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ABSTRACT 

This paper describes the use of Taylor dispersion analysis to study the dispersion of chiral fluid flow in a channel in the 

presence of the convective current bounded by rigid permeable walls. Analytical solution for velocity in the presence of a 

transverse magnetic field is obtained and it is computed for different values of electromagnetic parameter Wem . The 

results reveal that the velocity increases with an increase in the electromagnetic parameter, Wem . Concentration 

distribution is also determined analytically in the presence of advection of concentration of chiral fluid. It is shown that 

the molecules of chiral fluid dispersed relative to the plane moving with the mean speed of flow with an effective 

dispersion coefficient, *D , called Taylor dispersion coefficient. This is numerically computed for different values of 

electromagnetic parameter, Wem , Paclet number Pe and Reynolds number, Re . The results shows that dispersion 

coefficient, *D  decreases monotonically with Reynolds number, Re , Paclet number Pe , but increase with an increase in 

electromagnetic parameter, Wem . 

Keywords: Chiral Fluid, Lorentz force with chirality parameter, Convection current, Coronary artery diseases, Synovial 
joints, Dispersion. 

NOMENCLATURE 

u          Velocity component in the x-direction 

0v          Suction velocity in the y-direction 

h          Height of the channel 

0B         Applied magnetic field in the z-direction 

          Magnetic permeability 

f         Coefficient of viscosity of the fluid 

J          Current density 

          Density of the fluid 

D           Dielectric field 

e         The density of charge distribution 

E           Electric field 

           Dielectric constant 

           Chirality coefficient 

p           Pressure 

Re         Reynolds number 

Pe         Peclet number 

Wem      Electromagnetic parameter 

C           Concentration of species 
*D          Dispersion coefficient 

 

 

1. INTRODUCTION 

In recent years, considerable interest has been evinced in 

the development of new technologies like Information 

Technology, Bio-Technology, Nano-Technology, 

technologies involving Smart and Chiral Materials, using 

improved and novel processing routes which will replace 

most of the existing technologies today. 
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These are going to change every aspect of our lives and 

lead to generation of new capabilities, new materials and 

new products. An important aspect, associated with these 

new technologies, is their multi disciplinary nature with 

applications in Science, Engineering and Technology and 

their impact on society is expected to be wide spread and 

all pervasive. By definition, a three dimensional object is 

chiral if it cannot be brought into congruence with its 

mirror image by any amount of translation and rotation. 

In other words chiral Fluid is a fluid in which the 

molecules have the property of handedness and must be 

either right handed or left handed. Therefore, chirality is 

connected with handedness (Davankov, 1997, 1983). The 

fluids like sugar solution, turpentine, glucose, drugs, 

carbohydrates, proteins, nutrients, amino acids, RBC, 

WBC, enzymes in our body cells,  ntibodies, hormones, 

body-fluids and so on (see Sharpless et al, 1997, 2001, 

Anet, 1983 and Nasipuri, 2004, Chen et al, 2004), exhibit 

chirality. Proper functioning of artificial organs like 

Synovial Joints (SJs) and Coronary Artery Diseases 

(CAD) in biomedical engineering depend on the 

dispersion of hyaluronic acid and nutrients in synovial 

fluid and the dispersion of RBC, WBC and so on in 

physiological fluids in arteries. Dispersion phenomenon is 

useful in Purification of sugar solution in sugar industry 

because sugar solution is a chiral fluid. It is also useful in 

the design of an efficient antenna and so on. 

Literature is available on theoretical and experimental 

aspects of solid chiral materials (see Arago, 1811, Biot, 

1812, Jaggard, 1979, Varadan and Varadan, 1989, and 

Laktakia, 1985, 1994). However, much attention has not 

been given to a detailed study of dispersion in chiral fluids 

in spite of its importance in many practical problems cited 

above. The study of it is the main objective of the present 

paper. 

To achieve the objective of this paper, the required basic 

equations for two dimensional flow together with 

Maxwell’s equations and required constitutive equations 

for chiral fluids are given in section 2. Using these basic 

equations with suitable approximations, the required 

velocity and the Taylor dispersion coefficient are 

determined in the presence of transverse magnetic field 

and distribution of charge density is decreasing 

continuously with height are obtained in section 3. The 

results, discussion and conclusion are given in the final 

section 4. 

