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ABSTRACT 

The present study investigates the effects of internal heat generation/absorption, thermal radiation, magnetic field, 

and temperature-dependent thermal conductivity on the flow and heat transfer characteristics of a Non-Newtonian 

Maxwell fluid over a stretching sheet. The upper convected Maxwell fluid model is used to characterize the non-

Newtonian fluid behavior. Similarity solutions for the governing equations are obtained with prescribed surface 

temperature (PST) and/or with prescribed surface heat flux (PHF). Numerical solutions for the governing equations 

subject to the appropriate boundary conditions are obtained by a finite difference scheme known as Keller-Box 

method. The numerical results thus obtained are analyzed for the effects of the several pertinent parameters namely, 

the Maxwell parameter, the magnetic parameter, the temperature-dependent thermal conductivity parameter, the heat 

source/sink parameter, the Prandtl number, the Eckert number, and the thermal radiation parameter on the flow and 

heat transfer fields. Results for the velocity and temperature fields, skin friction, and Nusselt number are shown 

through graphs. It is observed that the thermal boundary layer thickness increases with increasing values of the 

elasticity parameter and the magnetic parameter; however it decreases with the Prandtl number. 

 

Keywords: Maxwell fluid, Magneto-hydro-dynamic flow, Variable thermal conductivity, Thermal radiation, 

Viscous dissipation, Keller-Box method. 

 

1. INTRODUCTION 

During the past three decades, the flow of an 

incompressible viscous fluid over a stretching sheet has 

acquired special attention because of its many industrial 

applications (see for details, Agassant et al. 1991 and 

Bird et al. 1987).  In particular, flow of this kind occurs 

in a cooling bath, the boundary layer along a material 

handling conveyers, the aerodynamic extrusion of 

plastic sheets, the boundary layer along liquid film and 

condensation processes, the cooling or drying of papers 

and textiles, and glass fiber production. This type of 

flow investigation was initiated by Sakiadis (1961) and 

extended by Crane (1970) to fluid flow over a linearly 

stretched sheet. Later works on the stretching sheet 

problems to Newtonian fluid models by taking into 

account different physical situations are extensively 

analyzed by several authors (see Gupta and Gupta 1977, 

Grubka and Bobba 1985, Cortell 2005, Vleggaar 1986, 

Chen and  Char  1988, Liu 2005). However, many 

industrial fluids are non-Newtonian such as molten 

plastics, polymers, suspension, foods, slurries, paints, 

glues, printing inks, blood. That is, they may exhibit 

dynamic deviation from Newtonian behavior depending 

upon the flow configuration and/or the rate of 

deformation. These fluids often obey non-linear 

constitutive equations and the complexity of their 

constitutive equation is the main culprit for the lack of 

exact analytical solution. For example, visco-elastic 

fluid models used in these works are simple models; 

whereas, second order fluid model and Walters’ model 

(Rajagopal et al. 1984, Siddappa and Subhas  Abel 

1985, Cortell 2006, Andersson 1992, Subhas Abel et al. 

2008) which are known to be good for weakly elastic 

fluids subjected to slowly varying flows. These two 

models are known to violate certain rules of 

thermodynamics, and virtually all of them are based on 

the boundary layer theory which is still incomplete for 

non-Newtonian fluids. Therefore significance of the 

results reported in the above works is limited as far as 

the polymer industry is concerned. Obviously for the 

theoretical results to be of any industrial importance, 

more general visco-elastic fluid models such as upper 

convected Maxwell (UCM) model or Oldroyd B model 

should be invoked in the analysis. Indeed, these two 

fluid models have been recently used to study the flow 
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of visco-elastic fluids above stretching and non-

stretching sheets with or without heat transfer 

(Bhatnagar et al. 1995, Renardy 1997, Sadeghy et al. 

2005, Hayat et al. 2006, Aliakbar et al. 2009).  

In all the above mentioned studies, the thermo-physical 

properties of the ambient fluids were assumed to be 

constant. However it is well known that these properties 

may change with temperature, especially the thermal 

conductivity. Available literature (Chaim 1998, 

Govindarajulu and Thangaraj 1987, Subhas Abel and 

Mahesha 2008, Savvas et al. 1994) on variable thermal 

conductivity shows that this type of work has not been 

carried out for non-Newtonian UCM fluid in the 

presence a transverse magnetic field. This type of flow 

finds applications in polymer industry (where one deals 

with stretching of plastic sheets) and metallurgy where 

hydro-magnetic techniques are being used. To be more 

specific, it may be pointed out that many metallurgical 

processes involve the cooling of continuous strips or 

filaments by drawing them through a quiescent fluid 

and that in the process of drawing, these strips are 

sometimes stretched. Mention may be made of drawing, 

annealing, and thinning of copper wires. In all these 

cases, the properties of final product depend to a great 

extent on the rate of cooling by drawing such strips in 

an electrically conducting fluid subject to a uniform 

magnetic field. Another important application of 

hydromagnetic flow to metallurgy lies in the 

purification of molten metals from non-metallic 

inclusion. 

