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ABSTRACT 

A numerical study of a mixed convection boundary layer flow on a vertical plate in a porous medium with magnetic 

field, variable wall temperature and variable viscosity is made in this paper using the Darcy model. A free stream that 

varies as a power function of distance along the plate is assumed to flow parallel to the plate. Similarity solutions are 

obtained for the problem for both assisting flow and opposing flow. In the opposing flow case dual solutions are 

obtained for certain values of the parameters, and occurrence of boundary layer separation is also observed. 

Significant differences are observed between the behaviors of the two solutions of the dual solution case. Critical 

values of the mixed convection parameter are also obtained beyond which there exists no solution for the problem. 

Some of the observations of the analysis are - the range of values of the mixed convection parameter over which 

solutions exist for the problem is more in the presence of magnetic field than in its absence and also in the variable 

wall temperature case than in the isothermal case. Both local drag coefficient and heat transfer coefficient assume 

only positive values in the isothermal case while they assume both positive and negative values in the varying wall 

temperature case. Drag is less in the presence of magnetic field than in its absence and also in the isothermal case 

than in the varying wall temperature case. Heat transfer coefficient diminishes in the absence of magnetic field than 

in the presence of magnetic field. 
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NOMENCLATURE 

0B     Magnetic flux 

C       Magnetic interaction parameter, 
2

K

K M



 
 

f       Dimensionless stream function 

g       Acceleration due to gravity 

h       Local heat transfer coefficient 

mk     Effective Thermal conductivity of the saturated 

porous medium 

K     Porous parameter, 
2L

K
 

K     Permeability 

2M   Hartmann number, 

2 2

0B L 



 

p      Pressure 

xRa   Rayleigh number, 0( )

m

K g T T x 

 

 




 

T      Temperature 

eT      Constant =
1

T


    

0T      Temperature of plate 

T  
     Ambient temperature 

,u v    Velocity components in x-  and y- directions 

,x y   Cartesian coordinates 

a         Constant defined in the equation a   

U       Free stream velocity 

xPe   Pe clet Number,  
m

U x



  

GREEK SYMBOLS 

m     Effective thermal diffusivity of the porous 

medium 

      Coefficient of thermal expansion 

       Similarity variable 

       Dimensionless temperature 

 
e     Viscosity variation parameter  
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       Dynamic viscosity 

      Viscosity of the ambient fluid 

       Fluid density 

      Density of the ambient fluid 

      Stream function 

      Power of index of plate temperature 

      Kinematic viscosity 

      Constant defined in equation a   

SUBSCRIPTS 

 0      Condition at the plate  

     Condition at the infinite

1. INTRODUCTION 

Extensive studies of mixed convection in porous media 

have been performed over the last five decades 

covering a broad range of fields including several 

different physical effects since such studies have 

important applications in various fields of science and 

technology. Mixed convection flows arise when, 

besides buoyancy, there acts an external force, because 

of which there will be a free stream or a moving 

boundary in such problems. In mixed convection 

studies, there can arise two types of flows - assisting 

flow and opposing flow, depending on whether the 

plate is hot or cold as compared to the ambient 

temperature and based on the direction of the free 

stream or the moving boundary. Minkowycz et al. 

(1976) and Cheng et al. (1975) have presented 

similarity solutions for free convection in a porous 

medium adjacent to vertical and horizontal plates with 

wall temperatures being power functions of distance. 

Using Darcy’s law, a boundary layer model for natural 

convection in a porous medium was studied by Cheng 

et al. (1977), using Boussinesq’s approximation and a 

similarity transformation. Merkin (1980) is perhaps the 

first to have discussed assisting and opposing flows in 

mixed convection at a vertical plate in a porous 

medium. He has identified the occurrence of dual 

solutions for certain values of the parameters and also 

the occurrence of boundary layer separation. 

Ranganathan et al. (1984) have studied mixed 

convection boundary layer flow along a vertical surface 

in a porous medium considering the effects of inertia, 

porosity variation and blowing at the surface. Joshi et 

al. (1985) have discussed mixed convection in porous 

media adjacent to a vertical uniform heat flux surface. 