2. MATHEMATICAL FORMULATION 

We consider the physical configuration as shown in Fig.1 

which consists of a chiral fluid flow through a rectangular 

channel bounded by rigid and permeable walls at y = _h 

and x-axis is parallel to the plates, y and z axes are 

perpendicular to it. We deal with two-dimensional chiral 

fluid flow with u and v the components velocity in the x 

and y directions respectively and a uniform applied 

magnetic field B0 in the z direction. We assume the chiral 

fluid to be incompressible, viscous and Newtonian and the 

flow is governed by modified Navier-Stokes equation 

(modification means the inclusion of Lorentz force with 

chirality parameter, (see Anet, 1983 and Nasipuri, 2004, 

Sharpless, 2001, Varadan, 1989). Therefore the governing 

equations describing a chiral fluid flow in a channel are:  

The conservation of mass 

0q                                                          (1) 
The conservation of momentum 

2( )
q

q q p q J B
ft

 
 

        
 

           (2) 

the conservation of species  

   2C
q C D C

t


   


                                (3) 

the conservation of electric charges 

0e J
t


   


                                              (4) 

These equations have to be supplemented with the 

Maxwell’s equations 

e
D                                         (5) 

B
E

t


   


                                                                 (6) 

H J                                                                          (7) 

0B                                                                              (8) 

together with the constitutive equations for chiral fluids 

(Varadan et al., 1989, and Rudraiah et al., 2000) 

D E i B                                                                 (9) 

B μH iμγE                                                              (10) 

D
J q

e t



 


                                                             (11) 

Here ( , )q u v  is the velocity, B the magnetic induction, 

H the magnetic field, J  the current density, D the 

dielectric field, E  the electric field. p the pressure,   

the density of the fluid, e the distribution of electric 

charge density,  the magnetic permeability,   the 

dielectric constant ,  the chirality coefficient, eq
 the 

convective current, /D t   the displace current in the 

absence of conduction current and J B is the Lorentz 

force. In this paper we consider only the convective 

current. For the chosen physical configuration as shown in 

Fig 1, and using the above assumptions, the required basic 

equations, in Cartesian form for chiral fluid, are 

2 2

2 2 0
( )

pu u u
u v

t x y x

u u
B v

ex y



 

    
     

    

 
 

 

                                 (12) 
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2 2

2 2 0( )

pv v v
u v

t x y y

v v
B u

ex y



 

    
    

    

 
  

 

                                    (13) 

0
u v

x y

 
 

 
                                                                  (14) 

0e e eu v
t x y

    
  

  
                                             (15) 

 
Fig. 1. Physical configuration 

 

Following Taylor (1953), we consider the flow to be 

steady, unidirectional, fully developed flow and parallel to 

the plates in the x direction, such that 

( )u u y , 0
t





,

0
v v , ( )y

e e
  and 

tan
p

cons t
x





                                                             (16) 

under these approximations the above Eqs. (12) and (13) 

become 

0 0

2

0 2

pu u
v B v

ey x y
  

 
   

  

                           (17) 

0
0

p
B u

ey



  


                                                       (18) 

Equation (17) revels that an interaction of magnetic field 

with the fluid is due to the suction velocity. The Eqs. (17) 

and (18) are made dimensionless using 

* x
x

h
 , 

y

h
  , 

*

2

0

p
p

v
 , 

*

0

u
u

v
  and 

 

2
*

h
e

e V





                                                                (19) 

where the asterisk (*) denote the dimensionless quantities, 

h the characteristic height, V the Electric potential and 

other quantities are as defined in the Eqs.(10 to 11). 

Therefore the dimensionless form of the above Eqs. (17) 

and (18), using eq. (19) and for simplicity neglecting the 

asterisks, take the form 

2

2 12
Re e

u u
k k 

 

 
  

 
                                              (20) 

10 e

e

P k
u

R





 


                                                           (21) 

Where 1 Rek Wem , 2 Rek P  , 
p

P
x





 0

0

VB
Wem

h v




  

the electromagnetic parameter and 0Re
hv


  the suction 

Reynolds number . We assume (Rudraiah et al, 2011) that 

the density of charge distribution, e , in chiral fluid 

decreases continuously in the vertical direction of the 

form 

e eoe
                                                                    (22) 

Where   is the charge density stratification factor. 

