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ABSTRACT 

The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based 

boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary 

conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta 

condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude 

numbers and immersion depths. 
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NOMENCLATURE 

AR          aspect ratio 

C            chord length 

P            pressure 

L            lift 

Fn           Froude number 

g             gravitational acceleration 

G            Green's function 

0V


          inflow velocity 

X


          position vector 

0K         wave number 

n            outward unit normal vector  

h/C         depth-chord ratio 

NBW        number of elements on the body  

NFW        number of elements on the free surface 

NW          number of elements on the trailing vortex           

wake surface 

M             number and span wise of the hydrofoil 

NB            total number of the elements on the body 

NF            total number of the elements on the free 

surface 

NT            total number of element 

            wave elevation 

             perturbation potential 

             total velocity potential 

            density of the water 

             attack angle 

BS             surface of the body 

FS            surface of the free surface 

WS            surface of the TVW 

TE            trailing edge 

 
 

1. INTRODUCTION 

The hydrofoil is a lifting body that generates the lift to 

raise the craft’s hull in order to decrease the wetted 

surface and as a result to diminish drag. The shape of 

hydrofoils is very important in their application in 

marine fields. Also, determination of the hydrofoils’ 

hydrodynamic characteristics like forces and moments 

experienced by a hydrofoil of finite aspect ratio and 

arbitrary form in the proximity of a free surface and their 

resultant wave patterns is essential in their application. 

Then, the designer should choose how the hydrofoil will be 

arranged, what shape it will have, what geometrical angle of 

attack it should have, etc. Existence of the free surface will 

complicate the analysis. As a result, when a vortex interacts 

with a free surface, the velocity field is significantly altered 

and this results in a complex structure and dynamics.  

This problem has been considered by many researchers. 

Yeung et al. (1979) dealt with thick hydrofoil methods 
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which provided a precise representation of the flow 

near the hydrofoil surface. Janson (1997) applied linear 

and nonlinear potential flow calculations of free surface 

waves including lift and induced drag of hydrofoils, 

vertical struts and Wigley ship hulls. There have been 

some experimental as well as theoretical studies on the 

influence of different hydrofoil configurations on the 

hydrodynamic characteristics. Hydrodynamic analysis 

of two and three dimensional hydrofoils moving 

beneath the free surface was developed in Bal (2008); 

Kouh (2002); Xie et al. (2007). Bai et al. (1994) used a 

localized finite-element method for the nonlinear steady 

waves due to two-dimensional hydrofoils. Numerical 

calculations of ship induced waves using the boundary 

element method with triangular mesh surface calculated 

in 2000. Dawson (1977) employed a distribution of 

Rankine type sources on the ship hulls and free 

surfaces. Isparametric boundary element method is 

employed to the underwater body and calculated the 

lift, drag and wave pattern by Ghassemi et al. (2010). 

The aim of this work is to investigate the wave 

generated by the hydrofoils moving with constant speed 

placed in a steady stream close to the free surface. 

Computational results of free surface pattern generated 

by NACA4412 hydrofoil are presented.  

2. PROBLEM DEFINITION 

Let us consider a hydrofoil that is moving at a constant 

forward speed in infinite deep water near the free 

surface, as depicted in Fig. 1. A Cartesian coordinate 

system O-XYZ is defined to be fixed in the space and a 

moving coordinate system o-xyz fixed on the hydrofoil. 

The horizontal and vertical axes, ox and oz, are along 

and at the right angle to the direction of the motion. The 

z-coordinate is defined as being vertically upwards 

from the undisturbed free surface. The fluid is assumed 

to be in viscid, incompressible, irrotational and without 

surface tension. These assumptions lead to a boundary 

value problem for the velocity potential with the 

Laplace equation satisfied in the fluid Domain. Under 

the global coordinate system, a total velocity potential 

  can be defined as the sum of the free-stream and the 

perturbation potentials as follows: 

0.V X                                                                 (1) 

where   is the perturbation velocity potential which is 

disturbance caused by the presence of a hydrofoil and is 

superimposed on the uniform flow and X


 is the 

position vector. 

