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ABSTRACT 

The paper aims at investigating the effects of Ohmic and viscous dissipations on the steady two-dimensional radiative 

boundary-layer flow of an incompressible, viscous, electrically conducting fluid caused by a linearly stretching sheet 

placed at the bottom of fluid saturated porous medium in the presence of uniform transverse magnetic field. The 

radiative heat flux is assumed to follow Rosseland approximation. The governing system of partial differential 

equations are converted to ordinary differential equations by using the similarity transformations, which are then 

solved numerically using shooting method with fourth order Runge-Kutta scheme. The dimensionless temperature 

distribution is computed for different thermo-physical parameters and presented graphically. The temperature 

gradient at the sheet and skin friction coefficient are derived numerically and presented through graphs. 
 

Keywords: Numerical study, Boundary layer, Stretching sheet, Porous medium, Dissipation, Thermal radiation, 

MHD, Convective heat transfer. 

NOMENCLATURE 

Bo      magnetic field intensity 

c         stretching sheet parameter 

cp        specific heat at constant pressure 

D        constant  

Ec      Eckeret number  

k*          mean absorption coefficient 

K       permeability of porous medium 


      

characteristic length  

M       Hartmann number  

N       Radiation parameter  

Pr      Prandtl number
 

qr       radiation  heat flux  

T        fluid temperature 

T∞      uniform temperature of the     

           ambient fluid 

 

Tw      wall  temperature 

u, v      velocity components 

x, y      Cartesian coordinates 

Greek  Symbols 


       stream function 


       similarity parameter 

        permeability parameter  

        uniform thermal conductivity 

        kinematic viscosity 


       density of fluid 

*      Stephan Boltzman constant 

       electrical conductivity 


       coefficient of  viscosity 

        dimensionless temperature  

 
 

1. INTRODUCTION 

Viscous dissipation amounts to local production of 

thermal energy through the mechanism of viscous 

stresses. This effect is encountered in both the viscous 

flow of clear fluids and the fluid flow within the porous 

medium. Although viscous dissipation effect is 

considered as a “weak” effect when compared with its 

other counterpart effects but in many situations it has to 

be reckon with. The viscous heating aspects in fluids 

were investigated for its practical interest in polymer 

industry and the problem was invoked to explain some 

rheological behavior of silicate melts. The flow studies 

with viscous heating aspects of viscous fluids 

demonstrating temperature dependent properties are of 

immense significance in basic sciences and in 

contemporary industrial technology such as tribology, 

instrumentation, food processing, lubrication, polymer 

manufacturing and many others. Gebhart (1962) came 

out with observations that devices which operate at high 

rotational speeds or which are subject to large 

decelerations experience significant viscous dissipation 

effect. The effect is felt prominently in strong 
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gravitational fields and in processes wherein the scale 

of the process is very large, e.g. on larger planets, in 

large masses of gas in space and in geological processes 

in fluids contained in various bodies. It is pertinent to 

record that even if viscous dissipation effect is 

quantitatively negligible in some cases its qualitative 

effect is significantly observed. The works of Gebhart 

(1962), Gebhart et al. (1969), Nield (2000) and Magyari 

et al. (2003), Rees et al. (2003) shed a light on the 

importance of viscous heating. 

In recent years, many researchers have shown interest 

in the study of boundary-layer flows of viscous fluids 

over a stretching sheet simply because boundary-layer 

behavior on a moving continuous solid surface is an 

important type of flow encountered in several 

engineering processes. An example of a moving 

continuous surface is a long thread travelling between a 

feed roll and a wind-up roll, or a polymer sheet or 

filament extruded continuously from a die. 

Investigation of transport processes in porous media 

have been undertaken with utmost interest due to wide 

array of applications cutting across different realms 

such as  geothermal engineering, underground disposal 

of nuclear waste, chemical reactors, heat exchangers 

and more. Pop et al. (2001), Nield et al. (2006) have 

presented relevant comprehensive texts. 