Therefore, in the present paper we study the effects of 

variable thermal conductivity, and thermal radiation on 

the heat transfer of a non-Newtonian UCM fluid over a 

non-isothermal stretching sheet in the presence of 

internal heat generation/absorption and viscous 

dissipation, subjected to a transverse magnetic field. 

Savvas et al. (1994) suggested that for liquid metals, 

the thermal conductivity varies linearly with 

temperature in the range of 0 00 to 400F F . Hence, 

we assume that the thermal conductivity is a linear 

function of the temperature. Because of the rheological 

equation of state, the momentum and energy equations 

are highly non-linear partial differential equations 

(PDEs). These PDEs are converted to non-linear 

ordinary differential equations (ODEs) by using a 

similarity transformation. Because of the complexity 

and the non-linearly in the proposed problem, it is 

solved numerically by the Keller-Box method. 

Numerical computation is carried out for temperature 

and horizontal velocity fields, the Nusselt number and 

the skin friction for two general cases of non-isothermal 

boundary conditions. The effects of the different 

physical parameters on the flow phenomenon and the 

heat transfer process are presented through graphs and 

the results are discussed. 

2. NUMERICAL FORMULATION 

We consider a steady, laminar, two-dimensional flow of 

an incompressible, electrically conducting non-

Newtonian upper convected Maxwell fluid (in the 

presence of a transverse magnetic field) over a non-

isothermal stretching sheet. The flow is generated due 

to the stretching of an elastic sheet caused by the 

simultaneous application of two equal and opposite 

forces along the x-axis, keeping the origin fixed and 

considering the flow to be confined to the region 0y  . 

The thermo-physical properties of the sheet and the 

ambient fluid are assumed to be constant. The flow is 

subject to a uniform magnetic field of strength 
0B  

applied normal to the surface. It is assumed that the 

sheet moves with linear velocity u bx , where b is the 

linear stretching rate, x is the distance from the sheet. It 

is also assumed that the magnetic Reynolds number is 

very small, further since there is no electric field; the 

electric field due to polarization of charges is 

negligible.  It is assumed that boundary layer 

approximation is applicable in our case Gupta and 

Wineman (1980). Therefore, the first step would be to 

derive the boundary layer equations for our fluid of 

interest in this particular geometry, and this can be done 

starting from Cauchy equations of motion in which a 

source term due to the magnetic field should also be 

included Bird et al. (1987). For a two-dimensional 

flow, the equation of continuity and the equations of 

motion with no pressure gradient present can be written 

as: 

v
0,

u

x y

 
 

 
 (1) 

2

0v
xyxxu u

u B u
x y x y


 

   
    

    
 (2) 

v v
v

yyxxu
x y x y




   
   

    
 (3) 

where u and v are the velocities components along the x 

and y axes respectively,   is the fluid density, σ is the 

electrical conductivity, and 
0B  is the uniform magnetic 

field. As mentioned above, the fluid of interest in the 

present work obeys upper convected Maxwell model. 

For a Maxwell fluid the extra tensor ij can be related 

to the deformation rate tensor ijd  by an equation of the 

form 

2ij ij ijd
t

   


 


 (4) 

where  is the coefficient of viscosity and  is the 

relaxation time of the period. The time derivative 

t




appearing in the above equation is the so called 

upper convected time derivative devised to satisfy the 

requirements of the continuum mechanics (i.e., material 

objectivity and frame difference). This time derivative 

when applied to stress tensor reads as follows (Bird et 

al. 1987). 

ij ij jk ik ik kj

D
L L

t Dt
   


  


 (5) 

where ijL  is the velocity gradient tensor. For an 

incompressible fluid obeying Upper convected Maxwell 

model, the x-momentum equation can be simplified 

using the boundary layer theory as (Sadeghy et al. 

