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ABSTRACT 

The effects of radiation and rotation on unsteady hydromagnetic free convection flow of a viscous incompressible electrically 

conducting fluid past an impulsively moving infinite vertical plate with ramped temperature in a porous medium are investigated. 

Exact solution of momentum and energy equations, under Boussinesq approximation, is obtained in closed form by Laplace 

transform technique. To compare the results obtained in this case with that of isothermal plate, exact solution of the governing 

equations is also obtained for isothermal plate. The expressions for the primary and secondary skin frictions and Nusselt number 

are also derived. It is noticed that, for both ramped temperature and isothermal plates, rotation retards fluid flow in the primary 

flow direction whereas it accelerates fluid flow in the secondary flow direction in the boundary layer region while radiation 

exerts accelerating influence on the fluid flow in both the primary and secondary flow directions. For ramped temperature plate 

radiation reduces primary skin friction whereas it tends to increase secondary skin friction. For isothermal plate radiation has 

tendency to reduce secondary skin friction. Radiation tends to increase fluid temperature for both ramped temperature and 

isothermal plates. With the increase in time the rate of heat transfer at the plate is reduced for isothermal plate while it is 

increased for ramped temperature plate. 
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1. INTRODUCTION 

An investigation of convective heat transfer from a solid body 

with different geometries embedded in a fluid saturated 

porous medium has varied and wide applications in many 

areas of science and engineering such as geothermal 

reservoirs, drying of porous solids, chemical catalytic 

reactors, thermal insulators, nuclear waste repositories, heat 

exchanger devices, enhanced oil and gas recovery, 

underground energy transport etc. Keeping in view this fact, 

Cheng and Minkowycz (1977) obtained similarity solution for 

free convection flow from a vertical plate embedded in a fluid 

saturated medium. Ranganathan and Viskanta (1984) 

considered mixed convection boundary layer flow along a 

vertical surface in a porous medium whereas Minkowycz et 

al. (1985) analyzed the effects of mixed convection about a 

non-isothermal cylinder and sphere in a porous medium. 

Nakayama and Koyama (1987) investigated combined free 

and forced convection flows in Darcian and non-Darcian 

porous media. Hsieh et al. (1993) found non-similar solutions 

for mixed convection from vertical surfaces in a porous 

medium. Lai and Kulacki (1991) considered coupled heat and 

mass transfer by mixed convection from an isothermal vertical 

wall in a saturated porous medium. Comprehensive reviews of 

porous media thermal/species convection are well presented 

by (Nield and Bejan 2006; Vafai 2005; Pop and Ingham 

2002). 

The problems of magnetohydrodynamic flow and heat transfer 

in porous and non-porous media have drawn attention of 

many researchers due to the significant effects of magnetic 

field on the boundary layer flow control and on the 

performance of many systems using electrically conducting 

fluid. In addition, this type of fluid flow finds application in 

MHD power generation, MHD pumps, flow meters and 

accelerators, plasma studies, nuclear reactors using liquid 

metal coolants and geothermal energy extraction. Raptis and 

Kafousias (1982) studied the effect of magnetic field on 

steady free convection flow through a porous medium 

bounded by an infinite vertical plate with constant suction 

velocity. Raptis (1986) investigated unsteady two dimensional 

natural convection flow of an incompressible electrically 

conducting fluid along an infinite vertical porous plate 

embedded in a porous medium. Sahoo and Sahoo (1986) 

analyzed hydromagnetic free convection and mass transfer 

flow past an impulsively moving vertical plate through porous 
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medium while Jha (1991) considered this problem for 

uniformly accelerated movement of the vertical plate. Aldoss 

et al. (1995) studied mixed convection flow from a vertical 

plate embedded in a porous medium in the presence of 

magnetic field. Takhar et al. (1991) analyzed the effects of 

Hall current on MHD free convection boundary layer flow via 

a porous medium past a plate with wall temperature 

oscillations using harmonic analysis. Takhar et al. (1994) also 

studied the MHD free convection flow of water at 4oC 

through a porous medium. Helmy (1998) considered unsteady 

two dimensional laminar free convection flow of an 

incompressible, electrically conducting fluid (Newtonian or 

polar) through a porous medium bounded by infinite vertical 

plane surface of constant temperature. Kim (2000) 