Lai et al. (1990) discussed the effect of variable 

viscosity on convective heat transfer in three different 

cases of natural convection, mixed convection and 

forced convection, taking fluid viscosity to vary 

inversely with temperature. In that work, while 

discussing mixed convection, the authors have taken 

only assisting flow into consideration. Chen et al. 

(1990) have studied the combined effect of quadratic 

drag, boundary friction, thermal dispersion and non 

uniform porosity on aiding flow at a vertical surface. 

Carey et al. (1980) used a regular perturbation analysis 

to study the effect of variable viscosity on convection in 

free flow at a vertical plate when the temperature of the 

plate varies as a power function of distance along the 

plate. The cases of freely rising plane plume, the flow 

above a horizontal line source on an adiabatic surface 

and the flow adjacent to a vertical uniform plane 

surface were considered and the effect of variable 

viscosity was discussed. Pu et al. (1999) made an 

experimental study of mixed convection heat transfer in 

vertical packed channels. The authors presented 

possible ranges of values of the mixed convection 

parameter RP appropriate for free convection, forced 

convection and mixed convection as 105RP  , 1RP   

and 1 105RP   respectively. They also discussed the 

transition from mixed convection to forced convection 

or to free convection.  

Aly et al. (2003) studied mixed convection boundary 

layer flow over a vertical surface embedded in a porous 

medium. Taking the plate temperature to vary as a 

power function of distance along the plate, similarity 

solutions of the problem were obtained as functions of 

two parameters  , a parameter that describes variation 

of the wall temperature and  , a mixed convection 

parameter. In the opposing flow case, dual solutions 

were obtained for certain values of the parameters and 

also critical values of   beyond which no solution 

exists. Chin et al. (2007) studied the effect of variable 

viscosity on mixed convection boundary layer flow 

over a vertical surface embedded in a porous medium. 

Taking fluid viscosity to vary as an inverse linear 

function of temperature, similarity solutions were 

obtained as functions of two parameters e , a viscosity 

variation parameter and  , mixed convection 

parameter. The occurrence of boundary layer separation 

and the existence of dual solutions in the opposing flow 

case were reported. 

In view of possible applications, effect of magnetic 

field on different convective problems was studied by 

several researchers. Sobha et al. (2003) studied free 

convective heat transfer in a porous medium subjected 

to a magnetic field when the plate temperature varies as 

a power function of the vertical coordinate. Acharya et 

al. (2000) studied the effect of magnetic field on free 

convection in a porous medium with constant heat flux. 

Rao et al. (2010) studied mixed convection in a porous 

medium with magnetic field, variable viscosity and 

varying wall temperature. Taking linear variation of 

viscosity, the authors have discussed the effect of 

magnetic field, variable viscosity and varying wall 

temperature on the mixed convection flow both in the 

assisting and opposing flow cases.  

In the present analysis steady mixed convection 

boundary layer flow over a vertical impermeable plate 

embedded in a porous medium is studied. A magnetic 

field of uniform intensity is assumed to act normal to 

the plate, temperature of the plate is assumed to vary as 

a power function of distance along the plate and 

viscosity of the fluid is assumed to vary inversely as a 

linear function of temperature. A free stream is assumed 

to flow parallel to the plate. It is an established fact that 

similarity for such a mixed convection problem exists 

only if the free stream also varies as the same power 

function of distance along the plate as that of the plate 

temperature. Under this assumption, similarity solutions 

are obtained for the problem. In the opposing flow case, 

the existence of dual solutions is also noticed. For a 

given value of the mixed convection parameter ( RP ), 
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depending on the values of the other parameters, either 

a unique solution or dual solution or no solution exist 

for the problem. Also there exist a critical value of RP  

beyond which no solution exists. Critical values of RP  

as well as ranges of values of the parameters for which 

either a unique solution, dual solution or no solution 

exist for the problem are determined. Certain 

qualitatively and quantitatively interesting results are 

presented in the form of graphs and tables. The 

behaviors of the solutions including the slip velocity, 

shear stress, heat transfer coefficient, fluid velocity, 

temperature, hydrodynamic boundary layer thickness 

and thermal boundary layer thickness are discussed as 

functions of parameters of the problem.  

