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ABSTRACT 

The effects of Hartmann number, porous parameter and Darcy velocity on the steady flow of a viscous 

incompressible slightly conducting fluid through a uniform channel bounded by porous media of finite thickness 

under a uniform ransverse magnetic field are considered. It is assumed that the thickness of the porous media is much 

smaller than the width of the flow channel as in the case of blood flow in arteries and accordingly the BJR slip 

boundary condition has been employed. The effects of all the above parameters on the axial velocity of the flow and 

the shear stress have been investigated. Finally, these results are compared with a earlier problem of MHD flow 

through a uniform channel covered by porous media of infinite thickness where the BJ slip boundary condition has 

been employed. 
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NOMENCLATURE 

ρ density of the fluid 

µ viscosity of the fluid 

σe electrical conductivity 

B0 applied magnetic field in the y direction 

H thickness of the porous layer 

h thickness of the fluid layer 

Q1 Darcy velocity 

 

λ            viscosity factor 

nf              the net flux through the channel 

ub1, ub2  slip velocities 

I   k          permeability of the porous material 

σp          porous parameter 

    α               slip parameter 

γ  M              Hartmann number 

 

1. INTRODUCTION 

Biomagnetic fluid dynamics (BFD) is a relatively new 

area in fluid mechanics investigating the fluid dynamics 

of biological fluids in the presence of magnetic field.  A 

biomagnetic fluid is a fluid that exists in a living 

creature and its flow is influenced by the presence of a 

magnetic field. The most characteristic biomagnetic 

fluid is blood, which behaves as a magnetic fluid, as 

suggested by Higashi et al. (1993) due to the complex 

interaction of the intercellular protein. The effects of 

Lorentz force on the flow of blood in the presence of a 

stenosis are     (i) to reduce the high shear stress caused 

by stenosis and hence to prevent the damage to the red 

and endothelial cells and (ii) to delay the transition from 

laminar to turbulent flow (Chandrasekhar 1961; 

Rudraiah 1962) inside the blood vessel and thus 

reducing high intensity shear zones, which are 

unfavorable to the blood and arterial wall.  During the 

last few decades, the flow of biological fluids under the 

influence of a magnetic field has been taken up by 

many researchers due to numerous possible applications 

in the field of bioengineering and medicine (Haik 1990; 

Ruuge 1993; Misra and Shit 2007). 

Many investigators (Chaturani and Kaloni 1976; 

Chaturani and Upadhya 1979; Shukla et al. 1980; 

Chaturani and Biswas 1983; Majhi and Usha 1984; 

Philip and Peeyush Chandra 1996) have theoretically 

studied the flow of blood through uniform and stenosed 

tubes and analyzed the influence of slip velocity or 

peripheral plasma layer thickness on the flow variables 

such as velocity and wall shear stress. Recently, 

mathematical model of biomagnetic fluid dynamics, 
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suitable for the description of the Newtonian blood flow 

under the action of an applied magnetic field, is 

proposed by Tzirtzilakis (2005).  

MHD flow through a channel with rigid boundaries are 

not of much use in understanding the characteristics of 

flow in arteries, because they are bounded by tissues 

which are idealized into a porous medium where one 

has to use a slip condition at the binding surface. It is 

important for the study of motion of contact line where 

the effective slip of the interface reverses the singularity 

in the rate of strain which was otherwise introduced by 

the no-slip condition.  In the present situation the 

interface may be a smooth surface or a rough surface 

depending upon the solid matrix of the porous material. 

In the former case the surface can be considered as a 

nominal surface postulated by Beaver and Joseph 

(1967) called as BJ slip condition) at which BJ slip 

condition exists due to transfer of momentum from 

fluid to fluid saturated porous media.  

The hydromagnetic steady flow of a viscous conducting 

fluid in a channel with slip at the permeable boundaries 

has been investigated by Makinde and Osalusi (2006). 

Most recently, Ramakrishnan and Shailendhra (2011) 

analyzed the combined effects of Hartmann number and 

porous parameter on the steady flow in a channel of 

uniform width covered by porous media using BJ-slip 

condition.  

The BJ-slip condition is independent of the thickness of 

the porous layer and hence valid when the thickness of 

the porous layer is very much larger than the thickness 

of the fluid layer. In many industrial and biochemical 

applications the thickness of the porous layer is 

comparable to that of fluid layer and hence the slip 

condition should involve the thickness of the layer. 

