods, the overall shapes for various steps of 
interaction are almost similar but they haven’t shown 
here to prevent repetition. 
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To compare the different vorticity confinement 
methods, it would be better to find the values of a 
variable (such as pressure) at the core of main and 
secondary vortices. Figure 3 shows the vorticity 
contours at time t=421 μs .  

 
Fig. 3. Vorticity contours related to shock-vortex 

interaction at time t=421 s  

 
Fig. 4. Two dimensional section for the vortex and its 

domain 
 
Three different regions are specified in this figure: MV 
(Main vortex), SV1 (Secondary vortex 1) and SV2 
(Secondary vortex 2). 
 
Table 2 compares the pressure in the center of three 
vortices of the present study with different vorticity 
confinement methods and a fine grid )2001000(  . The 

results related to the coarser grid )100300(   are 

shown in Table 3. Also ambP denotes the ambient 

pressure in these tables. The scalar vorticity 
confinement method with confinement parameter cE , 

the new lambda confinement method with confinement 
parameter cLE  and the new adaptive method are 

compared in these tables. As we know, whatever the 
vorticity in the center of the vortex becomes larger, the 
pressure will be smaller, if the ambient conditions are 
fixed.  
 
Thus Tables 2 and 3 show that the pressure in the center 
of three regions reduces with vorticity confinement (W/ 
CVC), relative to the without vorticity confinement 
(W/O CVC) state. The most accurate method among 
three different vorticity confinement methods studied 
here, is the lambda method with cLE =0.2 in Tables 2 

and 3. 

Because the results of lambda method are closer to the 
results of Povitsky et al. (1998) in contrast to the other 
vorticity confinement methods. As pointed earlier, the 
local conditions of flow field exist in the lambda 
formulation (according to Eq. (11)), thus this method 
has the best answer in contrast to the others. The results 
get better as the grid becomes finer )2001000(  . Also 

the adaptive method is less accurate in contrast to the 
other vorticity confinement methods, but as pointed 
earlier its real worth is eliminating empirical constant 
coefficient ( such as cLccc E,E,E ).Thus this method is 

faster in contrast to the other vorticity confinement 
methods.  

4.2 Three Dimensional Moving Vortex 

As pointed earlier, Robinson and Jameson vorticity 
confinement methods have a term (helicity term) that is 
equal to zero at two dimensional problems. Thus we 
compare the capability of these methods with the other 
vorticity confinement methods for three dimensional 
moving vortex problem. For making the three 
dimensional vortex and its domain, we consider the two 
dimensional section in Fig. 4. If this section rotates 
along the x-axis, the vortex and its cylindrical domain 
are made. A 21100100   grid is considered for the 
domain. The Mach number of the moving vortex is set 
to 0.8.Thus we consider a specific moving vortex at the 
position x=0. After 15000 time steps, the vortex reaches 
the position x=2.73. The vorticity contours related to 
these positions are presented in Fig. 5.  

 

Fig. 5. The initial situation of vortex (the right 
contours)and the situation of the vortexafter 15000 time 
steps ( the left contours) , without vorticity confinement 
 
Dissipation of the vortex after moving to the left side is 
obvious in this figure. We can use the vorticity 
confinement methods to reduce these numerical 
dissipations. To compare the capability of different 
vorticity confinement methods, it would be better to 
compare the vorticity contours at a cross section of the 
vortex.  The results are shown in Fig. 6.  
 
Degradation of vorticity contours after 15000 time 
steps, is obvious in this figure.     The numerical 
dissipations decrease significantly if we use the 
Jameson vorticity confinement method with 03.0
(Fig. 7).     

 

X Y

Z
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Table 2 The pressure comparison  )(
ambP

P
 for different vorticity confinement methods and the grid )2001000(   

Metho
d 

W/O 
CVC 

New adaptive 
method 

 
W/ CVC 
 02.0cE

 

W/ CVC 
 2.0cLE  

Adaptive algorithm by 
Povitsky et al. (1998) 

Grid 200-1000  200-1000  200-1000  200-1000  Unstructured grid 

MV 0.935 0.929 0.913 0.893 0.884 

SV1 0.895 0.894 0.892 0.889 0.89 

SV2 1.007 1.006 1.003 1.001 0.993 

 

