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ABSTRACT 

Bingham fluid flow through a tapered tube with permeable wall studied. The flow takes place due to pressure gradient, 

and the porous medium is homogeneous with permeability k. The flow surrounded by the porous medium is governed by 

the Bingham model, and the flow in the porous medium is governed by the Darcy’s law. The velocity distribution, the 

volume rate of flow and its fractional increase are obtained. The results are deduced and discussed through graphs. 
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1. INTRODUCTION 

The blood vessel can be idealized as a tube with tissue 

space as circular porous bed (Vide Guha and Chuadhury, 

1985).The rotating viscometer data of Rand et al. (1946), 

Bugliarello et al. (1965) and Chien et al. (1965) suggests 

the non-Newtonian behaviour of blood. Lew et al. (1971) 

suggested chyme as a non-Newtonian material having 

plastic-like properties. In view of this the biofluid flow in 

a living body can possess the non-Newtonian behaviour in 

general. In order to have a better understanding of blood 

flow in arteries and veins and chyme flow in stomach. It is 

necessary to consider the biofluid to be a yield stress 

fluid. One of the models for yield stress fluids is Bingham 

model. Hence the study of Bingham fluid flow through a 

tapered tube with permeable wall is of considerable 

importance in medicine. 

Bird et al. (1960) investigated the Bingham fluid flow in a 

rigid circular tube. Rathy (1976) studied the flow of a 

Bingham fluid in a channel and in an annulus with 

impermeable walls. Vajravelu et al. (1987) made a study 

on the Bingham fluid in a circular tube with permeable 

wall. The velocity field is obtained using Beavers and 

Joseph (1967) slip condition at the permeable wall. 

Buckingham-Reiner equation for the flow is obtained. 

The Bingham fluid flow between two permeable beds is 

discussed by Goverdhan et al. (1991).The flow in the 

channel is assumed to be governed by Bingham model. 

The flow in the permeable beds is governed by Darcy’s 

law. The velocity distribution is obtained. Some results 

are deduced and discussed. Comparini (1992) discussed a 

one-dimensional model for the time dependent flow of a 

Bingham fluid between two parallel plates. The global 

existence and uniqueness of classical solution to the 

problem is proved. 

Ravana et al. (1996) studied the free surface flow of a 

Bingham fluid in an inclined channel over a permeable 

bed. The flow in the channel is described by Bingham 

model, whereas the flow in the permeable bed is 

according to Darcy’s law. The velocity field, the shear 

stress, the mass flow rate and its fractional increase are 

obtained. 

The problem of rotational motion of a Bingham fluid in 

the gap between two coaxial cylinders, the outer one 

being at rest and the inner one moving at given angular 

velocity is solved by Comparini (1997).  

Narahari (1999) discussed unsteady flow of a Bingham 

fluid between two permeable beds having different 

permeabilities. The velocity distribution in the porous and 

non-porous regions is obtained. Some deductions are 

made and the results are discussed. 

Sankara Reddy et al. (2000) made a detailed study on the 

Bingham fluid flow in an inclined channel bounded by 

two permeable beds. The velocity distribution in the 
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porous and non-porous regions is obtained. The 

temperature variation with Ec.Pr is discussed.  

Viswanatha Reddy et al. (2001) made a study on Bingham 

fluid flow in an annulus. The velocity field, the mass flow 

rate and its fractional increase are obtained. The results 

are deduced and discussed. Helical flow of a power-law 

fluid in a thin annulus with permeable walls is 

investigated by Vajravelu et al. (2003). It is observed that 
velocity increases due to permeable nature of the annulus. 

In this paper, Bingham fluid flow through a tapered tube 

with permeable wall is investigated. The velocity 

distribution, the volume rate of flow and its fractional 

increase are obtained. The results are deduced and 

discussed through graphs. 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

Consider the flow of a Bingham fluid through a tapered 

tube of length L with permeable wall. The flow takes 

place due to pressure gradient, and the porous medium is 

homogeneous with permeability k. The flow surrounded 

by the porous medium is governed by the Bingham 

model, and the flow in the porous medium is governed by 

the Darcy’s law. 