Rudraiah (1985) has derived the slip condition known 

as BJR slip condition involving the thickness of the 

layer.  This BJR slip condition reduces to BJ condition 

for large thickness of the layer. Rudraiah et al. (2006) 

investigated the electrohydrodynamic dispersion of 

macromolecular components in a biological bearing 

using BJ and BJR slip conditions. Rudraiah et al. 

(2007) studied the electrohydro- dynamic dispersion of 

macromolecular components in a biological bearing 

consisting of a poorly conducting synovial fluid both in 

the cavity of the bones and in the bounding porous 

cartilage of finite thickness using BJR slip condition.  

Electrohydro-dynamic dispersion due to pulsatile flow 

in a channel bounded by porous layer of smart material 

was studied by Ng et al. (2008) using both BJ and BJR 

slip conditions. 

A study on the effect of electromagnetic field on the 

flow in a channel with surface bounded by porous 

media of finite thickness using BJR slip condition is of 

great use in understanding and prevention of arterial 

diseases. So far, no attempt has been made to 

investigate the effect of magnetic field on the blood 

flow through uniform channel bounded by porous 

media with finite thickness using BJR slip condition.  

2. FORMULATION OF THE PROBLEM 

Here, steady, laminar, highly viscous, conducting, 

hydromagnetic blood flow through a straight channel 

with permeable walls covered by porous media of finite 

thickness is considered. It is well known that at high 

shear-rates blood behaves like a Newtonian fluid during 

flows through large blood vessels (Shivakumar et al. 

1986; Misra et al. 1986; Copley 1990 and Tzirtzilakis 

2005). But in particular situations blood may behave as 

a non-Newtonian fluid, even in large arteries. It is also 

worthwhile to mention here that although blood is non-

Newtonian suspension of cells in plasma, MacDonald 

(1974) remarked that for vessels of radius greater than 

0.025cm, blood may be considered as a homogeneous 

Newtonian fluid. Here we assume that blood behaves 

like a homogeneous conducting Newtonian fluid, with 

constant density ρ, viscosity µ and electrical 

conductivity σe. Further, it is well known that blood 

flow in arteries are pulsatile Burton (1966). However, 

we have considered the flow here to be steady with an 

understanding that all physical quantities like velocity, 

pressure etc are representative time averages over one 

period. 

It is further assumed that the channel is symmetrical to 

the x-axis. The porous layer is assumed to be 

homogeneous, isotropic and densely packed so that the 

usual Darcy law is valid.  A uniform magnetic field B0 

is applied in the y direction. We note that, as stated 

earlier, the BJ-slip condition is valid for large thickness 

of the porous layer (H) compared to thickness of the 

fluid layer (h), i.e. H > h.  In many practical cases, 

particularly in biomechanical problems, the thickness of 

the porous layer is usually small, compared to the 

thickness of fluid layer (i.e. H ≤ h). Besides, the 

presence of a thin boundary layer in the porous region 

of Brinkmann type has to be taken into account. 

Considering these factors, the BJR slip condition 

proposed by Rudraiah (1985) is taken as boundary 

condition to solve the equations of motion.  

Consider a cartesian coordinate system (x,y) where x 

lies along the center of the channel, y is the distance 

measured in the normal section such that y = h is the 

channel’s half width. Let u and v be the velocity 

components in the directions of x and y increasing 

respectively (Refer Fig.1).  

 

Fig. 1. Physical Configuration 

 

Then, the continuity and Navier-Stokes equations 

governing the flow are: 

  

  
 

  

  
                                                                 (1) 
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where 

    
  

   
  

  

   
 

B0 is the applied magnetic field in the y-direction, and p 

the pressure. 

It is to be noted that when the characteristic length of 

the flow is small the magnetic Reynolds number cannot 

exceed unity unless the flow is turbulent Roberts(1967). 

The equations of motions, neglecting inertia (for we are 

considering highly viscous fluid, Shivakumar et al. 

