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ABSTRACT 

In this paper we present a mathematical analysis for the magneto hydrodynamic (MHD) axi-symmetric stagnation-point flow and 

heat transfer over a shrinking sheet which shrinks axi-symmetrically in its own plane. The governing partial differential equations 

along with the boundary conditions are first cast into a dimensionless form and then these equations are solved numerically by 

shooting technique. Thermal conductivity is assumed to vary linearly with the temperature. Temperature profiles are obtained for 

two different types of heating process namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with 

prescribed surface heat flux (PHF). The effects of various physical parameters on the flow and heat transfer characteristics are 

presented graphically and discussed. 

 

Keywords: Magnetohydrodynamic, Axi-symmetric stagnation-point flow, Temperature dependent thermal conductivity, Heat 

transfer, Shrinking sheet. 

NOMENCLATURE 

a       positive constant proportional to the free stream  

         straining velocity 

A      positive constant 

B0     uniform magnetic field acting transverse to the     

         sheet 

c       proportionality constant of the velocity of the   

         sheet 

cp      specific heat of the fluid at constant pressure 

D      positive constant 

Ec     Eckert number 

l       dimensional distance from the   

        stretching/shrinking origin 

L      non-dimensional  distance from the   

        stretching/shrinking origin 

l1     characteristic length 

M    magnetic parameter 

p      pressure of the fluid 

Pr    Prandtl number 

qw    heat flux at the surface 

R     reciprocal of the dimensionless distance along   

        the sheet 

T     temperature of the fluid 

Tw   wall temperature 

T∞    temperature of the free stream fluid 

 

∆T   difference between wall temperature and free   

         stream temperature of the fluid  

u,u*  dimensional, non-dimensional velocity  

         component in the x direction  

U      free stream velocity in x direction 

w,w* dimensional, non-dimensional velocity  

         component in the z direction 

W     free stream velocity in z direction 

x       dimensional distance along the sheet 

z       dimensional distance normal to the sheet 

α       ratio of the shrinking and free stream velocities  

ε       constant that appears due to temperature  

         dependent thermal conductivity 

κ       thermal conductivity of the fluid 

κ∞        thermal conductivity of the fluid in free stream 

θ       dimensionless temperature 

ξ       dimensionless  distance along the sheet 

η       dimensionless distance normal to the sheet 

τ       dimensionless surface shear stress 

ρ       density of the fluid 

μ       dynamic coefficient of viscosity of the fluid 

ν       kinematic viscosity of the fluid  

σ       electrical conductivity of the fluid 
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1. INTRODUCTION 

The study of boundary layer flow over a stretching 

/shrinking sheet is a subject of great interest due to its 

various applications in designing cooling system which 

includes liquid metals, MHD generators, accelerators, pumps 

and flow meters. Furthermore, the continuous surface heat 

and mass transfer problems are many practical applications 

in electro-chemistry and polymer processing. Many chemical 

engineering processes, like metallurgical and polymer 

extrusion involve cooling of a molten liquid being stretched 

into a cooling system. The fluid mechanical properties of the 

penultimate product depend mainly on the process of 

stretching and on the rate of cooling.  

Hydromagnetic behavior of boundary layer flow over a 

moving surface in the presence of transverse magnetic field 

is a basic and important problem in magnetohydrodynamic 

(MHD). The MHD flow and heat transfer for a viscous fluid 

over a stretching/shrinking sheet has enormous applications 

in many engineering problems such as plasma studies, 

petroleum industries, geothermal energy extractions, the 

boundary layer flow control in the field of aerodynamic and 

many others. 

Stagnation-point flow is a topic of significance in fluid 

mechanics, in the sense that it appears in virtually all flow 

fields of science and engineering. In some cases, flow is 

stagnated by a solid wall, while in others a free stagnation-

point or a line exists interior of the fluid domain. Hiemenz 

(1911) was the first to solve the two-dimensional stagnation-

point flow problem using a similarity transformation and the 

axi-symmetric three dimensional stagnation flow problem 

was studied by Homman (1936). Later the problem of axi-

symmetric stagnation flow over a moving surface is 

extended in numerous ways to include various physical 

effects. The results of these studies are of great technical 

importance, such as in the prediction of skin friction as well 

as heat/mass transfer near stagnation regions of bodies in 

high speed flows and also in the design of thrust bearing and 

radial diffusers, drag reduction, transpiration cooling and 

thermal oil recovery.  