2. FORMULATION 

An isothermal plate immersed vertically in a porous 

medium saturated with a viscous incompressible 

homogeneous quiescent fluid is considered. A point 

' 'o  in the plate is taken as origin of a coordinate 

system, a vertical line through ' 'o  along the plate is 

taken as X - axis and a line perpendicular to the plate 

through ' 'o  is taken as Y - axis. A magnetic field of 

uniform intensity ( 0B ) is applied in a direction normal 

to the plate. The temperature of the plate ( 0T  ) is 

assumed to vary as a power function of distance along 

the plate as 

0T T Ax 

         
                                                      (1)

 

where T  is the temperature of the ambient fluid, A  is 

a constant, and   is a real number.   is referred to as 

power of index of wall temperature. The viscosity of 

the fluid is taken to be an inverse linear function of 

temperature as  

1 1
{1 ( )}T T

 




                                           
(2)

 

where   is dynamic viscosity,   is viscosity 

evaluated at  ambient temperature, T is the temperature 

of the fluid and   is a constant depending on the 

viscosity of the fluid defined by  

a                                                                               
(3)

 

In general, the constant ‘ a ’ takes positive values for 

liquids and takes negative values for gases. Density of 

the fluid is assumed to be variable only in the body 

force term and other fluid properties are assumed to be 

constant. The ambient fluid is assumed to flow with a 

velocity U   parallel to the plate and this velocity is 

assumed to vary as a power function of distance ( x ) 

along the plate as  

U bx 

  .                                                                    
(4)

 

Using the Darcy model, the equations governing the 

steady mixed convection boundary layer flow are well 

known and are not presented here. 

Appropriate boundary conditions on the fluid velocity 

and fluid temperature are  

at   0Y  ,      0v  ,       0T T  

at   Y  ,   u U  ,  T T
  
 

Boussinesq’s approximation is used, and a stream 

function   is introduced through the relations   

u
y





, v
x


 


 

 

so that, after elimination of  pressure, the following 

equation is obtained 

( )eT T
2

2y




=

y





T

y




+

2( )e

T
T T aK g

y
 


 



2
2 2

0 2
( )eB T T a K

x








                                         

  (5)  

 Here 

1
eT T


    

Introducing a similarity variable   and nondimensional 

variables ,f   through the relations 

1

2(2 ) ( )xPe f   ,  
0

T T

T T
 







  

where 

xPe = 
m

U x




    

the governing equations are obtained as  

2

( )

( )

e

e

f f  

 

   


 =

(1 ) 1

e e

C
RP f

C



 

 
         (6)

 

f                                                                   (7) 

Here a dash denotes derivative with respect to , 

x

x

Ra
RP

Pe
  is the mixed convection parameter where 

0( )
x

m

K g T T x
Ra



 






  is a local Rayleigh number, 

xPe  is local Pe clet  number and
2

K
C

K M







is 

magnetic interaction parameter, where 

2 2

2 oB L
M





  

is Hartmann number.  

The boundary conditions in terms of non-dimensional 

variables are 

at    0           0f  ,       1   

as           1f          0                              (8) 

Equation (6) can be integrated once with respect to   

using the condition on f   at infinity to get 

1

2

,
2

xPe y

x


 
  
 
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f   =  
( ) ( . . 1)

( 1)

e

e

C RP

C

  

 

  

 
                                   (9) 

Evaluation of this expression at  =0 gives the slip 

velocity. 

2.1 Parameters of the Problem 

The parameters of the problem are RP ,C ,   and .e

RP  the mixed convection parameter takes positive 

values when the plate is hot i.e., when plate temperature 

is more than the ambient temperature, and takes 

negative values when the plate is cold i.e., when plate 

temperature is less than the ambient temperature. In the 

present work, by choice, positive values of RP  

correspond to assisting flow and negative values 

correspond to opposing flow.  

C  is the magnetic interaction parameter. In view of its 

definition, the parameter can take only positive values 

that are less than or equal to unity. The value unity 

corresponds to the case when there is no magnetic field 

and diminishing values of C  correspond to increasing 

intensity of the magnetic field or increasing 

permeability (i.e., diminishing values of the porous 

parameter). An increase in the intensity of the magnetic 

field diminishes the fluid flow and hence is the case 

with diminishing values ofC . 