investigated an unsteady MHD convection flow past a vertical 

moving plate embedded in a porous medium. Beg et al (2001) 

presented a two dimensional computational fluid dynamics 

analysis of steady thermal boundary layer flow of a second 

order non-Newtonian fluid past a horizontal wedge in a 

Brinkman-Darcy porous medium. Ibrahim et al. (2004) 

considered unsteady MHD micro polar fluid flow and heat 

transfer over a vertical porous plate through a porous medium 

in the presence of thermal and mass diffusion with a constant 

heat source.  

In all these investigations the effects of radiation is not taken 

into account. However, in some industrial applications such as 

glass production, furnace design, thermonuclear fusion, 

casting and levitation and in space technology applications 

such as cosmical flight, propulsion systems, plasma physics, 

and space re-entry aerodynamics which operate at higher 

temperature, radiation effects become significant. Keeping in 

view this fact, Takhar et al. (1996) investigated the effects of 

radiation on MHD free convection flow of a gas past a semi-

infinite vertical plate whereas Hossain et al. (1996) analyzed 

the effects of radiation on mixed convection along a vertical 

plate with uniform temperature. Bakier et al. (1996) 

considered the effect of radiation on mixed convection flow 

over a horizontal surface embedded in a saturated porous 

medium. Chamkha (2000) investigated thermal radiation and 

buoyancy effects on MHD flow over an accelerating 

permeable surface with heat source or sink. Azzam (2002) 

considered radiation effects on MHD mixed free and forced 

convection flow past a semi infinite moving vertical plate for 

high temperature differences. Israel-Cookey et al. (2003) 

studied the influence of viscous dissipation and radiation on 

unsteady MHD free convection flow past an infinite heated 

vertical plate in a porous medium with time-dependent 

suction. Kim and Fedorov (2003) considered the transient 

mixed radiative convection flow of a micro polar fluid past a 

moving semi-infinite vertical porous plate. Prasad et al. 

(2007) investigated unsteady, laminar, simultaneous free 

convective heat and mass transfer flow along an impulsively 

started plate in the presence of radiation effects. Mahmoud 

Mostafa (2009) considered thermal radiation effect on 

unsteady MHD free convection flow of an electrically 

conducting fluid past an infinite vertical porous plate taking 

into account the effects of viscous dissipation. 

The problems of hydromagnetic free convection flow in a 

rotating medium taking into account the effects of radiation 

are of considerable importance in many areas of geophysics, 

astrophysics and fluid engineering. Keeping in view this fact, 

Bestman et al. (1998) investigated unsteady hydromagnetic 

free convection flow of an incompressible optically thick fluid 

with radiative heat transfer near a moving flat plate in a 

rotating medium by imposing a time dependent perturbation 

on a constant plate temperature. Mbeledogu et al. (2007) 

considered heat and mass transfer of an unsteady MHD 

natural convection flow of a rotating fluid past a vertical 

porous plate in the presence of radiative heat transfer. They 

applied Rosseland approximation for an optically thick fluid 

to describe the radiative flux. 

In all these investigations, the analytical or numerical solution 

is obtained assuming velocity and temperature conditions at 

the plate as continuous and well defined. However, several 

practical problems may require non-uniform or arbitrary wall 

conditions. Taking into account this fact, several researchers 

(Haday et al. 1967; Kelleher 1971; Kao 1975; Lee and 

Yovanovich (1991) considered the problems of free 

convection from a vertical plate with step discontinuities in 

the surface temperature. Recently Chandran et al. (2005) 

investigated unsteady natural convection flow of a viscous 

incompressible fluid near a vertical plate with ramped wall 

temperature. They compared the results of natural convection 

near a ramped temperature plate with that of natural 

convection near an isothermal plate. 

