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ABSTRACT 

In the present paper, the fully developed laminar free convective flow of a viscous incompressible and electrically conducting fluid 

between two concentric vertical cylinders is considered in the presence of a radial magnetic field. The induced magnetic field 

produced by the motion of an electrically conducting fluid is taken into account. The expressions for the temperature, velocity, 

induced magnetic field, induced current density, skin-friction and Nusselt number are obtained in a closed form under more general 

boundary conditions for the induced magnetic field. The influence of the Hartmann number and buoyancy force distribution 

parameter on the fluid velocity, induced magnetic field and induced current density have been analyzed by using the graphs while 

the values of the skin-friction, Nusselt number, induced current flux and mass flux are given in the tabular form. It is observed that 

the fluid velocity and induced magnetic field are rapidly decreasing with increase in the value of Hartmann number in the case when 

one of the cylinders is conducting compared with the case when both cylinders are non-conducting. The effect of the induced 

magnetic field is to increase the velocity profiles in comparison to the case of neglecting the induced magnetic field. The buoyancy 

force distribution parameter has tendency to increase the fluid velocity, induced magnetic field, temperature field and induced 
current flux.  
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NOMENCLATURE 
  

a   radius of inner cylinder 

b   radius of outer cylinder 

g   acceleration due to gravity 

0H   constant magnetic field 

'h   induced magnetic field component along  

 the axis of cylinder 

h   dimensionless induced magnetic field  

 component along the axis of the cylinder 

U   characteristic velocity 

M   Hartmann number 

1Nu   Nusetl number at inner cylinder 

Nu   Nusetl number at outer cylinder 

R   buoyancy force distribution 
'r   radial distance 

r   dimensionless radial distance  

T   dimensionless temperature 
'

aT   temperature of the inner cylinder 

'

bT   temperature of the outer cylinder 

'

fT    temperature of the fluid 

'u    velocity component along the axis of   

 cylinder  
u   dimensionless velocity component along  

 the axis of cylinder  

Greek symbols  

    coefficient of thermal expansion 

   coefficient of viscosity 

e    magnetic permeability 

    kinematic viscosity of the fluid 
    density of the fluid 

    electrical conductivity 

1    skin friction coefficient at inner cylinder 

    skin friction coefficient at outer cylinder  
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1. INTRODUCTION 

The studies of free-convective flow along a vertical 

cylinder are important due to its applications in the field of 

geothermal power generation, drilling operations, 

geological formulation. Globe (1959)  investigated the 

steady flow of an electrically conducting fluid in the 

annular space between two infinite long circular cylinders 

under the presence of a radial magnetic field. Dube (1971) 

considered the steady laminar flow of a viscous 

incompressible and electrically conducting fluid between 

infinitely long concentric rotating porous cylinders under 

the influence of a radial magnetic field. Pop et al.(1993) 

investigated the growth of the free convection 

boundary-layer on a isothermal horizontal circular cylinder 

embedded in a porous medium while Tyvand [4] have 

extend the work of Pop et al. (1993) by considering the 

transient convection in a porous medium, due to sudden 

temperature change at a boundary. Seong and Choung 

(2001) have investigated the flow past a circular cylinder 

under continuous and pulsed electromagnetic forces. 

El-Shaarawi and Sarhan (1981) have considered the fully 

developed free convective flow in the vertical annuli with 

one boundary isothermal and opposite adiabatic boundary 

while Joshi (1987) has taken the isothermal boundaries in 

which the inner boundary is maintained at a higher 

temperature than the outer one. Lien et al. (1985) have 

shown the effect of heat transfer on free convective flow as 

a result of impulsive motion of an infinite vertical circular 

cylinder. They have considered the isothermal and constant 

heat flux cases for oscillating and impulsively started 

circular cylinder while El-Shaarawi et al. (1990) have 

studied the fully developed laminar natural convection by 

considering four fundamental boundary conditions. These 

boundary conditions are obtained by combining each of the 

two conditions having one boundary maintained at uniform 

heat flux or at uniform wall temperature with each of the 

conditions while the opposite boundary conditions is kept 

isothermal at the cove fluid temperature or adiabatic. 