The constant ‘ A ’ appearing in the expression for the 

plate temperature can take positive as well as negative 

values.   is power of index of wall temperature. This 

parameter can take positive as well as negative values 

which give rise to plate temperatures higher or lower 

than that of ambient temperature depending on the 

value of ‘ A ’. Zero value of   corresponds to the 

isothermal case. 

The other parameter e  is the viscosity variation 

parameter. It can take positive as well as negative 

values, of which positive values correspond to gases 

and negative values correspond to liquids.  The value 

infinity corresponds to constant viscosity case. In this 

problem, it is observed that 1000 is a large value of e  

that gives sufficiently accurate constant viscosity 

results. It is not necessary to differentiate between the 

values  and   of e  and hence between the 

values +1000 and -1000. 

2.2 Solution of the Problem 

The Eqs. (7) & (9) subject to conditions (8) constitutes 

a boundary value problem. This problem is solved by 

Runge-Kutta- Gill method together with a shooting 

technique and solutions are obtained only for negative 

values of RP , since its negative values correspond to 

opposing flow and it is intended to confine attention to 

the opposing flow case. It may be further noted that the 

value 1000 for e  has given results that coincide with 

those corresponding to the constant viscosity case. 

Solutions in certain appropriate cases are compared 

with available results of the literature. Important 

quantities of physical interest such as slip velocity, fluid 

velocity, fluid temperature, shear stress, heat transfer 

coefficient, hydrodynamic boundary layer thickness and 

thermal boundary layer thickness are determined. 

Quantitatively and qualitatively interesting behaviors of 

the solutions are presented through figures and tables 

and discussed as functions of the parameters.  

3. DISCUSSION OF THE RESULTS 

In this paper, attention is paid to the opposing flow case 

and hence on the results for negative values of mixed 

convection parameter RP . Certain important results are 

presented in the form of Figs. 1 to 7 and some more 

results in the form of Tables 1 to 2. 

In what follows the shear stress at the plate, ‘ (0)f  ’ is 

referred to as skin friction and the heat transfer rate at 

the plate, ‘ (0)  ’ is referred to as the wall heat 

transfer rate. 

Local drag coefficient is defined as 

1

2
0

2

( )
(0)

( ) (1 ) 2

y x

x

u

y Pe
Cd f

U A x 




  



 

 




 

  (10) 

Local Nusselt number is defined as  

1

20

0

(0)
2

y x

x

T
K

y PeK
Nu

T T x






 
  

    
   

  
            (11) 

The discussion of the results is presented in two parts 

(i) Isothermal ( 0)   i.e., constant wall temperature 

case and (ii) Non- Isothermal ( 0)   i.e., varying wall 

temperature case. 

3.1 Skin Friction & Heat Transfer Coefficient 

(Isothermal Case, 0  ) 

Variations in ‘ (0)f  ’ with the mixed convection 

parameter are presented in Figs. 1(a), 1(b) and the 

corresponding variations in ‘ (0)  ’ are presented in 

Figs 2(a), 2(b). It may be noted that, skin friction ‘

(0)f  ’ takes increasing values with increasing negative 

values of RP  up to a certain stage and diminish 

beyond that stage.  It is also noted that there is a critical 

value of RP  beyond which there exist no solution. 

From the plots of ‘ (0)f  ’, it may noted that there can 

be a unique solution, dual solutions or no solution for 

the problem depending on the values of RP . In the case 

of dual solutions, the solution corresponding to a 

relatively larger value of ‘ (0)f  ’ is referred to as the 

upper solution and the one corresponding to a smaller 

value of ‘ (0)f  ’ is referred to as the lower solution.  

Optimum values for ‘ (0)f  ’ occurs when 2e    and 

this optimum diminishes as e  changes from -2 to -8 

and also from 1000 to 2. The range values of RP  over 

which solution exists for the problem is maximum for

2e  , and the range diminishes as e  increases from 

2 to 1000. The range further diminishes as e  changes 

from -8 to -2. 
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Both in the presence ( 0.5C  ) as well as in the 

absence of magnetic field ( 1C  ), behavior of ‘ (0)f 

’ is the same, except that the range of values of RP over 

which solution exists is considerably larger in the 

presence of magnetic field. 