Sakiadis (1961) was the first to study the flow in the 

boundary-layer on a continuous solid surface. He 

considered the boundary layer flow over a flat surface 

moving with a constant velocity and formulated a 

boundary layer equation for two-dimensional, 

axisymmetric flows. Due to entrainment of ambient 

fluid, this phenomenon represents a different type of 

boundary-layer problem having solution substantially 

different from that of boundary-layer flow over semi-

infinite flat plate.  Crane (1970) extended the work of 

Sakiadis by considering a moving strip, the velocity of 

which is proportional to the distance from the slit and 

obtained closed form exponential solution. 

Subsequently, many investigators taking the advantage 

of simplicity of geometry and its exact solution 

attempted the problem with variety of assumptions.  

Gupta and Gupta (1977) investigated the heat and mass 

transfer over an isothermal stretching sheet with suction 

or blowing. Arunachalam et al. (1978) considered the 

thermal boundary-layer in liquid metals with variable 

thermal conductivity for a class of flow where the 

potential velocity is a power of the distance along a 

stationary wall. Grubka et al. (1985) analyzed the 

phenomena with prescribed wall temperature and also 

with prescribed heat flux and presented their solutions 

in terms of Kummer’s function. Chen et al. (1988) 

investigated the problem for visco-elastic fluid of 

Walter’s liquid B model subject to power law heat flux. 

They also  obtained their solutions in terms of 

Kummer’s function. Vajravelu et al. (1993) addressed 

the problem taking the effects of viscous dissipation 

and internal heat generation into account. Chauhan et 

al. (1995) examined heat transfer in MHD viscous flow 

due to stretching of boundary in the presence of 

naturally permeable bed. Anderson et al. (1998) 

examined the flow of viscous ferro-fluid over a 

stretching sheet in the presence of a magnetic dipole to 

explore the effects of the magneto-thermo-mechanical 

interaction on skin friction and heat transfer. The 

problem of linearly stretching sheet was generalized to 

one that stretches with a power-law velocity by Afzal et 

al. (1980), Kuiken (1981) and Banks (1983).  Chiam 

(1982) investigated the flow of micropolar fluid over a 

stretching sheet. Chiam (1995) also investigated the 

case of a sheet stretching with a power-law velocity and 

having a variable magnetic field of a special form. 

Boutros et al. (2006) studied two-dimensional 

boundary-layer stagnation point flow towards a heated 

stretching sheet placed in a porous medium using Lie 

group method. All the above reported investigations 

were limited to flow and heat transfer without taking 

radiation into account. 

Heat transfer together with radiation from the outer 

surface of a heated body embedded in a fluid-saturated 

porous medium finds several applications in geophysics 

and engineering. Cheng et al. (1977)   were the first to 

present an analysis for the natural convection flows 

about a heated impermeable surface embedded in fluid-

saturated porous media to model the heating of ground 

water in an aquifer by dike. However, thermal radiation 

at high temperatures significantly affects the heat 

transfer and the temperature distribution in the 

boundary-layer flow of participating fluid. In fact, 

depending on the surface properties and geometry of 

the solid, the radiation has dominant impact on flow 

and heat transfer in porous media. The effect of 

radiation in thermal regime in porous medium has got 

wide applications, such as, waste heat storage in 

aquifers, gasification of oil shale which is of interest on 

combined convection since fluid is pumped into porous 

region. In fact, in the case of gasification, large 

temperature gradient exists in the vicinity of the 

combustion regime making radiation effect dominant.  