2005):  
2 2 2 2 2

2 2 0

2 2 2

v
v v 2 v ,

u u u u u B u
u u u

x y x y x y y


 



      
      

       
 

(6) 
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where   is the kinematic viscosity of the fluid, The 

appropriate boundary conditions for the problem are: 

( ,0) ,v( ,0) 0,

( , ) 0 .

u x bx x

u x y as y

 

 
 

(7) 

To solve the above boundary layer equations the 

following similarity transformation are introduced: 

   , v , .
b

u bx f b f y   


     (8) 

Here,  f   is the dimensionless stream function and 

  is the similarity variable. The velocity components u 

and v in Eq. (8) automatically satisfies the continuity 

Eq. (1). In terms of f, the momentum Eq. (6) can be 

written as  

 2 22 0,f Mnf f f f f f f f f             (9) 

where, 
2

0B
Mn

b




  is the magnetic parameter and 

b   is the Maxwell parameter. In view of the 

transformations, the boundary conditions (7) can be 

written as 

   0 , 1 0,f f at      

 lim 0.f





   
(10) 

It is worth mentioning here that for the Sakiadis flow of 

a second grade fluid, we would get a fourth order 

differential equation with only three boundary 

conditions. For the second grade fluid flow case, 

augmenting the needed boundary conditions to match 

the order of the differential equation has turned out to 

be a big issue (for details see Rajagopal and Gupta 

1980, Garg and Rajagopal 1991). Fortunately, here in 

spite of the fact that the Maxwell model is much more 

involved than the second-grade model, Sakiadis flow 

provides a much simpler fluid mechanical problem to 

be solved. The exact solution of Eq. (9) with the 

boundary conditions (10) for 0   is obtained as 

 
1

, 0
e

f


 



   (11) 

where 1 .Mn    

The shear stress at the sheet is 

0

0

,
y

u

y
 



 
   

 
 (12) 

and its dimensionless form is 

0

2 2
.

b x





  (13) 

3. HEAT TRANSFER ANALYSIS 

The energy equation with variable thermal conductivity 

in the presence of internal heat generation/absorption, 

viscous dissipation and thermal radiation for two-

dimensional boundary layer UCM fluid flow (Chaim 

1998, Brewster 1992, Raptis and Perdikis 1991, and 

Raptis 1999) is given by: 

 

 
2

1
v

1
,

p

s r

p p p

T T T
u k T

x y c y y

Q u q
T T

c c y c y





  


    
   

    

  
   

  

 
 

 

(14) 

where T  is the temperature, pC  is the specific heat at 

constant pressure, k is the thermal conductivity. In this 

paper thermal conductivity is assumed to vary as a 

linear function of temperature (Chaim 1998) as 

 ( ) 1 .k T k T T
T


 

 
   

 
 (15) 

In Eq. (15), ,T T T Tw w    is the sheet 

temperature,   is a small parameter and   is the 

conductivity of the fluid far away from the sheet. The 

second term containing sQ   in the right hand side 

(RHS) of Eq. (14) represents the temperature dependent 

volumetric rate of heat source when 0sQ   and heat 

sink when 0sQ  . These heat sources and sinks deal 

with the situations of exothermic and endothermic 

chemical reactions respectively. Viscous dissipation or 

frictional heating term is accounted in the heat transfer 

analysis by 

2

p

u

c y





 
 
 

 with the assumption that UCM 

fluid is more viscous in nature than elastic: Due to this 

assumption we neglect elastic deformation in 

comparison with the viscous dissipation. The last 

term rq   in the RHS of Eq. (14) is the radiative heat 

flux and is given by 
* 4

*

4
,

3
r

T
q

K y

 



 (16) 

where * *and K  are respectively the Stephan–

Boltzmann constant and the mean absorption 

coefficient. We assume that the temperature field within 

the fluid is of the form 4T  and may be expanded in 

Taylor series about .T
 Neglecting the higher order 

terms, we obtain 4 3 44 3T T T    and using this 

expression for 4T  in Eq. (16) we get  
* 3

*

16
.

3
r

T T
q

K y

  



 (17) 

Substituting Eqs. (15), (16) and (17) into Eq. (14) we 

get  

 
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v

* 3 2161
1

* 23

2

.

kT T T
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
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
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     

 
    

    
 

 
     

 

 

 

 

 

(18) 

From Eq. (18) it is observed that the effect of variable 

thermal conductivity parameter  and thermal radiation 

parameter is to enhance the thermal diffusivity. The 

appropriate non-isothermal boundary conditions are; 
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where A  and D are  constants . It is obvious now that, 
2
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(20) 

 

We now use a scaled  - dependent temperature of the 

form,  

( )
T T

T
 





 (21) 

The advantage of Eq. (19) is that the temperature-

dependent thermal conductivity turns out to be x-

independent. Using Eq. (8) we reduce Eq. (18) to 

     21 Pr Pr 2 Pr 0Nr f f Ec f               
 

(22) 

The parameters Pr, , ,Ec and Nr  are the Prandtl 

number, heat source/sink parameter, the Eckert number 

and the thermal radiation parameter respectively, and 

are defined by, Pr ,

C
p

k






 

,
Qs

c bp





2 2
,

b l
Ec

Acp
  

* 316
.