Several authors (see Sastry et al.(1987); Singh et al.(1997); 

Paul et al.(1998); Yan et al.(2000)) have investigated the 

convective heat transfer in hydromagnetics in view of its 

utility in exploration, thermal recovery of oil and 

underground nuclear waste storage site. Sastry and 

Bhadram (1987) have considered the combined free and 

forced convective flow and heat transfer in vertical annulus 

when a radial magnetic field is applied. Singh et al. (1997) 

studied the fully developed natural convective flow in the 

presence of a radial magnetic field by obtaining a unified 

solution when the thermal boundary condition at the inner 

cylinder is of mixed kind while outer one is kept on 

constant temperature. Paul and Singh (1998) have shown 

the analytical solution of laminar fully developed free 

convective flow between two coaxial vertical cylinders 

partially filled with a porous medium and clear fluid. Yan 

(2000) has considered viscous flow about a submerged 

circular cylinder, with oscillates otherwise steady current. 

Several solutions in the case of hydromagnetic free- 

convective flows have been obtained by Chandran et al. 

(1993, 1996, 1998, 2001) for different physical situations 

of flow formations. 

The above studies on natural convective heat and mass 

transfer phenomena in different cylindrical geometries in 

the presence of a magnetic field have been limited to the 

case when the induced magnetic field is not taken into 

account. This is due to the fact that the mathematical 

description as well as solution of such problems involves 

some less effort. Thus, the main aim of this paper is to 

present the fully developed free-convective flow of a 

viscous incompressible fluid between two coaxial vertical 

cylinders by considering into account the induced 

magnetic field. Boundary conditions at inner and outer 

cylinders are of mixed kind and convection between the 

vertical cylinders is set up by a change in the temperature 

of the cylinders as compared to fluid temperature. Here we 

have considered the three cases on boundary conditions of 

the induced magnetic field in which first case is when both 

cylinders are non-conducing. In second case, the inner 

cylinder is taken as non-conduction while outer cylinder as 

conducting and finally in third case, the inner cylinder is 

taken as conducting while outer cylinder as 

non-conducting. A non-dimensional parameter is used in 

order to characterize the temperature of the concentric 

cylinder with respect to the fluid temperature. This 

parameter also characterizes distribution of the buoyancy 

force between the cylinders and thus provides a very 

convenient and generalized framework to study the effect 

of changing the cylinder temperature. An integrated 

solution has been obtained using the mixed boundary 

conditions for the induced magnetic field. Finally the 

effects of buoyancy force distribution and Hartmann 

number parameter have been shown in the graphical and 

tabular from.  

2. MATHEMATICAL FORMULATION 

The fully developed natural convective flow of a viscous 

incompressible and electrically conducting fluid inside 

vertical concentric annuli of infinite length is considered in 

which temperature of the fluid as well as temperature of the 

cylinders are taken different from each other. The   -axis 

is considered along the axis of cylinders in the vertical 

upward direction and    is in the radial direction measured 

outward from the axis of the cylinders. The radii of inner 

and outer cylinders are taken as   and   respectively. The 

temperature of the fluid is taken   
  while the temperatures 

of inner and outer cylinders are   
  and   

  respectively. 

Also the applied induced magnetic field is directed radially 

outward in the form of      
 . Since the flow is fully 

developed and cylinders are of infinite length, the transport 

phenomena will depend only on   . Thus under the usual 

Boussinesq approximation, the basic transport equations 

for the considered model are obtained as follows: 

 
2 ' ' '

' '0

'2 ' ' ' '

1
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r r r r r
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                                    (3) 

 

According to considered model, the boundary conditions 

for the velocity, induced magnetic field and temperature 

field are obtained as follows: 

'
' ' ' ' '

'

'
' ' ' ' '

'

0,   0    0,   ,     

0,   0    0,   ,     

a

b

h
u or h T T at r a

r

h
u or h T T at r b

r









    

    

      (4) 

By using the following non-dimensional variables  

 

' ' '

0

2 ' ' ' '

' '