Raptis (1998) studied radiative micropolar fluid flow 

past a continuously moving plate. The radiative heat 

transfer studies are very important in space technology 

and high temperature processes. But, unfortunately very 

little has been reported about the effects of radiation on 

the boundary-layer in porous media. However it is 

interesting to record that porous medium absorbs/emits 

radiation that is transferred to or from a fluid. The fluid 

can be regarded to be transparent to radiation, because 

the dimensions for the radiative transfer among the 

solid elements of porous structure are much less than 

the radiative mean free path for scattering or absorption 

in the fluid (Howell(2000)). Furthermore, it is pertinent 

to record that contrary to conduction and convection 

heat transfer by thermal radiation is a complex 

phenomenon to account for.  Actually fluid radiation 

studies are confronted with a few difficulties making 

the things complex and cumbersome. In radiative heat 

transfer, the prediction of fluid absorption is a tedious 

task because the radiation is absorbed/emitted not only 

at system boundaries but also in the interior of the 

system. Furthermore, the absorption coefficients of the 

absorbing/emitting fluids are, in general, strongly 

dependent on wavelength. The computational procedure 

gets difficult with the presence of radiation term in the 

energy equation making the equation highly non linear. 

In view of all these challenges in radiative studies, the 

effect of radiation on convective flow has been 

undertaken with reasonable simplifications. Excellent 

literature on radiation is available in the well presented 

texts by Sparrow et al. (1970), Özisik (1973) and 
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Howell (2000). Using the Roselsand approximation, 

Plumb et al. (1981) examined the effect of horizontal 

cross flow and radiation on natural convection from 

vertical heated surface in saturated porous media. 

Whitaker (1980) discussed radiative heat transfer in 

porous media. Tong et al. (1983)  proposed two flux 

models and the linear anisotropic scattering model to 

predict the radiant heat flux in light weight fibrous 

insulation.  Ali et al. (1984) studied the interaction of 

natural convection with the thermal radiation in a 

laminar boundary layer flow over an isothermal, 

horizontal flat plate. Bakier et al. (1996) investigated 

the thermal radiation effect on mixed convection from 

horizontal surfaces in saturated porous media. Ibrahim 

et al. (1990) investigated mixed convection radiation 

interaction in boundary-layer flow over a horizontal 

surface. Hossain et al. (1997) examined radiation effect 

on free convection of fluid along a heated inclined flat 

surface maintained at uniform temperature placed in a 

saturated porous medium. Yih (2001) conducted a study 

of radiation effect on the mixed convection flow of an 

optically dense viscous fluid adjacent to an isothermal 

cone embedded in a saturated porous medium. Al-Odat 

et al. (2005) presented an analysis on influence of 

radiation on mixed convection over a wedge in a non-

Darcy porous medium. Mukhopadhyay (2009) 

examined radiation effects on boundary layer flow and 

heat transfer of a fluid with variable viscosity along a 

symmetric edge. Pal et al. (2010) investigated heat and 

mass transfer in MHD non-Darcian flow of a 

micropolar fluid over a stretching sheet embedded in a 

porous media with non-uniform heat source and thermal 

radiation. Vasu et al. (2011) examined the effect of 

radiation and mass transfer on the transient free 

convection flow of a dissipative fluid. Prasad et al. 

(2011) employed finite difference method to examine 

the radiative free convection flow past an impulsively 

started vertical plate with variable heat and mass flux. 

Magnetoconvection is of considerable interest owing to 

its frequent occurrence in various realms of industrial 

technology and geothermal applications, liquid metal 

fluids, MHD power generation system, high 

temperature plasmas applicable to nuclear fusion 

energy conversion. MHD has also been found very 

useful in controlling boundary-layer transition in the 

case of subsonic and supersonic flow of gases. Duwairi 

et al. (2006) presented numerical investigations of 

magnetohydrodynamic natural convection heat transfer 

from radiative vertical porous surface. Suneetha et al. 

(2011) investigated thermal radiation effects on MHD 

flow past an impulsively started vertical plate in the 

presence of heat source/sink by taking viscous 

dissipation into account. 

In this communication we wish to study the MHD 

boundary-layer flow in a porous medium with radiative 

and dissipative effects. A suitable numerical technique 

is used to solve the nonlinear energy equation. 