 The perturbation and total potentials are governed by 

Laplace’s equation: 

2 2 0,                                                               (2) 

 

 

Fig. 1. Definition of coordinate system and some parameters 

 

The potential   is computed by the boundary element 

method, which is based on Green’s identity. In general, the 

boundary surface includes the body surface (SB), wake 

surface (SW) and the free surface (SF). According to Green’s 

third identity, the perturbation potential   is given by the 

following integral expression with q on surface S and p 

in : 

( )4 ( ) ( )q GE p G q dS
n nS

  
 
 
 
 
 

    
                            (3) 

where S = SB + SW + SF are the boundaries of the lifting 

body, wake and the free surface, respectively. p is the field 

point and E  is the solid angle which depends on its position 

in the fluid domain  . If point p is placed on the boundary 

(body surface), then the coefficient E is replaced by 2/1 . For 

p inside and outside , its values are one and zero, 

respectively. G is Green’s function including the image 

body relative to the free surface. Then, the boundary 

conditions have to be determined. In order to satisfy also the 

linearized free surface boundary condition that is applicable 

here, it is necessary to add, for any one source strength, the 

influences of its image in the undisturbed free surface. In 

flow problems involving free surfaces, part of the boundary 

of the computational domain (corresponding to the free 

surface) is unknown and must be determined as part of the 

solution. On the free surface, two boundary conditions 

should be satisfied, the kinematic free surface boundary 

condition (KFSBC) and the dynamic free surface boundary 

condition (DFSBC).  

 
0

.          ( , )V on z x y
z

                             (4) 

where   denotes the wave elevation and can be expressed 

as 

0

11
. .        ( , )

2
V on z x y

g
          

 
 
 

                     (5) 
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where g is the gravitational acceleration. Fig. 2 shows 

the boundary conditions on the body and free surface. 

The free surface formulation (Eq. (4)) is nonlinear. 

Here, the linearized boundary-value problem is used by 

omitting the nonlinear terms in the boundary 

conditions. Then, the linearized boundary conditions 

are satisfied on the undisturbed free surface 

0
.          0,V on zz                                        (6) 

0

1
         0,V on zxg

                                   (7) 

 

Fig. 2. The governing equation and boundary 

conditions 

Inserting Eq. (6) into Eq. (7), a composed boundary 

condition on the free surface is obtained as: 

2
0          0,xx zV g on z                                    (8) 

In this study to compute the free surface boundary 

condition (Eq. 8), a four-point upwind difference 

scheme is used to compute 
xx . The flow velocity 

normal to the surface is zero. 

0
.V n

n


 



                                                                (9) 

),,( zyx nnnn 


 is the outward unit normal vector, 

defined positive when pointing into the fluid region. 

Also at infinity: 

,n         whe,0lim  r                                   (10) 

And the separation of the flow corresponds to the flow at the 

trailing edge on the classical airfoil theory and is secured 

through the Kutta condition. According to this condition, the 

velocity in the trailing edge is the same in the upper and 

lower surfaces. Once the system of equations which is 

constructed based on the boundary conditions has been 

solved, the potential, velocity and pressure on the hydrofoil 

can be computed. 

3. NUMERICAL METHOD 

The body surface and free surface are discretized into the 

quadrilateral elements. A typical meshing on a body surface 

and the number of elements are shown in Figs. 3 and 4, 

respectively. 

 It is assumed that the hydrofoil is subdivided into M 

spanwise strips which are extended from tip to tip and N 

chordwise strips which are extended from the leading edge 

to the trailing edge, giving a total of NM   elements. The 

discretized form of integral Eq. (3) for the wetted surface of 

the body and free surface are expressed and integrals 

involved in the above equation are numerically calculated 

by the Gauss quadrature integration method. 

A numerical code incorporating a low-order boundary 

element formulation has been developed. The method is 

potential based employing both doublets and sources 

distributed on the foil and cavity surfaces. The source 

strengths are unknown and should be calculated during 

computation of integrals.  

The discretization of the wetted body surface and free 

surface involves consideration of several issues. The 

Numerical differentiation of the surface potential is required 

to calculate surface velocity. 