From Figs. 2(a), 2(b) it may be noted that, unlike ‘

(0)f  ’, ‘ (0)  ’ takes diminishing values with 

increasing negative values of RP  up to the critical 

value and diminishes further as RP  increases. Since 

zero value of RP  corresponds to forced convection, 

we may note that the heat transfer coefficient of the 

mixed convection case assumes smaller numerical 

values than the one in the forced convection case. 

Unlike ‘ (0)f  ’, ‘ (0)  ’assumes smaller values as 

e  changes from 2 to 1000 or from -2 to -8. Effect of 

magnetic field on the heat transfer coefficient is not as 

significant as on skin friction.  

3.2 Skin Friction & Heat Transfer Coefficient 

(Varying Wall Temperature Case, 0  ) 

Variations in ‘ (0)f  ’ of this case are presented in 

Figs. 1(c), 1(d) and corresponding variations in ‘

(0)  ’ are presented in Figs. 2(c), 2(d).  

In the isothermal case ‘ (0)f  ’ as well as ‘ (0)  ’ 

are observed to assume only positive values, while in 

the present varying wall temperature case ( 0.05  ), 

they can be observed to assume both positive and 

negative values indicating that dual solutions exist over 

a wider range of values of RP  in the varying wall 

temperature case than in isothermal case. Variations in 

skin friction and heat transfer coefficient of the present 

case with the mixed convection parameter RP  and 

viscosity variation parameter e  are similar to the 

corresponding variations of the isothermal case. 

The range of values of RP  over which solution exists 

for the problem in this case ( 0.05  ) is slightly more 

than the corresponding range in the isothermal case 

( 0.0)   for a given set of values of the other 

parameters. In the presence of magnetic field ( 0.5)C 

the range over which solutions exists is considerably 

larger than the range in the absence of magnetic field 

( 1)C  . 

 

 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig.1. Variations in          for positive values of θe. (a) 

λ=0.0, C=1.0; (b) λ=0.0, C=0.5; (c) λ=0.05, C=1.0; (d) 

λ=0.05, C=0.5 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 2. Variations in ‘–       ’ for positive values of θe. 

(a) λ=0.0, C=1.0; (b) λ=0.0, C=0.5; (c) λ=0.05, C=1.0; 

(d) λ=0.05, C=0.5 

3.3 Other Flow and Heat Transfer 

Characteristics  

Variations in shear stress ‘ ( )f  ’of the upper solution 

are presented in Fig. 3(a) and those of the lower 

solution in the Fig. 3(b). It may be noted that variations 

in the lower solutions with the parameters are more 

striking than those in the upper solution. Hydrodynamic 

boundary layer thickness pertaining to the lower 

solution can be observed to be much higher than the 

boundary layer thickness of the upper solution and in 

fact boundary layer thickness of the lower solution is 

almost twice that of the upper solution Boundary layer 

thickness can be observed to be very high when e = 2, 

and in the absence of magnetic field. However the 

maximum value of shear stress of lower solution is 

smaller than that of the upper solution. 

Variations in ‘ ( )  ’are presented in Fig. 4(a) for the 

upper solution and in Fig. 4(b) for the lower solution. 

One important observation is that, for both the 

solutions, for all values of the parameters, ‘ ( )  ’ is 

negative. Thermal boundary layer thickness of the 

lower solution is much higher than that of the upper 

solution and in fact, boundary layer thickness of lower 

solution is almost twice that of the upper solution. It 

may be observed that absolute value of ‘ ( )  ’ is 

maximum when e =2 (i.e., for gases). Absolute 

maximum of the lower solution is smaller than absolute 

maximum of the upper solution. 

Variations in fluid velocity of the upper solution are 

presented in Fig. 5(a) and of the lower solution in Fig. 

5(b). As can be expected, the variations in the shear 

stress are reflected in the plots of the velocity. 

However, it may noted that the variations in the lower 

solution with the parameters are significant than the 

variations in the upper solution. Hydrodynamic 

boundary layer thickness of the lower solution is much 

higher than that of the upper solution. 