Crane (1970) studied the steady two-dimensional boundary 

layer  flow of an incompressible viscous fluid caused by the 

stretching of an elastic flat surface which moves in its own 

plane with a velocity varying linearly with the distance from 

a fixed point. Heat transfer in the above flow maintained at 

constant as well as variable wall temperature was 

investigated by Gupta and Gupta (1977) and also by 

Carragher and Crane (1982). Wang (1984) analyzed the  

steady three dimensional flow of a viscous fluid over a plane 

surface which is stretched in its own plane in two   

perpendicular directions. The flow caused by the 

axisymmetric stretching of the surface was also investigated 

by him. Pavlov (1974) gave an exact similarity solution of 

the MHD boundary layer equations for the steady two-

dimensional flow of an   electrically conducting 

incompressible fluid due to the stretching  of an elastic 

surface in the presence of a uniform transverse  magnetic 

field. Heat transfer in the above flow with suction or blowing 

was analyzed by Chakrabarti and Gupta (1979). 

Chiam (1994) investigated the steady axisymmetric  

stagnation-point flow of a viscous fluid over an elastic 

surface which is stretched axisymetrically. Mahapatra and 

Gupta (2002) investigated flow and heat transfer in two-

dimensional orthogonal stagnation-point flow of an 

incompressible viscous fluid towards a stretching surface. 

They found that the structure of the boundary layer depends 

on the ratio of the velocity of the frictionless potential flow 

to that of the stretching surface. The corresponding problem 

of axisymmetric stagnation-point flow of an incompressible 

viscous fluid towards a stretching surface was also analyzed 

by Mahapatra and Gupta (2003). Axisymmetric stagnation-

point flow towards a stretching surface in the presence of a 

uniform transverse magnetic field with heat generation was 

investigated by Attia (2007). The similarity solution for an 

unsteady MHD stagnation-point flow of a three dimensional 

porous body with heat and mass transfer was investigated by 

Chamkha and Ahamed (2011). 

The boundary layer flow due to a shrinking sheet has 

attracted considerable interest recently. From consideration 

of continuity, Crane's (1970) stretching sheet solution 

induces a far field suction towards the sheet, while flow over 

a shrinking sheet would give rise to a velocity away from the 

sheet. From a physical point of view, vorticity generated at 

the shrinking sheet is not confined within a boundary layer 

and a steady flow is not possible unless adequate suction is 

applied at the surface. For this type of shrinking flow, it is 

essentially a backward flow as discussed by Goldstein 

(1965). For a backward flow configuration, the fluid losses 

any memory of the perturbation introduced by the sheet. As 

a result, the flow induced by the shrinking sheet shows quite 

distinct physical phenomena from the forward stretching 

case.  

Miklavcic and Wang (2006) investigated both two-

dimensional and axisymmetric viscous flow induced by a 

shrinking sheet in the presence of uniform suction. The 

above shrinking sheet problem was extended to power-law 

surface velocity by Fang (2008). Fang and Zhang (2009) 

gave an exact solution of MHD boundary layer equations in 

closed analytical form for flow of an electrically conducting 

fluid over a shrinking sheet in the presence of suction at the 

surface, the flow being permeated by a uniform transverse 

magnetic field. Steady two-dimensional and axisymmetric 

stagnation-point flow with heat transfer on a shrinking sheet 

was investigated by Wang (2008) and the same problem was 

solved analyticall by Rahimpour et al. (2008). Recently, 

Mahapatra et al. (2011)  studied steady two-dimensional 

MHD stagnation-point flow of an electrically conducting 

incompressible viscous fluid over a shrinking sheet, the flow 

being permeated by a uniform transverse magnetic field. 