Therefore, eq. (20), using eq. (22), takes the form 
2

2 12
Re

u u
k k e 

 

 
  

 
                                            (23) 

Satisfying the no slip boundary conditions 

0u  at 1                                                                (24) 

Equation (23) is solved analytically using the boundary 

conditions eq. (24) and obtained 

5 6 3 4

Re
u k k e k e k

 



                               (25) 

where the constants 3k  to 6k  are given in the appendix. 

3. DISPERSION MODEL 

If C  is the concentration of a chiral fluid such as proteins, 

nutrients, amino acids, carbohydrates and sugar (see Anet, 

1983 and Nasipuri, 2004) in physiological fluid, regarded 

as chiral fluid and diffuses in a fully developed flow given 

by Eq. (3), then C  satisfies the advection-diffusion 

equation. In the Taylor dispersion mechanism, one has to 

consider quasi steady flow involving the chiral particles to 

understand the hydrodynamic dispersion. Following 

Taylor (1953), we assume that the longitudinal diffusion 

is much smaller than the transverse diffusion and the 

diffusivity mD  , viscosity f  , and the pressure gradient 

P  are assumed to be constants. Under these 

approximations the advection of concentration of chiral 

fluid satisfies the equation 

2

0 2m

C C C C
u v D

t x y y

   
  

   
                                      (26) 

where mD  is the molecular diffusivity. This equation is 

made dimensionless using the non-dimensional quantities 
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0

* ,
C

C
C


1 ,

t

t
  ,

L
t

u
 * ,

x
x

L
 *

y
y

h
  and the 

moving coordinate 
x ut

L



                                       (27) 

where L is the characteristic length and u is the average 

velocity of Eq. (25). The Taylor dispersion deals with 

advection across the plane moving with the mean speed 

u  and is given by 

1
6 3

4
1

1
sinh Re

2 Re

k k
u u d sinh k 


                        (28) 

Substituting Eqs. (27) and (28) into Eq. (26), we get 

2

2 2

1

1 ( )C W C C D C
Pe

t L h y



  

   
  

   
                           (29) 

where    ( )W u u    

Re
5 6 3 8( ) zW k k e k e k                          (30) 

Following Taylor (1953), if the Taylor longitudinal 

condition is valid even in the present problem, then the 

partial equilibrium at any cross-section of the layer is 

assumed to be valid and the variation of C  with y  is 

obtained from Eq. (29) and it is of the form 

22 ( )

2

W hC C C
Pe

DL



 

  
 

 

                         (31) 

We solve this equation using permeable wall conditions 

1C   at 1                                                (32) 

The solution of the Eq. (31), satisfying the conditions Eq. 

(32) (Rudraiah et al., 1977) is 

2

11 12 13 9

Re

10 14

1

Pek k k e k e
C

k e k

   
   

   

 



 
                     (33) 

Where 
2h C

DL








                                                       (34) 

and the constants ik  ( 9 14i to ) are mentioned in the 

appendix. The volumetric rate M at which the solute is 

transported across a section of the layer of unit breadth is 

1

1
( )M C W d 


                                                         (35) 

This, using Eqs. (30) and (33), performing the integration 

and after simplification, becomes 

M F                                                                       (36) 

20 40 60 80 100

20

40

60

80

100

120

140

 u

 Re=15

 Re=10

 Re=5

 
emW

 

 

 

Fig. 2. Variation of u v/s Wem for different values of Re=5, 
10 and 15 

Where     

 

 

7 12 2 3

4 12 2 3

7 13 6 10 2

4 13 6 11 2

8 12
6 14 6 132

2cosh 2sinh sinh
[

2cosh Re 2sinh Re sinh Re

Re Re Re

cosh sinh
2

sinh Re cosh Re
2

Re Re

cosh sinh 2
2

3 2

F k k

k k

k k k k

k k k k

Pe Pe k k
k k k k

Pe Pe

  