,   ,   ,   

- -
,   

-

e

a f f

a f

u r b h
u r h

U a a H Ua

g a T T T T
U T

T T








   

 

              (5) 

Eqs. (1) to (3) in dimensionless form are obtained as 

follows:  

2 2

2

1
0

u u M h
T

r r r r r

 

 


   


                        (6) 
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2

1 1
0

h h u

r r r r r

 

 


  


                               (7) 

2

2

1
0

T T

r r r






 


                                      (8) 

The boundary conditions in the non-dimensional form 

become  

0,   0    0,   1,     1

0,   0    0,   ,     

h
u or h T at r

r

h
u or h T R at r

r










    

    

         (9) 

In the above equations   and   are the buoyancy force 

distribution parameter and the Hartmann number 

respectively and they are defined by  

' '

0' ' .
,   =b f

e

a f

T T
R M H a

T T










                      (10) 

The buoyancy force distribution parameter   will play an 

important roll on the transport processes between the 

cylinders. This parameter in actual fact fixes the direction 

of the fluid temperature   
  with respect to cylinders 

temperature   
  and   

 . When     and  , then the 

cases   
    

  and   
    

  are obtained respectively. 

When   is in the range      , the case is either 

  
    

    
  or   

    
    

 . The case   
    

    
  

results for    . 

A unified solution corresponding to the three cases of 

boundary conditions on the induced magnetic field can be 

obtained by combining all conditions for the induced 

magnetic field. By doing so, the combined conditions are 

obtained as follows:  

1 1

2 2

0    1

0    

h
A B h at r

r

h
A B h at r

r










  

  

                          (11) 

The above equation clearly shows that a desired case can 

be obtained by assigning suitable values to   ,   ,    

and   . 

The analytical solutions of Eqs. (6) to (8) subject to their 

appropriate boundary conditions are obtained as follows:  

2 2

2 3logM Mu A Br Cr D r r D r                 (12) 

 
2 22 2 2

log log
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4 2
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     

 
 

 

      (13) 

11 logT D r                                       (14) 

By using the Eqs. (12) and (14) the skin-frictions and the 

Nusselt number at outer surface of inner cylinder and inner 

surface of outer cylinder are derived as  

1 2 3

1

( 2 )
r

u
MB MC D D

r




 

                     (15) 

1 1
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r
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r

D D D






  



  

  


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 

                (16) 
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T R
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r



 
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1
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T R
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r






  


                              (18) 

The mass flux of fluid, induced current density and induced 

current flux, by using the Eqs. (12) and (13), are obtained 

as follows:  

   
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1
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
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   

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(21) 

where                    are constants and they 

are defined in Appendix A.  
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2.1 Solution for M=2 

It can be observed from Eqs. (12) and (13) that the 

solutions for velocity and induced magnetic field are 

singular at       and, therefore, we have derived 

separately the expressions for the velocity and induced 

magnetic field from Eqs. (7) and (8) by taking       

and they are as follows:  

2 2 2 2

26 27

2 2

28

log

       (log )

u E Fr Gr D r D r r

D r r

     
          (22) 

2 2

2 2 2 2

46 47 48

log log
2 2

     log (log )

F G
h K L r E r r r

D r D r r D r r

     

 

          (23) 

By using the Eq.(22), the skin-friction at cylindrical walls 

is obtained as  

 1 26 272 2 2F G D D                             (24) 

 

 

3
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2
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   2 2 log 2 (log )
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D D D

   

   
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 
             (25) 

and the mass flux, induced current density and induced 

current flux are given by  

 
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


   

   
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          (28) 

The constants                               
    appearing in the above equations are defined in 

Appendix B.  

3. RESULTS AND DISCUSSION 

The analytical solution obtained in the present 

investigation is used to carry out a number of simulations 

for different values of the controlling parameters such as 

the buoyancy force distribution parameter and Hartmann 

number while keeping the ratio of radii as 2.0. The 

simulated numerical values are illustrated by using the 

figures and tables in order to examine the behavior of 

buoyancy force distribution parameter and Hartmann 

number on the transport processes. The temperature 

profiles are shown in Figs.1 and 2 for the cases       

and     respectively. These figures reveal that the 

temperature profiles have increasing tendency with R and 

then finally by increasing takes the shape of a straight line. 