Note that with an added stagnation-point flow to contain the 

vorticity, similarity solution is possible even in the absence 

of suction at the surface.  

All the above investigators restrict their analyses to MHD 

flow and heat transfer over a stretching/shrinking sheet with 

constant thermal conductivity. It was observed by Savvas et 

al. (1994) that for liquid metals, the thermal conductivity 

varies linearly with temperature in the range 0-4000 F. With 

this assumption, different authors solve the heat transfer 
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problem under various physical conditions  [see Prasad et al. 

(2009), Prasad and Vajravelu (2009), Sharma and Singh 

(2009)]. Hence we assume that the thermal conductivity is a 

linear function of the temperature. 

To the best of our knowledge, no investigation is made for 

the MHD axi-symmetric stagnation-point flow of an 

incompressible viscous fluid over a shrinking sheet. In this 

paper, we study the axi-symmetric stagnation-point flow and 

heat transfer phenomenon over a shrinking surface, in the 

presence of uniform transverse magnetic field, taking into 

the account of variable thermal conductivity. We consider 

two different cases on non-isothermal boundary conditions 

namely, (i) surface with prescribed surface temperature (PST 

case) and (ii)  surface with prescribed wall heat flux (PHF 

case) 

2. FLOW ANALYSIS   

Consider the steady axisymmetric stagnation-point flow of 

an electrically conducting incompressible viscous fluid 

towards a surface which is shrunk axisymmetrically with a 

velocity proportional to the distance from the shrinking 

origin. Due to possible non-alignment, it is more appropriate 

to use Cartesian axes instead of cylindrical axes (see 

Wang(2008)). Let (u, v, w) be the velocity components in 

the Cartesian coordinates (x,y,z), respectively. On the sheet, 

the velocities are u=c(x+l), v=cy, w=0, where c(<0) is the 

shrinking rate (stretching rate if c>0) and -l is the location of 

the shrinking (stretching) origin. Here shrinking of the sheet 

is along the negative direction of x-axis. Notice that the 

stretching axis and the stagnation-point  flow are not, in 

general, aligned (l ≠ 0). The   velocity components at infinity 

are given by U=ax, V=ay and W=-2az where a(>0) is the 

strength of the stagnation-point flow. A uniform magnetic 

field B0 is applied in a direction normal to the surface i.e., 

parallel to z-axis. The flow configuration is shown in Fig 1. 

 

Fig 1. A sketch of the physical problem. 

The governing equations of continuity and momentum under 

the influence of externally imposed transverse magnetic field 

Bansal (1994) in the boundary layer are  

0
u u w

x y z

  
  

  
                                                               (1) 

22
0

2

1 Bu u p u
u w u

x z x z




 

   
    

   
                (2) 

where ρ, ν, σ and p denote the density, kinematic viscosity, 

electrical conductivity and the pressure of the fluid. The last 

term in Eq. (2) is due to the Lorentz force. In writing Eq. (2), 

we have neglected the induced magnetic field since the 

magnetic Reynolds number RM for the flow is assumed to be 

very small. This assumption is justified for flow of 

electrically conducting fluids such as liquid metals e.g., 

mercury, liquid sodium etc. Shercliff (1965).  

The pressure gradient 
p

x




 can now be obtained from Eq. (2) 

in the free stream as  

2

01 p dU B
U U

x dx



 


  


                                                   (3) 

Eliminating  
p

x




 from Eqs. (2) and (3), we get 

2 2

0

2
( )

u u dU u B
u w U v U u

x z dx z





  
    

  
                      (4) 

The boundary conditions for the above flow situation are  

( ), , 0u c x l v cy w     at   0z                                      (5) 

( )u U x ax  ,            as  z                                      (6) 

where a(>0) is a constant. 