The present study deals with the study of the effects of 

radiation and rotation on unsteady hydromagnetic free 

convection flow of a viscous incompressible electrically 

conducting fluid past an impulsively moving vertical plate in a 

porous medium, under Boussinesq approximation, assuming 

that the temperature of the plate has a temporarily ramped 

profile. Free convection resulting from such a plate 

temperature profile is likely to be of relevance in many 

engineering applications, especially where the initial 

temperature profiles assume importance in designing of MHD 

devices and in several natural phenomena occurring due to 

convection and radiation. An exact solution of the governing 

equations, in dimensionless form, is obtained by Laplace 

transform technique. To compare the results obtained in this 

case with that of isothermal plate, exact solution of the 

governing equations is also obtained for isothermal plate. The 

expressions for the primary and secondary skin frictions and 

Nusselt number are also derived for both ramped temperature 

and isothermal plates. Mathematical formulation of the 

problem, in dimensionless form, contains six pertinent flow 

parameters, namely, M  (magnetic parameter), 
2K  (rotation 

parameter which is reciprocal of Ekman number), Gr  

(Grashof number), 1K  (porosity parameter), Pr  (Prandtl 

number) and N  (radiation parameter). The numerical values 

of the primary and secondary velocities are displayed 

graphically versus boundary layer coordinate   for various 

values of M , 
2K , Gr , 1K , N  and t  while the profiles 

of fluid temperature are drawn versus   for various values of 

Pr , N  and t  for both ramped temperature and isothermal 

plates. The numerical values of the primary and secondary 

skin frictions are presented in tables for various values of M , 

2
K , Gr , 1K , N  and t  whereas that of Nusselt number are 
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provided in tabular form for different values of N , Pr  and 

t  for both ramped temperature and isothermal plates. 

2. FORMULATION OF THE PROBLEM AND IT'S 

SOLUTION 

Consider unsteady hydromagnetic free convection flow of a 

viscous incompressible electrically conducting fluid past an 

impulsively moving infinite vertical plate embedded in a 

porous medium. Choose the coordinate system in such a way 

that the x-axis is taken along the plate in the upward direction, 

y-axis normal to the plane of the plate in the fluid and z-axis 

perpendicular to xy – plane. The fluid is permeated by a 

uniform transverse magnetic field 
0B  applied parallel to y-

axis. Both the fluid and plate rotate in unison with a uniform 

angular velocity   about y-axis. Initially, at time 0t  , both 

the fluid and plate are at rest and at a constant temperature 

T  . At time 0,t    the plate starts moving in x direction 

with uniform velocity 0U  and the temperature of the plate is 

raised or lowered to   0T T T t tw       when 0t t , and 

thereafter, for 0t t , is maintained at the constant 

temperature Tw . Since the plate is infinite in x and z 

directions and is electrically non-conducting all physical 

quantities, except pressure, will be functions of y and t   only. 

Therefore, the fluid velocity q  and magnetic field B  is given 

by 

 ( ,0, ),  , ,0q u w B B B Bx z   ,                                         (1) 

which is compatible with the fundamental equations of 

magnetohydrodynamics in a rotating frame of reference. It is 

assumed that the induced magnetic field produced by the fluid 

motion is negligible in comparison to the applied one so that 

we consider magnetic field  0, ,0 .0B B  This assumption is 

justified because magnetic Reynolds number is very small for 

metallic liquids and partially ionized fluids (Cramer and Pai 

(1973)). Also no external electric field is applied so the effects 

of polarization of fluid is negligible (Meyer (1958)), i.e. 

electric field  0,0,0E  . 

Taking into consideration the assumptions made above, the 

governing equations for laminar free convection flow of a 

viscous incompressible electrically conducting fluid past a 

vertical plate in a uniform porous medium with radiative heat 

transfer, under Boussinesq approximation, in a rotating frame 

of reference are 

 
22

02
2 1

Bu u
w u u g T T

t Ky

 
 



  
            

  
,   (2) 

22
02

2 1

Bw w
u w w

t Ky

 




  
      

  
,                         (3) 

2 1

2

qT k T r

t c c yp py 

   
 

 

,                                           (4) 

where T  , g ,   ,  ,  ,  , k , 1K  , c p  and qr  are, 

respectively, temperature of the fluid, acceleration due to 

gravity, volumetric coefficient of thermal expansion, 

kinematic coefficient of viscosity, electrical conductivity, 

fluid density, thermal conductivity, permeability of porous 

medium, specific heat at constant pressure and radiative flux 

vector.  