  

 

 

 
   

 

 
   

 

 
   

 

 
   

 

   
     

  

7 14 4 14

8 14 7 10

4 10 7 11

7 15 8 10 4 11

4 15 8 11 8 15

sinh( ) sinh(Re )
2 2

Re

sinh sinh 2
2

sinh( )
2( )

sinh sinh 2Re
2( )

Re

sinh Re
2( ) 2 ]

Re

Pe Pe
k k k k

Pe P

Pe
k k k k

Pe

Pe
k k k k

Pe

k k k k k k

k k k k k k




















 
 

 

 

 
   

 

  

  
(37) 

Further, following Taylor (1953), we assume that the 

variations of C  with y is small compared with those in 

the longitudinal direction and if mC  the mean 

concentration over a section, then 
c

t




is indistinguishable 

from mc

t




so that eq. (36), using eq. (34) may be written 

as 
3

mh C
M F

DL 


 


                                      (38) 

This shows that mC  is displaced relative to a plane which 

moves with the mean velocity which is exactly as if it 

would have been diffused by a process which obeys the 

same law as molecular diffusion but with a relative 
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diffusion coefficient *D  , called Taylor dispersion 

coefficient. The fact that no material is lost in the process 

is expressed, following Taylor (1953), by the continuity 

equation for mC  given by 

1 mM C

L t

 
 

 
                                                             (39) 

where the time is made dimensionless using the scale 
L

u
, 

u  is characteristic velocity. Using Eqs. (38) and (39) 

becomes 

2
*

2
m mC C

D
t 

 


 
                                                        (40) 

Where 
2

* h u
D F

D
                                                       (41) 

Where F is given by eq. (37, 0v h
Pe

D
 is the Peclet 

number. The *D given by eq. (41) is computed for 

different values of the suction Reynolds number Re , 

Peclet number Pe , the electro magnetic parameter 

Wem and the results are depicted graphically in Figures 3 

and 4. 

10 20 30 40 50
8.0x10

5

1.6x10
6

2.4x10
6

3.2x10
6

4.0x10
6

4.8x10
6

 Pe=2

 Pe=1

 Pe=3

 Pe=2

 *D

 

 

 Re

 

 

 

Fig. 3.Variation of *D  v/s Re for different values of 
Pe=1, 2 and 3 

4. RESULTS AND DISCUSSION 

The variation of velocity versus electro magnetic 

parameter Wem for different values Reynolds number is 

shown in figure 2. From this figure it is evident that the 

velocity increases with an increase in electro magnetic 

parameter. Physically this is attributed due to the fact that 
electric field introduces small scale turbulence.  

1.2 1.4 1.6 1.8 2.0
2x10

4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

8x10
4

9x10
4

1x10
5

 *D

 

 

 Re=10

 Re=15

 Re=20

 Pe

 

 

 

Fig. 4. Variation of *D  v/s Pe for different values of 

Re=10, 15 and 20 

The variation of dispersion coefficient *D versus 

Reynolds number for different values Peclet number and 

for a fixed value of Wem  is shown in the figure 3. Form 

this figure it is evident that the dispersion coefficient 

decreases monotonically with increasing Reynolds 

number, Re and Peclet number, Pe  . This is because of 

increase in the suction velocity. The variation of 

dispersion coefficient *D  versus Peclet number for 

different values Reynolds number and for a fixed value of 

Wem  is shown in the figure 4. Form this figure it is 

evident that the dispersion coefficient decreases 

monotonically with an increasing Peclet number. Form 

figure 5 it revels that mass flow rate versus suction 

Reynolds number for different values of paclet number, it 

shows that as paclet number increases the mass flow rate 

decreses it is due suffresion of velosity because of suction 

reynolds number. 

0 2 4 6 8 10

5

10

15

20

25

30

 Re

 M

 Pe=20

 Pe=30

 Pe=40

 Pe=50

 

 

 
Fig. 5.Variation of Concentration M versus Reynolds 

number for different values of Pe =20, 30, 40 and 50   
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APPENDIX 

 5 73 1sec Rek co h k k k sinh   

 7 5 74 1 1cosh coth Rek k k k k k sinh      
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