(1986) and induced magnetic field (the fluid is of small 

electrical conductivity with magnetic Reynolds number 

much less than unity so that the induced magnetic field 

can be neglected in comparison with the applied 

magnetic field) are, 
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                                                                         (5) 

                                                                              (6) 

and the velocity distribution in the porous layer is given 

by the Darcy’s law,  
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 These equations are solved using the BJR slip 

boundary conditions (Rudraiah (1985)) given by, 

  

  
                                                (8) 
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Where 
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                             (13) 

Here, λ is a positive constant called viscosity factor, nf 

is the net flux through the channel, ub1 and ub2 are the 

slip velocities, Q1 is the Darcy velocity, k is the 

permeability of the porous material and σp is called the 

porous parameter. 

3. SOLUTION OF THE PROBLEM 

In the case of a uniform channel, the wall slope is 

everywhere negligible and the components of velocity 

and pressure gradient are approximately equal. After 

eliminating the pressure term between (4) and (5), the 

non dimensional basic equations are attained as  

   

   
     

  
                                                          (14) 

since u is a function of y alone, where  

    
 

 
             

  
     

 
                                     (15) 

is the square of the Hartmann number and * is dropped 

for simplicity. 

The corresponding boundary conditions become,  

  

  
                                              (16) 

  

  
                                              (17) 

                 
 

 

  

  
                                          (18) 

         
  

 

 

  
                                                       (19) 

Solving Eq. (14) subject to the conditions (16) to (19) 

we have, 

      
  

  
 

 

  
 

                

                         
            (20) 

where 
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and the slip velocity is given by,  

     
 

  
 

     

             
                                            (22) 

where 

                     

       
         

                 

We note that when thickness of the porous media (H) is 

infinity, the BJR slip condition coincides with the BJ 

slip condition Refer Rudraiah (1985). In other words, 

the slip parameter (α) used by Beavers-Joseph (1967) 

has the physical meaning of the viscosity factor (λ). 

When H →  , the axial velocity is given by 

      
  

  
 

  

  
 

          

                         
          (23) 

where  
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 and the slip velocity is, 
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                                 (25) 

 where  

                   

Equations (23) to (25) are already reported in our earlier 

work Ramakrishnan and Shailendhra (2011) and are 

provided here only for the sake of comparison. 

4. RESULTS AND DISCUSSION 

Since we are dealing with the problem of blood flow 

through a uniform channel bounded by porous media, 

we fix the values for the parameters as follows: µ= 

0.004kgm−1s−1, h = 0.002m Tzirtzilakis (2005) and H = 

0.001m. Also, we vary the values of the Hartmann 

number as : M = 0,2,3.5,5 Chandrasekhara et al. (1980) 

and the porous parameter σp = 101, 102,103 Shivakumar 

et al. (1986). The effects of the various parameters on 

the axial velocity are discussed with the help of graphs 

and those on the slip velocity and shear stress are done 

with the help of tables. 

From Fig.2 and Fig.3, it is clear that, in the absence as 

well as presence of magnetic field, the effect of the 

porous parameter on the axial velocity is to reduce it. 

However, it is seen that for higher values of the 

Hartmann number (M ≥ 3.5), the flow is reversed. 

When Fig.2 and Fig.3 are compared with Fig.4 and 

Fig.5, it is seen that when the magnetic field is absent or 

when it is of low intensity, the effect of porous 

parameter (σp) on the axial flow velocity is to decrease 

it. The retardation of the flow by porous parameter is 

felt only in the central core region and not near the 

walls. 

Fig.6 and Fig.7 depict the fact that the effect of 

magnetic field on the axial velocity is to reduce it, for 

all possible values considered for the porous parameter 

(σp). However when the porous parameter is increased 

from 102, there is no significant difference in the axial 

velocity, since in this case the walls behave like 

impermeable walls. 

 

 

Fig. 2. Axial velocity for M = 0.0 and different values 

of p 

Fig. 3. Axial velocity for M = 2.0 and different 

values of p 

Fig. 4. Axial velocity for M = 3.5 and different 

values of p 

 

Fig. 5. Axial velocity for M = 5.0 and different values 

of p 
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Fig. 6. Axial velocity for p = 101 and different values 

of M 

 

Fig. 7. Axial velocity for p = 102 and different values 

of M 

In many biological processes the thickness of the 

porous layer is comparable to that of fluid 

layer.However in a few earlier references, 

(Chandrasekhara et al. 1980; Shivakumar et al. 1986; 

Mankinde and Osalusi 2006) the authors had analyzed 

blood flow in the case of straight channel covered by 

porous media with infinite thickness, by stating that, the 

results of the problem may also be useful to improved 

understanding and management of human health. 