The initial and boundary conditions are 

 
0

0 0

0

0,   for 0 and 0,

, 0 at 0  for 0,

 at  0 for 0 ,

 at 0 for ,

0, 0,   as  for 0.

w

w

u w T T y t

u U w y t

T T T T t t y t t

T T y t t

u w T T y t



 



         
     



           


     
         

         (5) 

We now use Rosseland approximation Brewster (1992) which 

leads to the value of radiative heat flux qr  as  

* 44

*3

T
qr

yk

 
 


                                                              (6) 

where 
*k  is mean absorption coefficient and 

*  is Stefan-

Boltzmann constant.  It may be noted that by using Rosseland 

approximation we limit our analysis to optically thick fluids. 

Assuming small temperature differences between fluid 

temperature T   and free stream temperature T  , the Eq. (6) 

is linearized by expanding  
4T   in Taylors series about free 

stream temperature  T  , which after neglecting second and 

higher order terms in  T T    takes the form 

4 3 44 3T T T T      .                                                        (7) 

Making use of Eqs. (6) and (7), in Eq. (4), we obtain 

* 32 2161

2 * 23

TT k T T

t c cp py k y



 

     
  

,                         (8) 

Introducing following non-dimensional variables 

/ 0 0y U t , / 0u u U , / 0w w U , / 0t t t  and 

   ,T T T T Tw        

the Eqs. (2), (3) and (8), in non-dimensional form, become 

2
22

2 1

u u u
K w Mu G Tr

t K

 
    

 

,                                (9) 

2
22

2 1

w w w
K u Mw

t K

 
   

 

,                                       (10) 

  21

2

NT T

t Pr 

 


 

,                                                           (11) 
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where 2 2/ 0K U is rotation parameter, 

2 2
1 1 0K K U  is porosity parameter, 2 2/0 0M B U    

is magnetic parameter,   3
0G g T T Ur w       is 

Grashof number, P c kr p  is Prandtl number and 

* 3 *16 3N T kk    is radiation parameter.  

According to above non-dimensionalization process, the 

characteristic time to can be defined as 

2
0 0t U .                                                                        (12) 

Making use of (12) the initial and boundary conditions (5), in 

non-dimensional form, reduce to 

0, 0 for 0 and 0,

1, 0 at 0 for 0,

 at 0 for 0 1,

1 at 0 for 1,

0, 0, 0 as  for 0.

u w T t

u w t

T t t

T t

u w T t











     
   


    
  


     

                         (13) 

Now letting f u iw   and combining (9) and (10), we obtain 

2 122
2 1

f f
iK f Mf f G Tr

t K

 
    

 

.                           (14) 

The initial and boundary conditions (13), in combined form, 

become 

0, 0 for 0 and 0f T t    ,                                         (15a) 

1 at 0 for 0f t   ,                                                        (15b) 

 at 0 for 0 1T t t                                                        (15c) 

1 at 0 for 1T t   ,                                                        (15d) 

0, 0 as  for 0f T t    .                                      (15e) 

It is evident from the Eqs. (11) and (14) that the energy Eq. 

(11) is uncoupled from the Eq. (14). Therefore, we can obtain 

first the solution for the fluid temperature  ,T t  by solving 

Eq. (11) and then using it in Eq. (14) the solution for  ,f t  

can be obtained. 

Applying Laplace transform technique, the Eqs. (11) and (14) 

with the help of (15a) reduce to 

2 1 22 0
2 1

d f
s M iK f G Tr

Kd

 
      
 

,                          (16) 

2
0

2

d T
saT

d
  ,                                                                    (17) 

where  1a P Nr   and  ,f s   and  ,T s  are Laplace 

transforms of  ,f t  and  ,T t  defined by 

   , ,

0

stf s f t e dt 


   and    , ,

0

stT s T t e dt 


  , 

( 0s   being Laplace transform parameter). 