2. MATHEMATICAL ANALYSIS 

Let us consider the steady, dissipative, MHD two-

dimensional boundary-layer flow over a linearly 

stretching sheet placed at the bottom of the fluid 

saturated porous medium in the presence of radiation. A 

Cartesian system is used with x-axis is along the sheet 

and y-axis is normal to it. The sheet is stretched linearly 

by applying two equal and opposite horizontal forces so 

that the position of the origin is unaltered. The fluid is 

considered to be viscous, incompressible, electrically 

conducting, Newtonian, optically dense and without 

phase change. We assume that the wall temperature 

Tw>T∞ where T∞ is the uniform temperature of the 

ambient fluid. It is assumed that both the fluid and 

porous medium are in local thermal equilibrium and 

both the fluid and the surroundings are maintained at a 

constant temperature far away from the sheet. The 

radiative heat flux in the energy equation is 

approximated by Rosseland approximation. A magnetic 

field of strength B0 is also applied transverse to the 

sheet. The induced magnetic field, the external electric 

field and the electric field due to polarization of charges 

are neglected while the Ohmic and viscous dissipations 

are taken into account. 

2.1 Governing Equations and Boundary 

Conditions 

The governing boundary layer equations can be written 

as 

u v
0

x y

 
 

 
                                                               (1) 

22

0

2

B uu v u
u v u

x y Ky

   
    

  
                             (2) 

22 22

0r

2

p p p

T T
u v

x y

B uqT u

c y c c yy

 
 

 

   
  

    

 
 
 

                       (3) 

The corresponding boundary conditions are 

 

y 0: u cx, v 0  

 2

w 2

Dx
y 0: T T (x) T


   

 
         

                         (4) 

y : u 0; T T


    

 

Where the radiation heat flux (Brewster(1972)) is 

44 T
q

r y3k

  


 
                                                      (5) 

Here the temperature difference within the flow is 

assumed to be  sufficiently small so that T4 may be 

expressed as a linear function of temperature T, using a 

truncated Taylor series about the free stream 

temperature T∞
 
to yield

 
4 3 4

T 4T T 3T
 

                                               (6) 

2.2 Similarity Transformation 

Let us introduce the following similarity 

transformations 
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w

T Tc
c xf ( ), y, ( )

T T






       

 
                  (7) 

where ψ is the stream function such that 

u , v
y x

 
  
 

                                                 (8) 

From Eq. (7) and Eq. (8) we get velocity components as 

'
u cxf ( ) and v c f ( )                               (9) 

We see that the equation of continuity in view of  

Eq. (9), is identically satisfied. 

The central objective of this paper is to investigate 

thermal aspects of the problem. In order to solve the 

energy Eq. (3) the temperature distribution is assumed 

in the form of similar solution as 

2

2

x
T T D ( )


                                                         (10) 

The momentum Eq. (2) and energy Eq. (3) in view of 

Eqs. (5)- (10) reduce to the following form 

22''' '' '' 1
f f f f ( M ) f 0    

                               
(11)

 

2
2 21 4N

(1 ) f 2f M Ecf Ecf 0
Pr 3

'' ' ' ' ''
        

   (12) 

with the corresponding boundary conditions 

 

0, f 0, f 1, 1
'

    
 

                                                                                 (13)
 

, f 0, 0
'

   
 

where prime denotes differentiation with respect to η. 

Here M is the Hartmann  number, where 

2

2 0

p

B
M

c





,  

3
4 T

N
k











is the radiation parameter and 

p
c

Pr





 

is the  Prandtl number. Also 

2 2

p

c
Ec

c D
  is the Eckeret 

number and 
cK

 


 is the Permeability parameter. 

2.3 Solution Procedure 

The solution of eq. (11) is assumed to be of the form 

s
f ( ) A B e

 
                                           (14) 

where the constants A, B and s are given by 

1 21 1
A , B , ands 1 ( M )

s s 
                      (15) 

Thus the exact solution of Eq. (9) can be written as 

1 s
f ( ) (1 e )

s

 
                                                   (16)

 

s
f ( ) e'  
                                                        (17) 

The non-linear boundary value problem given by  

Eq. (12) with Eqs. (16)-(17) and  boundary conditions 

given by Eq. (13) does not possess closed form 

analytical solution. Therefore it has been solved 

numerically by fourth order Runge-Kutta scheme 

together with shooting method. The computational 

procedure involved two challenges, firstly 

determination of η∞ i.e. maximum value of η for which 

θ(η) → 0  as η → ∞. Secondly, in order to employ 

shooting method, appropriate guesses of   θ'(0) are 

required so that the condition at the other end is 

satisfied.  