 
Fig. 1. Temperature profile when       and 

     . 

 
Fig. 2: Temperature profile when     and      . 

 

The velocity profiles are plotted in Fig.3 for the case 

      when both cylinders are non-conducting. We 

scrutinized that the maximum velocity for     occurs 

near the inner cylinder and then progressively decreases 

towards the outer cylinder because for this case the 

temperature of the fluid   
  as well as the outer cylinder   

  

are same and less than the temperature of the inner cylinder 

  
  . The maximum velocity occurs in the middle region of 

the flow for     and it shifts towards the inner cylinder 

as   decreases from 1 to 0. This phenomenon comes out 

because for    , the temperature of fluid   
  is less than 

the temperature of both cylinders   
  and   

  , while for 

    the temperature of both cylinders   
  and   

  are 

same but greater than the temperature of fluid   
 . Also at 

    the flow is symmetric between the cylinders and 

having the nature as a parabolic type. As the Hartmann 

number   increases, the velocity profiles have decreasing 

tendency in the flow region. This suggests that the effect of 

the buoyancy force parameter can be controlled by 

increasing the Hartmann number. Fig.4 is used to 

demonstrate the velocity profiles for the case     when 

both cylinders are non-conducting. It depicts that the 

upward flows materialize near the inner cylinder for 

considered values of   and  . At       , the reverse 

flow does not appear near the outer cylinder, while it 
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occurs for        and     . The magnitude of upward 

flow increases near the inner cylinder while decreases the 

magnitude of downward flow near the outer cylinder as   

increases. The reason is that for    , the temperature of 

fluid   
  is greater than the temperature of outer cylinder 

  
  and less than the temperature of inner cylinder   

  . The 

influence of Hartmann number is to decrease the 

magnitude of both upward and downward flows. 

 
Fig. 3. Velocity profile in case 1 when       and 

      

 

 
Fig. 4. Velocity profile in case 1 when     and 

     . 

 

Figs. 5 and 6 are used to show the influence of the 

buoyancy force distribution parameter   on the velocity 

profiles for the cases       and     respectively 

when outer cylinder is conducting. The nature of the graphs 

in these figures is same as Figs. 3 and 4 and the velocity 

profiles are rapidly decreasing with increase in the value of 

Hartmann number. A comparative study of Figs. 3 and 5 

reveals that the maximum velocity of the fluid in the case 

when one of the cylinders is conducting is less than the 

case when both cylinders are non-conducting. The velocity 

profiles corresponding to the case when the inner and outer 

cylinders are conducting and non-conducting are not given 

here for the sake of brevity because obtained results have 

almost same nature as reported for the case when inner and 

outer cylinders are non-conducting and conducting. 

 
Fig. 5. Velocity profile in case 2 when       and 

     . 

 
Fig. 6. Velocity profile in case 2 when     and 

     . 

 

Figs. 7 and 8 illustrate the induced magnetic field for the 

cases       and     respectively when both 

cylinders are non-conducting. A close study of Fig. 7 

suggests that the magnitude of induced magnetic field is 

maximum in both (upward and downward) directions for 

   . The magnitude of induced magnetic field increases 

near the inner cylinder in upward direction and also near 

outer cylinder in downward direction as   changes from 0 

to 1. The position of maximum induced magnetic field 

shifts toward the inner cylinder as   decreases from 1 to 0. 

Fig. 8 reveals that the induced magnetic field exits in the 

upward direction for        and -0.5 while at 

       the induced magnetic field does not appear in 

the upward direction. 

 
Fig. 7. Induced magnetic profile in case 1 when     

  and      . 
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Fig. 8. Induced magnetic profile in case 1 when     

and      . 