The boundary conditions (15b) to (15e) become 

  21/ ,  1  at 0,
 

0,  0 as .

sf s T e s

f T





     

   

                                (18) 

The solution of Eqs. (16) and (17) subject to the boundary 

conditions (18) are given by 

 
1

,
2

se as
T s e

s




 
 ,                                                          (19) 

 

 
 

1
,

1
,

2

s
f s e

s

se s ase e
s s

 


  


 


    


                                     (20) 

where  

   

1 22 ,
1

1 , 1 .

M iK
K

G a ar



  

 
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 


    

                                               (21) 

Taking inverse Laplace transform of Eqs. (19) and (20), the 

exact solution for the fluid temperature  ,T t  and fluid 

velocity      , , ,f t u t iw t     is obtained and is 

expressed in the following form  

       , , 1 , 1 ,T t P t H t P t     
                               

(22) 

 

     

1
,

2 2

1

2 2

, 1 , 1 ,

f t e erfc t
t

e erfc t
t

F t H t F t

  

  

  

  
   

   

     
   

     

                                     (23) 

where  

 

2

2
4,

2 2

a

a a at tP t t erfc e
t


 

 


   
         

,                  (24) 
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.
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t
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t
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
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
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
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 
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 


 


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   

     
       
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              
     


2 2

2
21 1

4
2 22 2

a aac t e erfc t
t t

a
a a a at

erfc t erfc e t
t t

   


  


 

         
   

 
                       

 

    (25) 

In the Eqs. (22) to (25),  erfc x  is the complementary error 

function and  1H t   is the Heaviside unit step function. 
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3. SOLUTION IN CASE OF ISOTHERMAL PLATE 

The analytical solution for the fluid temperature and velocity, 

presented by (22) and (23) respectively, is obtained for 

unsteady hydromagnetic free convection flow of a viscous 

incompressible electrically conducting fluid near a vertical 

moving plate with ramped temperature. In order to highlight 

the effects of ramped temperature distribution within the plate 

on the fluid flow, it may be worthwhile to compare such a 

flow with the one near a moving plate with uniform 

temperature. Taking into account the assumptions made in the 

present study, the solution for the fluid temperature and 

velocity for the fluid flow near a vertical moving isothermal 

plate is obtained and expressed as 

 ,
2

a
T t erfc

t




 
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    (27) 

where /   . 

4. NUSSELT NUMBER AND SKIN FRICTION  

The expressions for the Nusselt number and skin friction, 

which are measures of the rate of heat transfer and shear stress 

at the plate respectively, are presented in the following form 

for the moving plate with ramped temperature 

 2 1 1

0

T a
Nu t t H t

 


       



,                     (28) 
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The expressions for the Nusselt number and skin friction for 

isothermal moving plate are given by 

/Nu a t ,                                                                   (31) 
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It is evident from the expressions (28) and (31) that, for a 

given time t, Nusselt number Nu , in both the cases, is 

proportional to  1P Nr   i.e. Nusselt number Nu  

increases with the increase in Prandtl number Pr  whereas it 

decreases with the increase in radiation parameter N . This 

implies that radiation reduces rate of heat transfer at the plate. 

Also Nusselt number Nu for liquid metal (Pr = 0.01) is smaller 

than that of ionized air (Pr = 0.71) and water (Pr = 7). It is 

interesting to note from (28) and (31) that an increase in time t 

leads to an increase in the Nusselt number for ramped 

temperature plate whereas it leads to a decrease in the Nusselt 

number for isothermal plate. 