 

 
(a) 

 
(b) 

Fig. 3. Variations in      . (a) upper solution; (b) lower 

solution 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1.5 -1 -0.5 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 -2.5 -2 -1.5 -1 -0.5 0

-7

-6

-5

-4

-3

-2

-1

0

1

2

-2 -1.5 -1 -0.5 0

-16

-14

-12

-10

-8

-6

-4

-2

0

2

-3 -2.5 -2 -1.5 -1 -0.5 0

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25



N. Veerraju et al. / JAFM, Vol. 5, No. 4, pp. 53-62, 2012.  

 

59 
 

 
(a) 

 

 
(b) 

 

Fig. 4. Variations in θ  ´(η). (a) upper solution; (b) lower 

solution 

 

 
(a) 

 

 
(b) 

 

Fig. 5. Variations in      . (a) upper solution; (b) lower 

solution 

 

 
(a) 

 

 
(b) 

 

Fig.6. Variations in θ (η). (a) upper solution; (b) lower 

solution 

 

 
Fig.7. Variations in       for positive values of θe 

Variations in fluid temperature of the upper and lower 

solutions are presented in Figs. 6(a) and 6(b) 

respectively. The variations in the temperature can be 

anticipated from the variations in ‘ ( )  ’. Further, 

variations in the lower solution are more significant 

than those in the upper solution. Thermal boundary 

layer thickness of the lower solution is much higher 

than that of the upper solution. 

Variations in slip velocity for positive values of e  are 

presented in Fig. 7. From the figure, it may be noted 

that the slip velocity can be observed to be more in the 

presence of magnetic field ( 0.5C  ) than in its 

absence ( 1C  ).  For both positive as well as negative 

values of e , in the absence of magnetic field, the slip 

velocity takes either zero value or negative values while 

in the presence of magnetic field, slip velocity takes 

positive values. In the presence of magnetic field, slip 

velocity increases with increasing positive values of e  

(i.e., for gases, as e  changes from 2 to 1000) while it 
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decreases with increasing negative values of e  (i.e., 

for liquids, as e  changes from -2 to -8 and further to 

1000). However, in the absence of magnetic field, the 

behavior of slip velocity with e  is vice versa. 

3.4 Observations from Tables 

It is noticed that there exists a single solution or dual 

solution or no solution for different negative values of 

the mixed convection parameter RP . In Table 1, are 

presented sets of values of the parameters for which 

either a single solution or dual solution or no solution 

exists for the problem. From numerical results as well 

as from tables, it could be observed that the range of 

values of RP  for which a solution exists is seen to 

increase with decreasing values of e  (either positive 

or negative). The range can also be seen to increase 

considerably in the presence of magnetic field 

( 0.5)C   than in its absence ( 1C  ). The range can 

be seen to increase further in the variable wall 

temperature case ( 0.05  ) than in the constant wall 

temperature case ( 0  ). 

Variations in hydrodynamic boundary layer thickness 

( )v  and thermal boundary layer thickness ( t ) in the 

absence of magnetic field ( 1C  ) are presented in 

Table 2(a) for 1.2 , 0.05.RP     Changes in v , t  

in the presence of magnetic field ( 0.5)C  are 

presented in table 2(b) for 2.2, 0.05RP    .  

 

Table 1 Ranges of values of RP . (a) 1C  , 0.05  ( no magnetic field, varying wall temperature). 

(b) 0.5C  , 0.05  ( magnetic field, varying wall temperature) 

(a) 

  Parameters 

 

 

Type 

Of solution 

2e   

1C                

0.05   

8e   

1C                

0.05   

2e    

1C                

0.05   

8e    

1C                

0.05   

Single 
Solution 

0.7 0RP    0.2 0RP    0RP   0RP   

Dual 

Solution 
1.435 0.8RP     1.376 0.3RP     1.332 0.1RP     1.354 0.1RP     

No 
Solution 

1.435RP    1.376RP    1.332RP    1.354RP    

 

(b) 

    Parameters 

 

 