  
Fig.1. Physical Model 

 

The tube has a radius oR  at the entrance and radius LR  at 

the exit. The tube radius at any distance z from the inlet is 
given by 

  L o

o

R R
R z R z

L

 
   

 
       (1) 

The flow is axi-symmetric. Cylindrical polar coordinate 

system is used. The following assumptions are made in 

deriving the basic equations: 

a) The flow is steady and incompressible  

b) The flow is in axial direction. 

c) All physical quantities except the pressure are   

      function of r only. 

d) The body forces are negligible. 

In view of the above assumptions, the basic equations and 

boundary conditions of the flow take the following form: 

Basic Equations  

 
1

rz

dpd
r

r dr dz


 
   

 
        (2) 

Where  
z

rz o o

dv

dr
            (3) 

Boundary Conditions 

rz finite           at    0r                     (4) 

0zdv

dr
              at    pr R                         (5)

   

z Bv u     at   r R                    (6)

  

 z

B

dv
u Q

dr k


     at   r R      (7) 

where 
o

dpk
Q

dz

 
   

 
               (8) 

Integrating (2) w.r.to ‘r’ and using the condition (4), we 

obtain   

2
rz

dp r

dz


 
   

 
                    (9) 

Substituting (9) in (3), we get  

2

z

o o

dv dp r

dr dz
 

 
    

 
                       (10) 
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where o , rz  ,  , k , Bu , Q , o , avu  , zv , p and 

pR are  the yield stress, Shear stress, slip parameter, 

permeability, slip velocity, Darcy velocity, coefficient of 

Viscosity at the interface 0r  , average velocity, 

velocity component in z - direction, pressure and radius 

of the plug flow region. 

Non-Dimensionalisation of the Flow Quantities 

* z
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In view of the above dimensionless quantities the 

equations (1), (4) – (8) ) and (10)  take the following 

form. The asterisks (*) are omitted here after. 

 

 1 1LR R z                    (11) 

1

2

o zdv P

r r dr


  , Where 

dp
P

dz
             (12) 

0zdv

dr
     at    pr R            (13) 

z Bv u        at    r R                   (14) 

  z

B

dv
u DaP

dr k


         at   r R         (15) 

where 2

o

k
Da

R
            

3. SOLUTION OF THE PROBLEM 

Solving (12) and using the boundary condition (14) we 

obtain the velocity field around the plug flow region as  

 

   2 2

1
4

o B

P
v r R r R u        

When pR r R 
  

                                    (16)   

Using (15)  in (16), we get the slip velocity at the porous 

wall as 

2

o

B

P Da R
u Da

P






 
   

 
             (17) 

Using (13) in (16), we obtain the relation between o  and 

pR  as 

2 o

pR
P


                     (18) 

Taking pr R  in equation (16) and using the relation 

(18), we get the velocity field  in the plug flow region as 

 

 
2

2
4

p B

P
v R R u     When 0 pr R        (19) 

The flow in the porous region  r R  is governed by 

the Darcy law which is given by  .Q P Da        (20) 

4. DEDUCTIONS 

Case (i): When R(z)=1 and the permeability parameter 

0k   in the equations(16), (17) and (19) we get the 

velocity field outside the plug flow region pr R  : 

   2

1 1 1
4

o B

P
v r r u                   (21) 

and that in the plug flow region pr R :  

 
2

2 1
4

p

P
v R              (22) 

which are in agreement with those of Bird et al. (1960). 

Case (ii):When R(z)=1  , the equations (16), (17) and (19) 

we get the velocity field for the flow of a Bingham fluid 

flow through a circular pipe with permeable wall as 

follows.   

2

1
4 4

o B o

P P
v r r u             

When 1pR r                                               (23) 

. 1
.

2

o

B

P Da
u Da

P






 
   

 
        (24) 

 
2

2 1
4

p B

P
v R u    , when   pr R           (25) 

which agrees with the corresponding ones of Vajravelu 
and Sreenadh (1987). 