 The secant method of iteration was used to search for 

missing θ'(0). The values of η∞ for which θ (η) decays 

exponentially to zero for different set of values of 

parameters λ, M, N, Ec and Pr was chosen after some 

preliminary investigation. A grid independence study 

was carried out to examine the effect of the step size ∆η 

and the edge of the boundary layer η∞ on the solution in 

the quest for their optimization. The ηmax  i.e. η at ∞ 

was so chosen that further changes in it showed little 

changes (constant till 10-6) in the values of θ'(0) vis a 

vis boundary condition θ(η) → 0  as  η → ∞ is satisfied. 

A step size ∆η = 0.025 was found to be satisfactory for 

a convergence criterion of 10-6 in all the cases and the 

value of η∞ = 70 was found to be sufficiently large for 

the velocity to reach the relevant free stream velocity. 

 The procedure adopted above provides wall 

temperature gradient at the wall numerically that has 

been shown graphically. 

 
Fig. 1. Physical Model 

 

3. SKIN FRICTION 

The skin friction *  at the wall in the non-dimensional 

form is given as:- 

s)0(''f
c

uc

* 







                       (18) 
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4. RESULTS AND DISCUSSION 

In order to get the insight of the phenomenon under 

study, the profiles for the temperature θ(η)  and the wall 

temperature gradient θ′(0)   have been drawn for 

variable parameter values. Numerous set of values of 

the parameters central to the study were used to draw 

profiles, however, selective cases have been reported.  

The variations of θ(η) versus η  have been depicted in 

Fig. 2 - Fig. 4. 

 
Fig. 2. Temperature distribution versus η for varying λ and M 

 

 
Fig. 3. Temperature distribution versus η for varying Pr and N 

 

 
Fig. 4. Temperature distribution versus η for varying Ec 

Figure 2 displays variation in θ(η) for different values 

of permeability parameter λ and Hartmann number M. 

The figure envisages that θ(η)  registers increment with 

the decreasing values of λ. Here it is worth to note that 
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the permeability parameter λ is the inverse of Darcian 

drag force in the porous medium. Thus, larger values of 

λ signifies rather low resistance by the porous medium 

to cause more ease for fluid trasversal in porous 

medium. Hence, for larger values of λ, the thermal 

boundary layer thickness decays with a physical 

significance of shorter cooling time. Fig. 2 further 

reveals that the temperature θ(η) increases with the 

increasing values of M. Actually, the Hartmann number 

M is the measure of the relative importance of Lorentz 

force to the viscous hydrodynamic force. Thus, larger 

values of M indicate stronger magnetic field strength. 

Furthermore, it is to recall that we have applied 

transverse magnetic field which retards the flow. This 

results in hampering of the convective flow with the 

increasing values of M and consequently leads to 

thickening of the thermal boundary layer. In order to 

understand the effect of Hartmann number (magnetic 

field parameter), Eq.(2) and Eq.(3) require attention. 

The term 

2

0
B u


 in Eq. (2) is the Lorentz force which 

would act in opposite direction of the flow, hence 

retards the flow. Further the term 

2 2

0

p

B u

c




 in Eq. (3) 

represents Ohmic heating due to electromagnetic work 

and serves as heat source to cause rise in the fluid 

temperature. Here it is not out of place to emphasize 

that the Lorentz force can be used to control the flow of 

electrically conducting fluid that can serve to assist or 

oppose the flow (opposing flow and aiding flow). 