5. RESULTS AND DISCUSSION 

To study the effects of magnetic field, rotation, free 

convection, radiation, porosity of medium and time on the 

flow-field the numerical values of fluid velocity are displayed 

graphically versus boundary layer coordinate η in Figs. 1 to 

12 for various values of magnetic parameter M, rotation 

parameter 
2

K , Grashof number Gr , radiation parameter 

N , porosity parameter 1K  and time t  taking 0.71Pr   

(ionized air). It is noticed from Figs. 1 and 2 that an increase 

in the magnetic parameter M  leads to a decrease in the 

primary velocity u  and the secondary velocity w  for both 

ramped temperature and isothermal plates. This is due to the 

fact that the application of a transverse magnetic field to an 

electrically conducting fluid gives rise to a resistive force 

which is known as Lorentz force. This force has the tendency 

to retard the fluid motion in the boundary layer region. It is 

evident from Figs. 3 and 4 that, for both ramped temperature 

and isothermal plates, an increase in rotation parameter 
2K  

leads to a decrease in the primary velocity u  and an increase 

in the secondary velocity  w  in the region near the plate. The 

characteristics of secondary velocity w , in the region away 

from the plate, is different than that in the region near the 

plate. This implies that rotation retards fluid flow in the 

primary flow direction and accelerates fluid flow in the 

secondary flow direction in the boundary layer region. This 

may be attributed to the fact that when the frictional layer at 

the moving plate is suddenly set into the motion then the 

Coriolis force acts as a constraint in the main fluid flow i.e. in 

the fluid flow in the primary flow direction to generate cross 

flow i.e. secondary flow. It is found from Figs. 5 to 12 that 

both the primary and secondary velocities increase on 

increasing Grashof number Gr , radiation parameter N , 

porosity parameter 1K  and time t  for both ramped 

temperature and isothermal plates. This implies that free 
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convection, radiation, porosity of medium and time exert 

accelerating influence on the primary flow as well as on the 

secondary flow. It is also evident from Figs. 1 to 12 that the 

fluid velocities are faster in the case of isothermal plate than 

that in the case of ramped temperature plate.

 

Fig. 1. Profiles of primary velocity when K2=2, Gr=2, N=1, 

K1=0.2 and t=0.5 

 

Fig. 2. Profiles of secondary velocity when K2=2, Gr=2, N=1, 

K1=0.2 and t=0.5 

 

Fig. 3. Profiles of primary velocity when M=2, Gr=2, N=1, 

K1=0.2 and t=0.5 

 

Fig. 4. Profiles of secondary velocity when M=2, Gr=2, N=1, 

K1=0.2 and t=0.5 

 

In order to have physical view of fluid temperature the 

profiles of fluid temperature are drawn versus boundary layer 

coordinate   in Figs. 13 to 15 for various values of radiation 

parameter N , Prandtl number Pr  and time t . It is evident 

from Figs. 13 to 15 that the fluid temperature T  increases on 

increasing radiation parameter N  or time t  and it decreases 

on increasing Prandtl number Pr  for both ramped 

temperature and isothermal plates. This implies that radiation 

tends to increase fluid temperature and fluid temperature 

increases with the passage of time t  in both the cases. Prandtl 

number Pr , which is a measure of relative importance of 

viscosity and thermal conductivity of the fluid, has tendency 

to reduce fluid temperature in both the cases. Also for liquid 

metals (i.e. for 0.01Pr  and 0.03) the variation in fluid 

temperature is very slow on increasing boundary layer 

coordinate   whereas for ionized air ( 0.5Pr   and 0.71) the 

change in fluid temperature is very rapid with respect to  . 

Fluid temperature T  is lower in the case of ramped 

temperature plate than that in the case of isothermal plate.  

The numerical values of the primary and secondary skin 

frictions x  and z  for ramped temperature plate as well as 

isothermal plate are displayed in tables 1 to 6 for various 

values of M , 
2

K , Gr , 1K , N  and t  taking Pr = 0.71 

whereas that of Nusselt number Nu  for both ramped 

temperature and isothermal plates are provided in tabular form 

in tables 7 and 8 for different values of N , t  and Pr .
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Fig. 5. Profiles of primary velocity when M=2, K2=2, N=1, 

K1=0.2 and t=0.5 

 

Fig. 6. Profiles of secondary velocity when M=2, K2=2, N=1, 

K1=0.2 and t=0.5 

 

Fig. 7. Profiles of primary velocity when M=2, K2=2, Gr=2, 

K1=0.2 and t=0.5 

 

Fig. 8. Profiles of secondary velocity when M=2, K2=2, Gr=2, 

K1=0.2 and t=0.5 

 

Fig. 9. Profiles of primary velocity when M=2, K2=2, Gr=2, 

N=1 and t=0.5 

 

Fig. 10. Profiles of secondary velocity when M=2, K2=2, 

Gr=2, N=1 and t=0.5 
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Fig. 11.Profiles of primary velocity when M=2, K2=2, Gr=2, 