Case (iii): When R(z) =1 and as 0o  , the velocity 

field for the flow with permeable wall is  given by         

2

4 4
z B

P P
v r u        When 1pR r         (26) 

 

. 1
.

2
B

P Da
u Da



 
  

 
           (27) 

These results are in agreement with the results of 

Sreenadh and Arunachalam (1983). 

5. VOLUME RATE OF FLOW   

The Volume rate of flow for the flow of a Bingham fluid 

flow through a tapered tube is  
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2 2

1

2 1

0 0 0 0

pR R

Q v rdrd v rdrd

 

       

   1 20

1 2
8 3

B

p
Q B B u R


            (28) 

Where   
4 4 3

1 3 4p pB R R RR       and  

3 3 2

2 2 3p pB R R RR    

When the permeability parameter   0 . ., 0k i e Da    

(28) reduces to         

   1 0

0 1 2
8 3

P
Q B B


            (29) 

Where   
4 4 3

1 3 4p pB R R RR     

and 
3 3 2

2 2 3p pB R R RR    

6. FRACTIONAL INCREASE 

The fractional increase in the volume rate of flow of the 

Bingham fluid through a tapered tube with permeable wall 

over what it would be if the wall of the tube were 

impermeable is  

 1 1

0

1

0

Q Q
F

Q


    

2

21

8 3

B

o

u R

BPB 

 

 
 

      (30) 

where   
4 4 3

1 3 4p pB R R RR      and  

3 3 2

2 2 3p pB R R RR    

7. DISCUSSION OF THE RESULTS 

The Velocity profiles are shown in figures (1) – (11) for 

different values of τo, Darcy number Da, 10P   

and 1  . It is observed that the velocity attains 

maximum value at r = 0 and decreases with the increment 

in r. 

For fixed r and Da, the velocity decreases due to increase 

in z. The slip velocity at the permeable wall decreases 

with the increment in the value of Da. On comparing the 

velocity profiles for permeable and impermeable tapered 

tubes, it is found that the velocity is enhanced due to the 

permeability of the wall of the tapered tube. It is also 

observed that the velocity remains constant from the axis 

(i.e., r = 0) up to some value of r (which is the Plug flow 

region) and then decreases to a value at the permeable 

wall (which is the non Plug flow region). 

For fixed r and τo, the velocity increases with decrement in 

Da. As Da decreases the gap between the velocity curves 

becomes smaller for any fixed τo.   For larger τo, there is an 

increase in plug flow region. From Fig (12) it is observed 

that, for the fixed Darcy number Da, the velocity 

decreases along the axis with the increase in τo .It is the 

other way at the permeable wall. 

The fractional increase in volume rate of flow is 

numerically evaluated and is depicted in Fig (13). It is 

observed that for a fixed Darcy number Da, the fractional 

increase increases with yield stress τo. 

 
Fig. 1. Velocity profiles for z = 0, τ0 = 0.1 

 

 
Fig. 2. Velocity profiles for z = 0, τ0 = 0.5 

 

 
Fig. 3. Velocity profiles for z = 0, τ0 = 0.8 
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Fig. 4. Velocity profiles for z = 0, τ0 = 1.1. 

 
Fig. 5. Velocity profiles for z = 0.4, τ0 = 0.1. 

 

 
Fig. 6. Velocity profiles for z = 0.4, τ0 = 0.5. 

 

 
Fig. 7. Velocity profiles for z = 0.4, τ0 = 0.8. 

 
Fig. 8. Velocity profiles for z = 0.4, τ0 = 1.1. 

 
Fig. 9. Velocity profiles for z = 1, τ0 = 0.1. 

 

 
Fig. 10. Velocity profiles for z = 1, τ0 = 0.5. 

 
Fig. 11. Velocity profiles for z = 1, τ0 = 0.8 
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. 

 
Fig. 12. Velocity profiles for Da = 0.1 

 
Fig. 13. Fractional increase. 
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