Hence, the results of our present study involving porous 

media of finite thickness (BJR condition) have been 

compared with those of earlier works with porous 

media of infinite thickness (BJ condition), especially 

Ramakrishnan and Shailendhra (2011). Indeed, we 

make such a comparison through Figs. 8 to 14 and in 

these figures the curves with dotted lines pertain to BJ 

slip conditions and these are in excellent agreement 

with our earlier work (2011). 

From Figs. 8 to 11, it is observed that axial velocity 

decreases with increasing porous parameter (σp) for a 

fixed value of Hartmann number (M) in both infinite 

and finite thickness porous media. In the case of porous 

media of finite thickness using BJR slip conditions, the 

flow is found to be slower than the corresponding flow 

for the porous media of infinite thickness (using BJ 

condition) for small values of porous parameter upto 

101. For higher values of the porous parameter (102 and 

above) the flow with BJR conditions is found to be 

faster than the corresponding flow with BJ conditions 

(Figs. 8, 9, 10). 

 
Fig. 8. Comparison of axial velocity for M = 0.0 and 

different values of p using BJ and BJR slip 

conditions 

 
Fig. 9. Comparison of axial velocity for M = 2.0 and 

different values of p using BJ and BJR slip 

conditions 

 

Fig. 10. Comparison of axial velocity for  M= 3.5 and 

different values of p using BJ and BJR slip 

conditions 
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Fig. 11. Comparison of axial velocity for M= 5.0 

and different values of p using BJ and BJR slip 

conditions 

 

From Figs. 12 - 14, it is clear that the axial velocity is 

decreased with increasing of the Hartmann number in 

both infinite (using BJ condition) and finite (using BJR 

slip condition) thickness porous media. In particular 

from Fig. 12, it is noted that for σp =101 and in the 

absence of magnetic field i.e., M = 0.0, the axial 

velocity is significantly higher in the case of infinite 

thickness porous media using BJ slip condition than in 

the case of finite thickness porous media using BJR slip 

condition. From Fig. 13 - 14, it is observed that the 

axial velocity has higher values in the case of BJR slip 

condition than in the case of BJ slip condition for σp = 

102 and 103. 

Tables 1 and 2 depict the distribution of slip velocity 

(ub) for two different thickness of the porous medium. 

In all the cases, the slip velocity can be seen to decrease 

for increasing Hartmann number (M) and the porous 

parameter (σp). It is also observed that from σp = 108 

(not shown in the table), the slip velocity distribution is 

constant because walls behave like impermeable rigid 

walls in this case. Comparing Tables 1 and 2, it is noted 

that if we increase the thickness of the porous media, 

for all possible values of Hartmann number, the slip 

velocity decreases when porous parameter is increased 

from 10 to 103. But when we increase the value of 

porous parameter from 104, the slip velocity starts 

increasing. 

Fig. 12. Comparison of axial velocity for p = 101    

and different values of  M using BJ and BJR slip 

conditions 

Fig. 13. Comparison of axial velocity for p = 102    

and different values of M using BJ and BJR slip 

conditions 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Comparison of axial velocity for p = 103 and 

different values of M using BJ and BJR slip conditions 

 

The wall shear stress at the lower wall is given by 

      
  

    
 

                          
                 (26) 

where  

                                   

When H →, the wall shear stress in the lower wall in 

the case of BJ slip condition is given by 

     
   

  

  

 
 

                 

                            
               (27) 

This result has been already reported in our earlier work 

(2011). 

The effect of the porous parameter and the magnetic 

field on the shear stress at the lower wall y = −h is 

presented from Tables 4 to 6. It should be noted that 

Table 6 is already presented in our earlier work (2011) 

and it is presented here only for the sake of comparison. 

From Tables 3 to 5, it is evident that the effect of 

magnetic field is to reduce the shear stress for all 

possible values of the porous parameter under 

consideration. The effect of the porous parameter, both 

in the absence and the presence of magnetic field is to 

increase the shear stress. But, when the porous 

parameter σp is increased beyond 107 (not shown in the 

table) for different thickness of the porous media, the 

effect of the porous parameter on shear stress is 
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insignificant, since the walls behave like impermeable 

rigid walls. 