 

In Figs. 9 and 10, we have shown the profiles of induced 

magnetic for the cases       and     

respectively when inner and outer cylinders are 

non-conducting and conducting. From Fig. 9, we can 

conclude that the induced magnetic field decreases 

monotonically in the whole region for all considered values 

of   and  . The magnitude of induced magnetic field 

increases as buoyancy force distribution parameter   

increases. Fig. 10 depicts that the induced magnetic field 

decreases monotonically for        however, at 

      , the induced magnetic field decreases 

monotonically upto       and thereafter almost 

constant. Further, the induced magnetic field at        

decreases monotonically upto       and then increases 

monotonically upto the outer cylinder. Thus the point of 

incredibility of induced magnetic field shifts toward the 

inner cylinder as   decreases. 

 
Fig. 9. Induced magnetic profile in case 2 when     

  and      . 

    
Fig. 10. Induced magnetic profile in case 2 when     

and      . 

 

Figs. 11 and 12 represent the profiles of induced magnetic 

field for the cases       and     respectively 

when inner and outer cylinders are conducting and 

non-conducting. Fig. 11 clearly shows that the induced 

magnetic field decreases monotonically from inner 

cylinder to outer cylinder for all considered values of   

and  . The maximum induced magnetic field at inner 

cylinder increase as   changes from 0 to 1 but Hartmann 

number has reverse effect. A close study of Fig. 12 reveals 

that the induced magnetic field does not appear in 

downward direction for        while appears for 

       and -0.7. The magnitude of induced magnetic 

field decreases monotonically for the values of        

and -0.5 while for        it decreases monotonically 

upto       and after it increases monotonically. From a 

comparative study of the Figs. 7 - 12, we find that the 

magnitude of induced magnetic field is less than the case 

when both cylinders are non-conducting compared to the 

case when one of the cylinders is conducting. 

 
Fig. 11. Induced magnetic profile in case 3 when     

  and      . 

    

 
Fig. 12. Induced magnetic profile in case 3 when     

and      . 

 

Figs. 13 and 14 illustrate the induced current density with 

respect to r for the cases       and     
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respectively when both cylinders are non-conducting. Fig. 

13 depicts that the positive current density is induced in the 

middle region of flow while Fig. 14 shows that it is induced 

near the inner cylinder. The negative current density is 

induced on the cylinders for both cases. The effect of 

buoyancy force distribution parameter is to increase the 

positive current density in the middle region and also the 

negative current density near the both cylinders. Further, 

we can observe that the effect of the Hartmann number is to 

decrease the positive as well as negative induced current 

density. Through a comparative study of the Figs. 13 and 

14, we conclude that the positive induced current density 

shifts toward the inner cylinder as   changes from 1 to 

-0.7. The magnitude of the surface current density is 

greater at the inner cylinder in comparison to the outer 

cylinder. 

 
Fig. 13. Induced current density profile in case 1 when 

      and      . 

 

 
Fig. 14. Induced current density profile in case 1 when 

    and      . 

 

The profiles of induced current density are plotted in Figs. 

15 and 16 for the cases       and     

respectively when inner and outer cylinders are 

respectively non-conducting and conducting. These figures 

depict that the induced current density has rapidly 

decreasing nature as   increases while increasing nature 

with  . From Fig. 15 it is clear that the maximum current 

density is induced in the middle region at       and 

then it has shifting tendency towards the inner cylinder as 

  changes from 1 to 0. Fig. 16 shows that the positive 

current density is induced near the inner cylinder. The 

negative induced current density occurs at outer cylinder 

for        and -0.5 while at        it is positive. 

Comparing the graphs in the Figs. 13 and 15 as well as in 

Figs. 14 and 16, we find that when outer cylinder is 

conducting the maximum value of induced current density 

is greater in comparison to the case when both cylinders are 

non-conducting. The induced current density 

corresponding to the case when the inner cylinder is 

conducting is not reported here for the sake of brevity as 

having almost the same nature as when outer cylinder is 

conducting. 

 
Fig. 15. Induced current density profile in case 2 when 

      and      . 

 

 
Fig. 16. Induced current density profile in case 2 when 

    and      . 