Table 3 The pressure comparison  )(
ambP

P
 for different vorticity confinement methods and the grid )100300(   

Metho
d 

W/O 
CVC 

New adaptive 
method 

 
W/ CVC 
 02.0cE

 

W/ CVC 
 2.0cLE  

Adaptive algorithm by 
Povitsky et al. (1998) 

Grid 100-300  100-300  100-300  100-300  Unstructured grid 

MV 0.969 0.958 0.946 0.936 0.884 

SV1 0.954 0.931 0.902 0.895 0.89 

SV2 1.008 1.007 1.005 1.003 0.993 

 

 

Fig. 6. Two dimensional vorticity contours related to 
the initial vortex (the right contours)and the vortex after 
15000 time steps ( the left contours), without vorticity 

confinement 

 
Fig. 7. Two dimensional vorticity contours related to 

the initial vortex (the right contours)and the vortex after 
15000 time steps ( the left contours), Jameson vorticity 

confinement method with 03.0   

The two dimensional vorticity contours related to other 
vorticity confinement methods are almost similar to 
Fig. 7, but the magnitude of vorticity in the center of 
two dimensional vortices is different for every method. 
The magnitude of vorticity in the core region of two 
dimensional vortices for different vorticity confinement 
methods are shown in Table 4. The results are related to 
the initial vortex (nct=1) and the vortex after 15000 
time steps (nct=15000). 
 
Table 4 The magnitude of vorticity in the center of 2D 

vortices for two states of vortex,  
Comparison between different vorticity confinement 

methods for the 21100100   grid 

Method cE  
Vorticity 

nct=1 nct=15000 

Without confinement 0 6.54 3.52 

Scalar 0.03 6.54 4.46 

Jameson 0.03 6.54 5.05 

Robinson 0.03 6.54 4.80 

New adaptive method  - 6.54 3.76 

Lambda 0.05 6.54 4.91 
 
This table shows that the Jameson (with 03.0 ) and 
the lambda vorticity confinement methods (with

050.EcL  ) are more accurate in contrast to the other 

methods. Because these methods conserve the initial 
vorticity more than the other methods. As pointed 
earlier the local conditions of flow field exist in these 
two formulations. Thus these methods (Jameson and 
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lambda) are more affective in contrast to the other 
methods. Also Table 4 shows that the Robinson method 
is more accurate in contrast to the scalar method for 
conserving the initial vorticity. Also the adaptive 
method is less accurate than the other vorticity 
confinement methods. But this method doesn’t need 
any constant coefficient for the confinement parameter.  

 
Table 5 The magnitude of vorticity in the center of 2D 

vortices for two states of vortex, 
Comparison between different vorticity confinement 

methods for the 21200200   grid 

Method cE  
Vorticity 

nct=1 nct=15000 

Without confinement 0 6.54 4.45 

Scalar 0.03 6.54 5.37 

Jameson 0.03 6.54 6.01 

Robinson 0.03 6.54 5.83 

New adaptive method  - 6.54 4.85 

Lambda 0.05 6.54 5.89

 
The results related to another grid )21200200(   
have been shown in Table 5.  Comparing the Tables 4 
and 5 shows that the results will be more accurate for a 
finer grid. 

5. CONCLUSION 

In this paper, a new vorticity confinement method 
(lambda method) was introduced using spectral radii of 
the flux Jacobian matrix. The results related to two 
different problems showed that this new vorticity 
confinement method is effective enough. Also this 
formulation (lambda) is faster than the matrix vorticity 
confinement method.  
 
Also the Hahn and Iaccarino’s (2008) method was 
extended to compressible flows (adaptive method). This 
method doesn’t need any empirical constant coefficient. 
The results showed that this method has less accuracy 
in contrast to the other vorticity confinement methods, 
but its real worth is eliminating empirical constant 
coefficients. So this method (adaptive method) is faster 
than the other vorticity confinement methods and thus it 
is an effective method. 
 
In the next part of this paper, we compare the capability 
of Jameson and Robinson methods with the other 
vorticity confinement methods using the three 
dimensional moving vortex problem. The results 
showed that the Jameson and lambda methods are more 
accurate in contrast to the other vorticity confinement 
methods. Because the local conditions of flow field 
exist in the formulation of these methods. The results 
showed that the Robinson method has more accuracy 
relative to the scalar method and has less accuracy in 
contrast to the Jameson and lambda methods. 
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