Following transformations are introduced in accordance with 

Wang (2008): 

' '
( ) ( ), ( ), 2 ( )u axF clh v ayF w avF               (7) 

where η is the dimensionless similarity variable given by  

1
2a

z


 
  

 
,                                                                       (8) 

and a prime denotes differentiation with respect to η. With u 

and w given by Eq. (7), the equation of continuity (1) is 

identically satisfied. Substituting Eqs. (7) and (8) in Eq. (4) 

and equating the coefficients of x0 and x1, we obtain the 

following non-linear differential equations: 

 
2''' '' ' 2 '2 1 (1 ) 0F FF F M F      ,                              (9) 

'' ' ' 22 0h Fh hF M h    .                                               (10) 

In Eqs. (9) and  (10), the constant M=(σB0
2/aρ)1/2 is the 

magnetic parameter characterizing the strength of the 

imposed magnetic field. The appropriate boundary 
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conditions for F(η)  and h(η) are obtained from Eqs. (5)-(8) 

as  

' '(0) 0, (0) , ( ) 1
c

F F F
a

     ,                                     (11) 

(0) 1h  ,    ( ) 0h   .                                                         (12) 

The dimensionless velocity components can be written from 

Eq. (7) as ' ( ) ( )
u

u F Lh
a

   


                              (13) 

2 ( )
w

w F
a




  ,                                                        (14) 

where  

a
x

v
    and  

a
L l


 .                                                (15) 

The dimensionless wall shear stress τ is given by  

'' '(0) (0)F Lh    .                                                      (16)   

3. HEAT TRANSFER 

The energy equation for a fluid with variable thermal 

conductivity in the presence of viscous and ohomic 

dissipations for the above flow is given by [Chiam (1998)]  

( )

2
2 2

( ) ,
0

T T T
c u w T

p zx z z

u
B u U

z

 

 

     
    

     

 
   

 

                                (17) 

where cp is the specific heat at constant pressure, T is the 

temperature of the fluid and κ(T) is the temperature 

dependent thermal conductivity. We consider the 

temperature dependent thermal conductivity in the following 

form [Chiam (1998)]  

 ( ) 1 ( )T T T
T


 

 
     

,                                         (18) 

where κ∞ is the conductivity of the fluid far away from the 

sheet, ∆T= Tw - T∞,  Tw is the sheet temperature  and  T∞ is 

the free stream temperature and ε is a small parameter. 

Substituting Eq. (18) into Eq. (17), we get  

22
2 2

( ) ( )
02

T TT
c u c wpp x zT z

T u
T B u U

zz

 
 

  

    
   

  
    

 

                      (19) 

The thermal boundary conditions depend on the type of 

heating process under consideration. Here, we consider two 

different heating processes, namely (i) Prescribed Surface 

Temperature and (ii) Prescribed Wall Heat Flux. 

Case 1: Prescribed Surface Temperature (PST) 

We assume that the prescribed wall temperature is a 

quadratic function of  r given by  

2

1

x
T T T A

w l

 
     

 
  at  0z   

T T        as  z                                                        (20) 

where Tw is the variable wall temperature, A is a constant 

and l1 is a characteristic length. We take the dimensionless 

temperature θ  as  

T T

T Tw


 
 

,                                                                     (21) 

where Tw - T∞ =A(x/l1)
2. Substituting  Eqs. (20), (21) into 

Eq. (19), we get 

2'' ' '
(1 ) Pr[2

' '' ' 22( ) ( )

2 ' 2
( 1 ) ] 0

F

F RLh E F RLhc

E M F RLh
c

   

  



  

   

   

                            (22) 

where a prime denotes differentiation with respect to η and 

Pr and Ec denote the Prandtl number and the Eckert number, 

respectively. They are defined as follows: 

2 2
11Pr , ,

c a lp
E Rc

c Ap



 
  


                                            (23) 

The boundary conditions are 

(0) 1  ,    ( ) 0   .                                                         (24) 

Case 2: Prescribed Wall Heat Flux (PHF) 

The heat flux (qw) at the surface is assumed to vary as the 

square of the  distance as follows: 

2

1

T x
q D

wz l


 
        

  at    0z   

T T        as  z                                                        (25) 

where D is a constant. Here we let  

2

( )
1

D x
T T g

a l






 
       