N=1 and K1=0.2 

 

Fig. 12. Profiles of secondary velocity when M=2, K2=2, 

Gr=2, N=1 and K1=0.2 

It is noticed from tables 1 and 2 that, for both ramped 

temperature and isothermal plates, the primary skin friction 

i.e. x  and secondary skin friction i.e. z  increase on 

increasing either M  or 
2K . It is found from tables 3 and 4 

that an increase in either Gr  or 1K  leads to a decrease in 

x  whereas it leads to an increase in z  for both ramped 

temperature and isothermal plates. It is evident from tables 5 

and 6 that, for ramped temperature plate, x  decreases on 

increasing N  whereas it increases on increasing time t . 

However, z  increases as either N  or t  increases. For 

isothermal plate, with an increase in N , x  increases when 

0.2t   and decreases when 0.4t   and 0.6. Also x  

increases on increasing time t . z  decreases on increasing 

N  whereas it increases as time t  increases. Keeping in view 

the trend mentioned above of x  and z  with respect to 

different parameters we conclude that magnetic field and 

rotation tend to increase primary as well as secondary skin 

friction for both ramped temperature and isothermal plates. 

For both ramped temperature and isothermal plate free 

convection and porosity of the medium have tendency to 

reduce primary skin friction whereas it tend to increase 

secondary skin friction. For ramped temperature plate 

radiation reduces primary skin friction whereas it tends to 

increase secondary skin friction. For isothermal plate radiation 

reduces secondary skin friction. It is also noticed from table 6 

that, for isothermal plate, variation in x  and z  is almost 

uniform with respect to radiation parameter N  when t  is 

large. This implies that the effects of radiation on primary and 

secondary skin frictions become insignificant with passage of 

time for isothermal plate. It is evident from tables 7 and 8 that, 

for both ramped temperature and isothermal plates, Nusselt 

number Nu , which is a measure of rate of heat transfer at the 

plate, decreases on increasing N  whereas it increases with 

the increase in Prandtl number Pr . For ramped temperature, 

Nu  increases with the increase in time t  whereas it 

decreases on increasing t  for isothermal plate. This implies 

that radiation reduces rate of heat transfer at the plate for both 

ramped temperature and isothermal plates. Prandtl number 

tends to increase rate of heat transfer at the plate for both 

ramped temperature and isothermal plates. With the increase 

in time the rate of heat transfer at the plate is reduced for 

isothermal plate while it is increased for ramped temperature 

plate.  

 

Fig. 13. Profiles of temperature when Pr=0.71 and t=0.5 

 

Fig. 14. Profiles of temperature when N=1 and t=0.5 
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Fig. 15. Profiles of temperature when Pr=0.71 and N=1 

 

Table 1 Skin frictions  x and  z for ramped temperature plate when Gr=2, N=1, K1=0.2 and t=0.5. 

 

 
 

 

 
 

Table 2 Skin frictions  x and  z for isothermal plate when Gr=2, N=1, K1=0.2 and t=0.5. 

 

M↓/K2→ x  z  

2 4 6 2 4 6 

2 2.1419 2.5541 2.6908 1.4511 2.3511 2.6076 

4 2.5790 3.1654 3.3887 1.3809 2.7148 3.1709 

6 2.9357 3.6714 4.0250 1.2872 2.9528 3.6556 

 

Table 3 Skin frictions  x and  z for ramped temperature plate when M=2, N=1, K2=2 and t=0.5. 

 

Gr↓/K1→ x  z  

0.1 0.15 0.2 0.1 0.15 0.2 

2 3.4015 2.8322 2.4527 1.1243 1.2331 1.2609 

4 3.2105 2.6371 2.2634 1.1590 1.2720 1.2977 

6 3.0195 2.4420 2.0741 1.1937 1.3109 1.3344 

 

Table 4 Skin frictions  x and  z for isothermal plate when M=2, N=1, K2=2 and t=0.5. 