 

Fig.3. Modeling of hydrofoil surface by quadrilateral 
elements 

2 ( , , , ) 0,x y z t 

 

0 Bn on S   

( , , , )x y z t  

0n on S    

[ , , ] ( , , , ),V u v w x y z t   

x  
0 0,xx z FK on S    

z  

U  
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Fig. 4. The number of elements on the free surface 

 

Fig. 5. Mesh surface of the rectangular hydrofoil 

4. RESULTS AND DISCUSSIONS 

A rectangular type hydrofoil shaped with NACA4412 

sections is selected. The hydrofoil moves at a constant 

speed beneath the free surface. The effect of the 

submerged depth (h/C), aspect ratio (A.R.) and Froude 

number (Fn) on the wave pattern are calculated. The 

Froude number is based on the mean chord length. Results 

are presented for Froude numbers from 0.5 to 1. A three 

dimensional hydrofoil with NACA4412 has a non-

symmetric profile and we focused on this to compute 

more results with the present method. Figure 5 shows the 

surface mesh of the NACA4412 foil and aspect 

ratio ( 4)AR  .  

This numerical instability is due to the spacing of the foil 

and upper cavity surfaces relative to the length of the 

elements in the vicinity. For the present analysis, the foil 

wetted surface and free surface have been discretized with 

900 and 2700 quadrilateral elements, respectively. The 

greater number of elements means a more stable solution. 

In Fig. 6, for this foil at depth ratio )1/( Ch , attack angle 

.])[deg5(   and Froude number )1( nF , the 

computational results of the center plane wave profile are 

compared with calculated values given by Kouh et. al. 

(2002) and Xie et al. (2007). The present calculation 

results are well correlated with the experimental data. 

The waves generated of the hydrofoils are calculated by 

the present method in various conditions. The perspective 

view of the free surface waves are given in various 

conditions. In Figs. 7 to 12 the calculated wave generated 

for rectangular hydrofoils with several Froude numbers 

and depth of submergence are shown. It can be seen that 

the effect of immersion on the hydrodynamic performance 

is significant when the hydrofoil is located near the free 

surface. Figure 12 shows the wave generated by two 

parallel hydrofoils. It is observed that the wave pattern 

interacted by two source pressure due to the hydrofoil. 
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Fig. 6. Comparison of wave profiles at the center plane of 

the hydrofoil 

 

For the second choice, a delta type hydrofoil is selected. 

Figure 13 shows the surface mesh of the NACA4412 delta 

shape hydrofoil. Calculations are made for this hydrofoil 

in different conditions. Figures 14 and 15 illustrate the 

variation of the wave patterns with respect to the Froude 

number at two depth ratios on the rectangular and delta 

hydrofoils with a NACA4412 profile. These figures give a 

fair impression about the wave pattern close to the body 

surface. 
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Fig. 7. Wave generated by the rectangular hydrofoil 

/ 0.8h C  , 0.51nF   

Fig. 8. Wave generated by the non-rectangular 

hydrofoil / 0.8h C  , 0.574nF   

 

Fig. 9. Wave generated by the rectangular hydrofoil, 

/ 0.7h C  , 0.606nF   

 

Fig. 10. Wave generated by the rectangular hydrofoil, 

/ 0.7h C  , 0.383nF   

 

Fig. 11. Wave generated by two parallel 

hydrofoil, 5.0/ Ch , 7.0nF  

 

Fig. 12. Wave generated for the rectangular hydrofoil, 

/ 0.7h C  , 0.447nF   
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Fig. 13. Mesh surface of the delta hydrofoil 

 

Fig. 14. Wave generated by the delta hydrofoil, 

5.0/ Ch , .][deg5 , 4.0nF  

 

Fig. 15. Wave generated by the delta hydrofoil, 

5.0/ Ch , .][deg5 , 7.0nF  

CONCLUSION 

We have calculated the wave generated by the hydrofoils 

moving at a constant speed near the free surface. A number 

of numerical tests were carried out for rectangular and delta 

shape hydrofoils with NACA4412 section in different 

operational conditions. By comparing the results of wave 

elevation with those of experiments and other numerical 

values, it is revealed that the method can simulate the wave 

patterns well.  
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