 

In Fig. 17 we have shown the effect of induced magnetic 

field on velocity profile at       by comparing the 

results corresponding to the cases (i) when induced 

magnetic field is neglected (Singh et al.(1997)) and (ii) 

when it is taken into account. It clearly shows that the 

velocity profiles in the case of considering the induced 

magnetic field into account is greater in comparison to the 

case of neglecting the induced magnetic field at the same 

Hartmann number when both the cylinders are 

non-conducting. 
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Fig. 17. Effect of induced magnetic field on velocity 

profile at       and       

 

Table 1 represents numerical values of the Nusselt number 

and it shows that the effect of buoyancy force distribution 

parameter is to decrease the heat transfer rate on both 

cylinders. The numerical values of skin-friction    (at the 

outer surface of inner cylinder),    (at the inner surface of 

outer cylinder), mass flow rate   and the induced current 

flux   are presented in Tables 2 and 3 for the cases 1 and 2 

respectively. An observation from these tables is that the 

numerical value of skin-friction at the outer surface of 

inner cylinder increases while at the inner surface of outer 

cylinder decreases as the value of   increases for both 

cases. The influence of Hartmann number   on the 

skin-friction at both the cylinders is to decrease for    , 

while increase for       in the case 1. In case 2 the 

numerical values of skin-friction at inner cylinder 

decreases with the values of  . As   changes from -0.7 

to 1.0, the difference between the values of    and    

increases, which suggests that a desired flow formation can 

be obtained by assigning a suitable value to  . The 

numerical values of skin-friction at inner cylinder in case 1 

is greater than from case 2 while at outer cylinder it is less 

than from case 2.  

The mass flux   decreases with increment in   in both 

cases for considered values of   except at       . An 

increase in   leads to reduce the mass flux of fluid   for 

both the cases. The increase in values of Hartmann number 

yields the oscillatory nature in the induced current flux 

with decreasing amplitude for the case when both cylinders 

are non-conducting and same type of effect is also due to 

 . In case 2, the induced current flux increases with   

while decreases with  . A comparative study of tables 2 

and 3 indicates that the mass flux of fluid is grater in the 

case when both cylinders are non-conducting in 

comparison to the case when outer cylinder is conducting, 

while the induced current flux has opposite behavior. 

Table 1 Numerical values of non-dimensional Nusselt number at inner and outer cylinders 

    

            

2 -0.7 2.45258157 1.22629078 

 -0.5 2.16404256 1.08202128 

 -0.3 1.87550355 0.93775178 

 0.0 1.44269504 0.72134752 

 0.3 1.00988653 0.50494326 

 0.5 0.72134752 0.36067376 

 0.7 0.43280851 0.21640426 

 1.0 0.00000000 0.00000000 

 

Table 2  Numerical values of non-dimensional skin-friction at inner and outer cylinders in case 1   

 

                

2 1 -0.7 0.16851794 0.11454088 -0.002705 -5.378959E-08 

  -0.5 0.21731975 0.04714391 0.0900505 1.011261E-07 
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  -0.3 0.26612156 -0.02025305 0.1828054 2.730635E-08 

  0.0 0.33932428 -0.12134850 0.3219388 -8.557370E-08 

  0.3 0.41252699 -0.22244395 0.4610709 -3.578334E-08 

  0.5 0.46132880 -0.28984092 0.5538264 3.794445E-08 

  0.7 0.51013062 -0.35723788 0.6465819 -7.927402E-08 

  1.0 0.58333333 -0.45833333 0.7857140 -2.124928E-08 

       

 2 -0.7 0.16415027 0.11235704 -0.0029332 -3.937164E-09 

  -0.5 0.21390884 0.04543845 0.0877608 5.994644E-09 

  -0.3 0.26366741 -0.02148012 0.1784548 1.660199E-08 

  0.0 0.33830527 -0.12185801 0.3144958 -4.618193E-09 

  0.3 0.41294312 -0.22223589 0.4505371 1.972690E-08 

  0.5 0.46270169 -0.28915447 0.5412310 -1.123315E-08 

  0.7 0.51246026 -0.35607306 0.6319251 -4.132116E-09 

  1.0 0.58709812 -0.45645094 0.7679660 9.523271E-10 

     