 

Gr↓/K1→ x  z  

0.1 0.15 0.2 0.1 0.15 0.2 

2 3.0941 2.5127 2.1419 1.2405 1.3954 1.4511 

4 2.5957 1.9982 1.6419 1.3914 1.5965 1.6780 

6 2.0974 1.4838 1.1419 1.5423 1.7977 1.9049 

 
                      Table 5 Skin frictions  x and  z for ramped temperature plate when M=2, Gr=2, K2=2 and K1=0.2. 

 

t↓/N→ x  z  

1 5 10 1 5 10 

0.2 2.0247 2.0115 2.0064 0.6200 0.6300 0.6346 

0.4 2.3453 2.3266 2.3195 1.1687 1.1830 1.1896 

0.6 2.5013 2.4777 2.4688 1.3149 1.3340 1.3424 

 

 

M↓/K2→ x  z  

2 4 6 2 4 6 

2 2.4527 2.6436 2.7299 1.2609 2.2537 2.5595 

4 2.8985 3.2743 3.4381 1.2240 2.6090 3.1152 

6 3.2488 3.7956 4.0836 1.1589 2.8426 3.5936 
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Table 6 Skin frictions  x and  z for isothermal plate when M=2, Gr=2, K2=2 and K1=0.2. 

 

t↓/N→ x  z  

1 5 10 1 5 10 

0.2 1.6666 1.6774 1.6803 0.7994 0.7925 0.7924 

0.4 2.0021 2.0010 2.0005 1.3688 1.3678 1.3668 

0.6 2.2290 2.2290 2.2288 1.4905 1.4907 1.4908 

                             

Table 7 Nusselt number Nu when Pr=0.71 

 

N↓ / t→ 

Ramped Temperature Plate Isothermal Plate 

0.2 0.4 0.6 0.2 0.4 0.6 

1 0.3007 0.4252 0.5208 0.7517 0.5315 0.4340 

5 0.1736 0.2455 0.3007 0.4340 0.3069 0.2506 

10 0.1282 0.1813 0.2221 0.3205 0.2266 0.1850 

 
Table 8 Nusselt number Nu when N=1 

 

Pr ↓ / t→ 

Ramped Temperature Plate Isothermal Plate 

0.2 0.4 0.6 0.2 0.4 0.6 

0.01 0.0357 0.0505 0.0618 0.0892 0.0631 0.0515 

0.03 0.0618 0.0874 0.1070 0.1545 0.1093 0.0892 

0.5 0.2523 0.3568 0.4370 0.6308 0.4460 0.3642 

0.71 0.3007 0.4252 0.5208 0.7517 0.5315 0.4340 

 

6. CONCLUSION 

This study presents a theoretical investigation of unsteady 

hydromagnetic free convection boundary layer flow of a 

viscous incompressible electrically conducting fluid past a 

ramped temperature impulsively moving plate in a rotating 

porous medium in the presence of transverse magnetic field 

and thermal radiation. The significant findings are 

summarized as: 

a). For both ramped temperature and isothermal plates: 

(i). Magnetic field tends to retard fluid flow in both the 

primary and secondary flow directions. 

(ii).  rotation retards fluid flow in the primary flow 

direction whereas it accelerates fluid flow in the secondary 

flow direction in the boundary layer region. 

(iii). free convection, radiation, porosity of medium and 

time exert accelerating influence on the fluid flow in both the 

primary and secondary flow directions. 

(iv). radiation tends to increase fluid temperature whereas 

with passage of time fluid temperature increases. 

(v). Prandtl number has tendency to reduce fluid 

temperature. 

b) (i). For both ramped temperature and isothermal plates 

magnetic field and rotation tend to increase primary as well 

secondary skin friction whereas free convection and porosity 

of the medium have tendency to reduce primary skin friction 

and it tend to increase secondary skin friction. 

(ii). For ramped temperature plate radiation reduces primary 

skin friction whereas it tends to increase secondary skin 

friction. For isothermal plate radiation has tendency to reduce 

secondary skin friction. 

c). For both ramped temperature and isothermal plates 

radiation tends to reduce rate of heat transfer at the plate 

whereas Prandtl number has tendency to increase rate of heat 

transfer at the plate. With the increase in time the rate of heat 

transfer at the plate is reduced for isothermal plate while it is 

increased for ramped temperature plate. 
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