                                         (26) 

The energy Eq. (19) is transformed into the equation  

2'' ' '
(1 ) Pr[2

' '' ' 22( ) ( )

2 ' 2
( 1 ) ] 0

g g g Fg

F RLh g E F RLhc

E M F RLh
c

 

 



  

   

   

                            (27)  

subject to the boundary conditions  

' (0) 1g  ,    ( ) 0g   .                                                    (28) 

where a prime denotes differentiation with respect to η and 

the Eckert number 
2 2 /1a l a

Ec
Dc p

  . It is to be noted 
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that Eq. (27) is exactly the same form as Eq. (22) but the first 

boundary condition is now different. 

4. NUMERICAL SOLUTION 

The transformed momentum Eqs. (9) and (10) subject to the 

boundary conditions (11) and (12) are solved numerically by 

shooting technique for different values of the physical 

parameters. First, Eq. (9) is written as a system of three first 

order differential equations, which are solved by means of  a 

standard fourth-order Runge-Kutta integration technique. 

Then a Newton iteration procedure is employed to assure 

quadratic convergence of the iterations required to satisfy the 

boundary conditions F’(∞)=1. Using the falues of F(η) 

obtained from Eqs. (9) and (11), we get h(η) by solving Eq. 

(10) together with the boundary conditions (12) numerically 

by the same technique as described above. 

Using the numerical values of F(η) and h(η) from the 

solutions for the velocity distribution in section 2, Eqs (22) 

and (24) for the PST case and Eqs. (27) and (28) for the PHF 

case are solved to obtain θ(η) numerically by employing a 

shooting technique. 

5.  RESULT AND CONCLUSION   

In order to assess the accuracy of the numerical method, we 

have compared the local skin friction coefficients F’’(0), 

h’(0) and wall temperature gradient –θ’(0) for constant 

surface temperature for different values of   α with the 

previously published data (Wang 2008; Rahimpour et al. 

2008) available in the literature. Wang  (2008) numerically 

solved the stagnation point flow problem over a shrinking 

sheet in the absence of magnetic field and Rahimpour et al. 

(2008) solved the same problem analytically. The 

comparisons are shown in Tables 1 and 2, which show a 

favorable agreement, and thus give confidence that the 

numerical results obtained are accurate.  

Fig. 2. Trajectories of  F’’(0) and h’(0) for different values of 

the magnetic parameter M. 

Fig. 2 shows the trajectories of the values of F’’(0) and h’(0) 

for different values of the magnetic parameter M. In this 

figure, the trajectories for F’’(0) are represented by solid lines 

while those for h’(0) are shown as dashed lines. Our 

numerical results reveal that in the absence of the magnetic 

parameter (i.e.,M=0), the solutions of Eqs. (9) and (10) for 

F(η) and h(η) satisfying the boundary conditions (11) and 

(12) respectively, are unique for α≥-1 and no similarity 

solution exists for α<-1. The above result agree well with 

those of Wang (2008). The novel result that emerges from 

the analysis is that as M increases, the range of  α where 

similarity solutions exist gradually increases. When  α=1, we 

find that F’’(0)=0 because F(η)= η is the solution of Eq. (9) 

subject to the boundary conditions (11). The figure reveals 

that for the flow over a shrinking sheet, F’’(0)≥0 and for a 

given value of   α, F’’(0)  increases with increase in  M. The 

trajectory for h’(0) crosses the  α -axis in the case of flow 

over a shrinking sheet but it does not cross the α -axis for 

flow over a stretching sheet. For a given value of the 

magnetic parameter M, the magnitude of h’(0) decreases 

with increase in α. Also for a given value of α, |h’(0)| 

increases with increase in M. 

 

Fig. 3. Variation of F(η) with η for α=-0.75 (shrinking) for 

several values of magnetic parameter M. 

       Fig. 3 shows the variation of the vertical velocity 

component F(η) with η for different values of the magnetic 

parameter M. It is interesting to note that for shrinking at the 

surface (α <0), the function F(η) is negative near the 

shrinking sheet, showing regions of reverse cellular flow. 