 3 -0.7 0.15746613 0.10901498 -0.003276 -5.887244E-09 

  -0.5 0.20868860 0.04282834 0.0842638 -1.096851E-01 

  -0.3 0.25991107 -0.02335830 0.1718040 -2.193332E-10 

  0.0 0.33674478 -0.12263825 0.3031149 -8.509794E-09 

  0.3 0.41357849 -0.22191820 0.4344252 3.448052E-09 

  0.5 0.46480096 -0.28810484 0.5219656 1.419459E-08 

  0.7 0.51602343 -0.35429147 0.6095058 -4.153331E-09 

  1.0 0.59285714 -0.45357143 0.7408162 -1.015472E-09 

       

 

Table 3 Numerical values of non-dimensional skin-friction at inner and outer cylinders in case 2 

 

                

2 1 -0.7 0.16758761 0.11500604 -0.003679 0.00186059 

  -0.5 0.21323090 0.04918834 0.0857673 0.00817765 

  -0.3 0.25887419 -0.01662937 0.1752129 0.01449479 
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  0.0 0.32733912 -0.11535592 0.3093833 0.02397038 

  0.3 0.39580405 -0.21408248 0.4435518 0.03344591 

  0.5 0.44144734 -0.27990018 0.5329985 0.03976291 

  0.7 0.48709062 -0.34571789 0.6224450 0.04607999 

  1.0 0.55555556 -0.44444444 0.7566136 0.05555556 

       

 2 -0.7 0.16095053 0.11395691 -0.006209 0.00159982 

  -0.5 0.19958659 0.05259958 0.0730958 0.00716111 

  -0.3 0.23822264 -0.00875774 0.1524006 0.01272238 

  0.0 0.29617672 -0.10079373 0.2713580 0.02106422 

  0.3 0.35413080 -0.19282973 0.3903159 0.02940614 

  0.5 0.39276686 -0.25418706 0.4696208 0.03496744 

  0.7 0.43140291 -0.31554437 0.5489259 0.04052874 

  1.0 0.48935699 -0.40758030 0.6678835 0.04887056 

       

 3 -0.7 0.15168553 0.11190527 -0.008986 0.00128459 

  -0.5 0.18201945 0.05616292 0.0579211 0.00592651 

  -0.3 0.21235336 0.00042056 0.1248289 0.01056836 

  0.0 0.25785424 -0.08319298 0.2251901 0.01753124 

  0.3 0.30335511 -0.16680651 0.3255515 0.02449408 

  0.5 0.33368902 -0.22254887 0.3924590 0.02913599 

  0.7 0.36402294 -0.27829123 0.4593665 0.03377789 

  1.0 0.40952381 -0.36190476 0.5597278 0.04074074 

       

 

CONCLUSION 

We have theoretically investigated the combined effects of 

buoyancy force distribution parameter and Hartmann 

number on the natural convective flow of an electrically 

conducting fluid in the presence of a radial magnetic field 

by taking into account the induced magnetic field and 

imposing mixed types of boundary conditions for the 

induced magnetic field on the surface of inner and outer 

cylinders. It is found that the buoyancy force distribution 

parameter and Hartmann number play an important role in 

controlling the transport phenomena. The effect of the 

induced magnetic field is to increase the velocity profiles 

in comparison to the case of neglecting the induced 

magnetic field. The effect of Hartmann number is to 

decrease the magnitude of maximum value of the velocity 

and induced magnetic field. The decreasing tendency is 

also observed in the induced current density and mass flux. 

The influence of buoyancy force distribution parameter is 

opposite to that of Hartmann number. The magnitude of 

surface current density is greater at the inner cylinder 

compared to the outer cylinder. The magnitude of induced 

magnetic field and current density is greater in the case 

when one of the cylinders is conducting in comparison to 

the case when both cylinders are non-conducting. The 

skin-friction at outer surface of inner cylinder and mass 

flux of fluid, when both cylinders are non-conducting are 

greater than the case when one of the cylinders is 
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conducting while the skin-friction at inner surface of outer 

cylinder and induced current flux have the opposite effect. 
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