It is obvious from Tables 4 to 6 that, the effect of 

magnetic field is to decrease the shear stress 

numerically, when the porous parameter σp is increased 

from 101 to 102. However, when σp is increased beyond 

103, it is seen that the shear stress remains positive 

indicating the fact that the stress acts in the upward 

direction. This is possibly due to the flow reversal 

observed earlier. 

Finally, it was observed that the values of shear stress at 

the upper wall are same in magnitude as that on the 

lower wall except that the sign is changed, which in 

turn indicates the fact that shear stress of equal 

magnitude act on both the walls but in opposite 

directions. 

From Tables 5 and 6, it is observed that the shear stress 

at the walls for the flow with finite thickness porous 

media (BJR condition) is greater than the corresponding 

shear stress for the flow with infinite thickness porous 

media (BJ condition). This shows that studies with BJ 

conditions under estimate the shear stress.

Table 1 Slip velocity distribution for different values of porous parameter (  ) and Hartmann number (M) (H=h/4) 

M         101 102 103 104 105 

0.0 0.0972 0.0098 0.00110 0.00021 0.00013 

2.0 0.0964 0.0097 0.00100 0.00015 0.00006 

3.5 0.0953 0.0096 0.00098 0.00012 0.00004 

5 0.0940 0.0094 0.00096 0.00011 0.00003 

 

Table 2 Slip velocity distribution for different values of porous parameter (  ) and Hartmann number (M) (H=3h/4) 

M         101 102 103 104 105 

0.0 0.0920 0.0095 0.00130 0.00045 0.00037 

2.0 0.0899 0.009 0.00110 0.00025 0.00017 

3.5 0.0871 0.0088 0.00096 0.00018 0.00010 

5 0.0840 0.0085 0.00090 0.00014 0.00007 

 

Table 3 Shear stress for different values of porous parameter (  ) and Hartmann number (M) at a fixed 

porous media width H=h/4 

M         101 102 103 104 105 

0.0 -8.53340 4.5547 5.8645 5.9942 6.0085 

2.0 -15.0825 1.0481 2.6617 2.8231 2.8392 

3.5 -21.6168 -0.6726 1.4223 1.6318 1.6527 

5 -28.2256 -1.7937 0.8498 1.1142 1.1406 

 

Table 4 Shear stress for different values of porous parameter (  ) and Hartmann number (M) at a fixed 

porous media width H=h/2 

M         101 102 103 104 105 

0.0 -8.08210 4.5970 5.8687 5.9982 6.0086 

2.0 -14.4858 1.0578 2.6143 2.7700 2.7855 

3.5 -20.6036 -0.6220 1.3778 1.5778 1.5978 

5 -26.6069 -1.6805 0.8135 1.0629 1.0879 
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Table 5 Shear stress for different values of porous parameter (  ) and Hartmann number (M) (H=3h/4) 

M         101 102 103 104 105 

0.0 -7.6356 4.6371 5.8726 5.9980 6.0086 

2.0 -13.9207 1.0653 2.5684 2.7188 2.7338 

3.5 -19.6722 -0.6769 1.3359 1.5272 1.5463 

5 -25.1566 -1.5803 0.7801 1.0162 1.0398 

 

Table 6 Shear stress for different values of porous parameter (    ) and Hartmann number (M) in the case 

of infinite thickness porous media 

M           101 102 103 104 105 

0.0 -7.9263 3.5949 5.0869 5.2384 5.2577 

2.0 -13.3746 0.4362 2.3180 2.5130 2.5326 

3.5 -17.6479 -1.2136 1.2166 1.4713 1.4969 

5 -21.2751 -2.3594 0.6915 1.0154 1.0480 

5. CONCLUSION 

The combined effects of porous parameter and Hartmann 

number on the steady magnetohydro- dynamic flow of a 

conducting, viscous, incompressible fluid in a uniform 

channel covered by porous media of finite thickness is studied 

using BJR slip condition. The result of the present work 

shows that the axial velocity of the fluid is reduced by porous 

parameter and Hartmann number. As expected from physical 

consideration, it was observed that the shear stress was small 

for small values of the porous parameter and it exhibited an 

increasing trend with increasing porous parameter. Further, 

an elaborate comparison of the results obtained in the present 

work using the BJR slip condition has been provided with 

those of our earlier work using the BJ slip condition. 
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