The figure indicates that as M increases, the region of 

reverse cellular flow decreases. 
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Table 1 Comparison of the values of F’’(0) and h’(0)  when the magnetic parameter M=0 
 

 F’’(0) h’(0) 

α Wang(2008) Rahimpour et al. (2008) Present study Wang(2008) Rahimpour et al. (2008) Present study 

-0.95 0.9469 0.946815 0.946893 0.26845 0.268450 0.268457 

-0.75 1.35284 1.352850 1.352841 -0.22079 -0.220789 -0.220795 

-0.50 1.49001 1.490004 1.490013 -0.53237 -0.532371 -0.5.32374 

-0.25 1.45664 1.456599 1.456641 -0.75639 -0.756390 -0.756380 

0.0 1.31393 1.311938 1.311942 -0.93873 -0.938732 -0.938731 

0.1 1.22911 1.229113 1.229111 -1.00400 -1.004026 -1.004031 

0.5 0.78032 0.780323 0.780327 -1.23550 -1.235451 -1.235460 

1.0 0.0 0.0 0.0 -1.47930 -1.479337 -1.479341 

2.0 -2.13107 -2.131069 -2.131068 -1.88000 -1.879949 -1.879956 

5.0 -11..8022 -11..802214 -11.802202 -2.76170 -2.761724 -2.761702 

 

Table 2 Comparison of the values of  -θ’(0) in the case of constant surface temperature 

 Pr=0.7 Pr=7.0 

α Rahimpour et al. (2008) Present study Rahimpour et al. (2008) Present study 

-0.25 0.57485972 0.57483044 1.05649153 1.05647470 

-0.50 0.46709271 0.46706751 0.51204057 0.51203228 

-0.75 0.32600021 0.32591741 0.07191553 0.07190594 

-0.95 0.13688695 0.13684707 0.00003548 0.00003674 

0.0 0.66540000 0.66537890 1.54570000 1.54578755 

0.5 0.81676798 0.81678773 2.34510969 2.34514549 

1.0 0.94406979 0.94407350 2.98541099 2.98541957 

 

 

Fig. 4. Variation of h(η) with η for α=-0.75 (shrinking) for 

several values of magnetic parameter M. 

Fig. 4 shows the variation of the non-alignment function  

h(η) with η for different values of M for a fixed value of α 

(=-0.75). It is seen that for shrinking at the sheet h(η) 

decreases as M increase. Thus we can conclude that for 

shrinking at the sheet, the effect of non-alignment becomes 

less pronounced with increasing M. Fig. 5 shows the 

variation of the horizontal velocity component  u*(ξ,η) with 

η for several values of M with fixed values of  α, L and ξ. It 

is seen that the horizontal component of velocity increases 

with increase in M. 

 

Fig. 5. Variation of u*(ξ,η) with η for several values of M 

with  α=-0.5, L=1.0 and ξ=0.5. 

The effect of the magnetic parameter M on the temperature 

profile in the presence of the variable thermal conductivity 

parameter ε (keeping other parameters fixed) for both PST 

and PHF cases are displayed in Figs. 6 and 7, respectively. It 

is observed that the effect of M is to decrease the 

temperature profiles for both PST and PHF cases. From a 

physical point of view, this follows from the fact that the 

extent of the reverse cellular flow above the sheet decreases 

with increase in M. This is a consequence of the fact that the 

temperature field given by Eq. (17) is influenced by the 

advection of the fluid velocity above the sheet. 
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Fig. 6. Variation of θ(η) with η for several values of the 

magnetic parameter M with α=-0.5, Pr=0.72, Ec=0.1, ε=0.1, 

L=1.0, R=10.0.(PST case) 

 

Fig. 7. Variation of g(η) with η for several values of the 

magnetic parameter M with α=-0.5, Pr=0.72, Ec=0.1, ε=0.1, 

L=1.0, R=10.0.(PHF case) 

Figures 8 and 9 exhibit the temperature distribution for 

different values of the thermal conductivity parameter ε 

(keeping other parameters fixed) in PST and PHF cases, 

respectively. The effect of variable thermal conductivity 

parameter ε is to increase the temperature profile with the 

increase of ε, which in turn increases the thermal boundary 

layer thickness for both PST and PHF cases.  