Figure3 demonstrates the variation in θ(η) with Prandtl 

number Pr and the radiation parameter N. From the 

very figure we observe that θ(η)  registers decrement 

with increasing values of Pr. Prandtl number physically, 

signifies the relative importance of momentum 

diffusion to thermal diffusion in the flow field. In fact 

dense fluids such as oils enjoy larger Prandtl number 

values whereas low density fluids such as liquid metals 

are characterized by low Prandtl number values less 

than unity. In thermal regime with low Prandtl number 

(e.g. mercury, Pr = 0.023), the thermal diffusivity has 

an upper hand i.e. the heat diffuses at faster rate 

compared to the momentum. However it should be 

noted that low Prandtl number fluids exhibit 

temperature dependent thermal conductivity.  On the 

contrary to it, fossil oil having low thermal conductivity 

(high Pr values) gives rise to thinner boundary layer. 

From the fig.3 it is also observed that θ(η) increases 

with the increasing values of N. The radiation 

parameter N being reciprocal of Stark number (also 

known as Stephan number) is the measure of relative 

importance of thermal radiation transfer to the 

conduction heat transfer. Thus larger values of N sound 

dominance of thermal radiation over conduction. 

Consequently larger values of N are indicative of larger 

amount of radiative heat energy being poured into the 

system, causing rise in θ(η). 

Figure 4 depicts the effect of Eckert number Ec on the 

non-dimensional temperature. It is revealed that θ(η) 

scores growth with the increasing values of  Ec. Eckert 

number, physically, is a measure of frictional heat in the 

system. Hence the thermal regime with larger Ec values 

is subjected to rather more frictional heating causing a 

source of rise in the temperature. To be specific, the 

Eckert number, Ec signifies the relative importance of 

viscous heating to thermal diffusion. Viscous heating 

may serve as energy source to modify the temperature 

regime qualitatively. Here a comparison of Fig. 2 and 

Fig. 4 is interesting. Close examination of the profiles 

in these figures would reveal the impact of Eckert 

number, Ec. In Fig. 4 we find that the temperature in 

the vicinity of the sheet rises considerably (note that at 

wall θ(0)=1) above 1 for larger Ec values. This is due to 

the frictional heating. 

The variation of rate of heat transfer at the sheet         

(− θ
׳
(0)) with respect to Prandtl number Pr  is shown 

from Fig. 5 – Fig.7. 

 
Fig. 5.  Wall temperature gradient ( -θ(0)׳) versus Pr for varying λ and M 
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Fig. 6. Wall temperature gradient ( -θ(0)׳) versus Pr for varying  N 

 
Fig. 7. Wall temperature gradient ( -θ(0)׳) versus Pr for varying Ec 

 

 
Fig.8. Skin friction coefficient versus λ for varying M 

 

Figure 5 shows that (− θ
׳
(0)) increases with an increase 

in Prandtl number Pr and also with increase in 

permeability parameter λ. On the other hand it 

decreases with an increase in  Hartmann number M. 

Figure 6 clearly shows that the wall temperature 

gradient decreases with an increase in Radiation 

Parameter N. 

Figure 7 shows the variation of (− θ
׳
(0) ) for varying 

values of  Eckeret number Ec. It is observed that the 

temperature gradient at the sheet decreases with an 

increase in Eckeret number Ec. 

Figure 8 shows the variation of skin friction with 

respect to the permeability parameter λ and indicates 
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that it decreases with an increase in magnetic field 

parameter M. 

5. CONCLUSION 

In this study, forced convention is examined including 

the viscous heating and the magnetic field effects. 

1. It is observed that the thickness of the thermal 

boundary layer, in the vicinity of the stretching 

sheet   increases with an increase in Hartmann 

number M, Radiation parameter N and Eckeret 

number Ec. 

2. It is also observed that the thickness of the 

thermal boundary layer decreases  with an 

increase in permeability parameter λ  and Prandtl 

number Pr. 

3. Rate of heat transfer at the wall increases with an 

increase in  permeability parameter λ and Prandtl 

number Pr. 

4. Rate of heat transfer at the wall decreases with an 

increase in Hartmann number M, Radiation 

parameter N and Eckeret number Ec. 

Skin friction coefficient decreases with an increase in 

magnetic field parameter M. 
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