*3

T
Nr

K k

 



 

Using Eqs. (21), (20) one can reduce Eq. (19) to 

  

 
 

0 1        ( )
   , 0.

(0) 1      ( )
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




 
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  
 

 

(23) 

The local Nusselt number is given by 

( )h x
Nu

x




 
 

(24) 

 

where the heat transfer coefficient ( )h x is of the 

form 

1
( ) 2

( ) (0)

0

q x K Twh x K
T T y b

at y




 

            
    

 

 

(25) 

Substituting Eqs. (20), (21) and (25) into Eq. (24), we 

get 
1

2

(0).Nux
b




 
   

 
 

 

(26) 

4. NUMERICAL PROCEDURE 

The The transformed non-linear coupled ordinary 

differential Eqs. (9) and (22) with the boundary 

conditions (10) and (23) are solved numerically by a 

finite difference scheme known as Keller-Box method 

(Cebeci and Bradshaw 1984, Keller 1992).  

The numerical solutions are obtained in four steps are 

as follows: 

 reduce Eqs. (9) and (22) to a system of first-

order equations; 

 write the difference equations using central 

differences; 

 linearize the algebraic equations by Newton’s 

method, and write them in matrix-vector 

form; and 

 solve the linear system by the block tri-

diagonal elimination technique. 

For the sake of brevity further details on the solution 

process are not presented here. It is also important to 

note that the computational time for each set of input 

parameter values should be short. Because physical 

domain in this problem is unbounded, whereas the 

computational domain has to be finite, we apply the far 

field boundary conditions for the similarity variable 

 at finite value denoted by max . We ran our bulk 

computations with the value
max 10  , which is 

sufficient to achieve the far field boundary conditions 

asymptotically for all values of the parameters 

considered. For numerical calculations, a uniform step 

size of 0.01   is found to be satisfactory and the 

solutions are obtained with an error tolerance of 
610

 

in all the cases. In order to get a clear insight in to the 

physical problem, the numerical results for the 

horizontal velocity field ( )f   and temperature 

field    , skin friction (0)f   and wall-temperature 

gradient in PST Case and wall temperature in PHF case, 

are presented in Figs. 1-9. Furthermore, the salient 

features are discussed in section 5. 

5. RESULTS AND DISCUSSION 

Figure 1 illustrates the effects of Maxwell parameter β 

and the magnetic parameter Mn on the horizontal 

velocity profiles   withf   . It is noticed from the 

figure that the horizontal velocity profiles 

( )f  decrease with increasing values of β and Mn in 

the boundary layer, but this effect is not very prominent 

near the wall. The effect of increasing value of β is to 

reduce the horizontal velocity ( )f  and thereby 

reducing boundary layer thickness. That is, the 

thickness is much larger non-zero values of β, as clearly 

seen from Fig. 1. Further, from Fig. 1, can be seen that 

the horizontal velocity ( )f   decreases with an 

increase in the magnetic field parameters Mn. This is 

due to the fact that, the introduction of transverse 

magnetic field (normal to the flow direction) has a 

tendency to create a drag, known as the Lorentz force 

which tends to resist the flow. This behavior is even 

true in the case of increasing values of the Maxwell 

parameter. 
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Fig. 1. Horizontal velocity profile f Vs for different 

values of   and Mn  

The effects of the Maxwell parameter β, the magnetic 

parameter Mn, the thermal conductivity parameter ε, the 

heat source/sink parameter α, the thermal radiation 

parameter Nr, and the Eckert number Ec on temperature 

profile   with   for non-isothermal boundary 

conditions (both PST and PHF cases) are shown 

graphically in Figs. 2-7. The general trend is that the 

temperature distribution     unity at the wall in PST 

case and is not unity at the wall in PHF case. However, 

the temperature distribution    for both PST and 

PHF cases decrease asymptotically to zero as the 

distance increases from the boundary. The effects of 

Maxwell parameter β and the magnetic parameter Mn 

on temperature profiles   with     in the boundary 

layer for both PST and PHF cases are shown 

respectively, in Figs. 2(a) and 2(b). The effect of 

increasing the values of β leads to enhance the thermal 

boundary thickness. This is because of the fact that the 

thickening of the thermal boundary layer occurs due to 

an increase in the elasticity stress parameter. 