 

Fig. 8. Variation of θ(η) with η for several values of  ε with 

α=-0.5, Pr=0.72, Ec=0.1, M=1.0, L=1.0, R=10.0.(PST case) 

 

Fig. 9. Variation of g(η) with η for several values of  ε with 

α=-0.5, Pr=0.72, Ec=0.1, M=1.0, L=1.0, R=10.0.(PHF 

case) 

The heat transfer phenomena is usually analyzed from the 

numerical values of the physical parameters viz. (i) wall 

temperature gradient –θ’(0) in PST case and (ii) wall 

temperature θ(0) in PHF case and these results are recorded 

in Tables 3 and 4. It is observed that the effect of the 

magnetic parameter M is to increase the magnitude of the 

wall temperature gradient |–θ’(0)| in PST case and  the 

magnitude of wall temperature | θ(0)| in PHF case. When the 

thermal conductivity parameter ε increases, the magnitude of 

wall temperature | θ(0)| in PHF case decreases. But upto 

certain value of α(<0), the magnitude of the wall temperature 

gradient |–θ’(0)| in PST case decreases as ε increases but 

beyond this value of α, |–θ’(0)| increases with the increase in 

ε. Also as | α| increases, |-θ’(0)| for PST case and  | θ(0)| for 

PHF case decrease.

 

Table 3  Wall temperature gradient -θ’(0)  for the PST case taking Pr=0.72, Ec=0.1, R=10.0 and L=1.0 

ε α M=0.0 M=0.5 M=1.0 

0.0 -0.25 0.705507 0.715416 0.735146 

-0.50 0.456165 0.476980 0.512701 

-0.75 0.112881 0.172313 0.251607 

0.1 -0.25 0.671978 0.681537 0.700609 

-0.50 0.442028 0.461785 0.495907 

-0.75 0.127332 0.181855 0.256264 

0.2 -0.25 0.643513 0.652733 0.671247 

-0.50 0.429897 0.448675 0.481448 

-0.75 0.137738 0.189431 0.259681 
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Table 4 Wall temperature θ(0)  for the PHF case taking Pr=0.72, Ec=0.1, R=10.0 and L=1.0 

ε α M=0.0 M=0.5 M=1.0 

0.0 -0.25 -1.836451 -2.417161 -4.883131 

-0.50 -0.475106 -0.720959 -1.480051 

-0.75 0.294271 -0.559534 -1.139001 

0.1 -0.25 -1.56026 -1.969695 -3.316171 

-0.50 -0.464484 -0.701216 -1.414480 

-0.75 0.196327 -0.465441 -1.121706 

0.2 -0.25 -1.369821 -1.689931 -2.643261 

-0.50 -0.455156 -0.684199 -1.361421 

-0.75 0.143001 -0.429667 -1.114900 

 

6. CONCLUSION 

In this paper, the MHD axisymmetric stagnation-point flow 

over a continuously shrinking sheet is investigated when the 

flow is permeated by a uniform 

magnetic field normal to the surface. The symmetry line of 

the stagnation flow and that of the sheet are non-aligned and 

the effect of non-alignment is also studied. Numerically it is  

observed that the solution domain expands as the magnetic 

parameter $M$ increases. Flow reversal is observed near the 

sheet and the region of reverse cellular flow near the 

shrinking surface decreases with increase in M. In the heat 

transfer analysis, we have assumed that the thermal 

conductivity is a linear function of the temperature. 

Temperature profiles are obtained for two different types of 

heating processes, viz., PST and PHF cases for different 

values of the physical parameters. The effect of the magnetic 

parameter  M is to decrease the temperature profile for both 

PST and PHF cases. 
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