Type 

of solution 

2e               

0.5C                

0.05   

8e               

0.5C                

0.05   

2e    

0.5C                

0.05   

8e              

0.5C                

0.05   

Single 

Solution 
1.3 0RP    0.3 0RP    0RP   0RP   

Dual 

Solution 
2.81 1.4RP     2.74 0.4RP     2.6996 0.1RP     2.7182 0.1RP     

No 

Solution 
2.81RP    2.74RP    2.6996RP    2.7182RP    

 

Tables 2 Hydrodynamic boundary layer thickness ( v ) &Thermal boundary layer thickness ( t ) 

(a) 

      Parameters 

 

 
Thickness 

2e   1.2RP    

1, 0.05C    

8e   1.2RP    

1, 0.05C    

2e    1.2RP    

1, 0.05C    

8e    1.2RP    

1, 0.05C    

UPPER SOLUTION 

v  8 8 7 8 

t  8 8 7 8 

                           LOWER SOLUTION 

v  15 13 11 12 

t  15 13 11 12 
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(b) 

      Parameters 
 

 

Thickness 

2e   2.2RP    

0.5, 0.05C    

8e   2.2RP    

0.5, 0.05C    

2e    2.2RP    

0.5, 0.05C    

8e    2.2RP    

0.5, 0.05C    

UPPER SOLUTION 

v  8 7 7 7 

t  8 7 7 7 

                           LOWER SOLUTION 

v  16 15 14 14 

t  16 15 14 14 

From the tables, as well as from numerical results, it 

may be noted that for upper solution, there are 

negligible changes in v , t  with changing values of

&e  . However for the lower solution, the changes 

in v , t are significant with changes in the 

parameters. Both v and t decrease for positive 

increasing values and negative decreasing values of

e . Both v and t  assume larger values for larger 

negative values of RP . From numerical results, v ,

t are observed to decrease with increasing negative 

values of RP . Also v , t  are observed to assume 

larger values in the presence of magnetic field than in 

the absence of magnetic field. These variations of v

, t with changing values of ,e  and C , however, 

are not the same for all values of RP . 

3.5 NM Earlier Works 

Results of the present analysis are in excellent 

agreement with those of Lai et al. (1990) when 0  , 

1C   for positive values of RP (i.e., in the assisting 

flow case when the plate temperature is constant and 

when there is no magnetic field). Results of the 

present analysis are in excellent agreement with those 

of Aly et al. (2003) when 1C  , 1000e   (i.e., 

when there is no magnetic field and when viscosity is 

taken to be a constant. It is noticed that 1000 is a 

sufficiently large value for e  that has given results 

of constant viscosity case). Results of the present 

analysis also are in excellent agreement with those of 

Chin et al. (1990) when 1C   and 0   ( i.e., when 

the plate temperature is constant and when there is no 

magnetic field, both in the assisting flow and 

opposing flow cases).  

4. CONCLUSION 

In the opposing flow case, there can be a unique 

solution, dual solutions or no solution for the problem 

depending on the values of RP . In the case of dual 

solutions, the solution corresponding to a relatively 

larger value of ‘ (0)f  ’ is referred to as the upper 

solution and the one corresponding to a smaller value 

of ‘ (0)f  ’ is referred to as the lower solution. The 

range of values of RP over which solution exists is 

considerably large in the presence of magnetic field 

than in its absence. In the isothermal case ( 0.0)  , ‘

(0)f  ’ as well as ‘ (0)  ’ assume only positive 

values, while in the varying wall temperature case (

0.05  ), they assume both positive and negative 

values, indicating that dual solutions exist over a 

wider range of values of RP  in the varying wall 

temperature case than in isothermal case. Variations 

in the lower solutions with the parameters are more 

striking than the variations in the upper solution. 

Hydrodynamic boundary layer thickness pertaining to 

the lower solution is much higher than the boundary 

layer thickness of the upper solution. Thermal 

boundary layer thickness of the lower solution is also 

much higher than that of the upper solution. Drag is 

less in the presence of magnetic field than its 

absence. Drag is less in the isothermal case than in 

the varying wall temperature case. Heat transfer 

coefficient assumes larger values in the presence of 

magnetic field than in its absence. The range of 

values of RP  for which a solution exists increases 

with decreasing values of e  (either positive or 

negative). 
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