 

 
(a) 

 
(b) 

Fig. 2. (a) Temperature profile Vs  for different 

values of   and Mn  when 

Pr 1.0, 0.0Ec Nr      ,(b) Temperature 

profile Vs  for different  values of   and Mn  when 

Pr 1.0, 0.0Ec Nr       

The behavior is even true for non-zero values of the 

magnetic parameter Mn. As explained above, the 

introduction of a transverse magnetic field to an 

electrically conducting fluid gives rise to a resistive 

type of force known as Lorentz force. This force makes 

the fluid experience a resistance by increasing the 

friction between its layers and due to which there is 

increase in the temperature profile    . 

The effect of thermal conductivity parameter ε on the 

temperature profile   with    in the boundary layer 

for non-isothermal boundary conditions is shown 

graphically in Fig. 3. The profiles demonstrate quite 

clearly that an increase in the value of   results in an 

increase in the temperature profile     and hence the 

thermal boundary layer thickness increases as   

increases. This is due to the fact that the assumption of 

temperature-dependent thermal conductivity causes a 

reduction in the magnitude of the transverse velocity by 

a quantity ( )k T y   as can be seen from heat transfer 

Eq. (18). This phenomenon holds for PHF case; 

however, thickness of the thermal boundary layer is 

smaller in comparison with PST case. 

 

Fig. 3. Temperature profile Vs  for different  values 

of  with  =0.4, Mn =0.5, 0.0Ec Nr    , 
Pr 1.0  

 

In Fig. 4 the temperature distribution    for different 

values of the heat source/sink parameter α is shown. 

The dimensionless temperature attains unity at the wall 

for prescribed surface temperature and reduces to zero 

in the free stream for different values of heat 

source/sink parameter.  However the temperature 

distribution for prescribed wall heat flux is different 

(less than unity) for different values of α at the surface 

and reduces to zero in the free stream. From this Figure 

we examine that the temperature profile is lower 

throughout the boundary layer for negative values of 

  (heat sink) and higher for positive values of   

(heat source). Physically  >0 implies wT T  i.e. there 

is a supply of heat to the flow region from the wall. 

Similarity 0   implies 
wT T and there is a transfer 

of heat from the fluid to the wall. The effect of 

increasing value of heat source/ sink parameter   is to 

increase the temperature     in both PST and PHF 

cases. The graphs for the temperature distribution 
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.Vs  for different values of the Eckert number Ec, 

the thermal radiation parameter Nr, and the Prandtl 

number Pr, for non-isothermal boundary conditions are 

plotted graphically in Figs. 5-7. We noticed from the 

curves that the effect of increasing values of Ec to 

enhance the temperature distribution    . This is in 

conformity with the fact that the energy is stored in the 

fluid region, as a consequence of dissipation due to 

viscosity and elastic deformation, as shown in Fig. 5.  

 

 

 
Fig. 4. Temperature profile Vs  for different  values 

of  with  =0.4, Mn =0.5, 0.0, 0.1Ec Nr    , 

Pr 1.0 . 

 
Fig. 5. Temperature profile Vs  for different values 

of Ec with  =0.4, Mn =0.5, 0.0, 0.1Nr    , 

Pr 1.0 . 
 

 
Fig. 6. Temperature profile Vs  for different values 

of Nr with  =0.4, Mn =0.5, 0.0, 0.1Ec    , 

Pr 1.0 . 

The effect of increasing values of Nr is to increase the 

temperature profile     and hence increases the 

thermal boundary layer thickness; depicted in Fig. 6. 

This result qualitatively agrees well with the fact that 

the effect of thermal radiation is to enhance the rate of 

transport to the fluid, thereby increasing the 

temperature of the fluid. Further it is observed from the 

Figs. 5 and 6 that, the region of the thermal boundary 

layer is more pronounced for PHF case in comparison 

with PST case for non-zero values of the Eckert number 

and the thermal radiation parameter. The profiles in Fig. 

8 exhibit the role of Prandtl number on temperature 

profile    . The effect of increasing values of Pr 

results in decrease of the temperature distribution and 

hence thermal boundary layer thickness decreases as Pr 

increases. This phenomenon is true in both PST and 

PHF cases. However, from the Fig. 7, it is noticeable 

that the thickness of the thermal boundary layer is 

larger in PST case as compared to the PHF case. 

 
Fig. 7. Temperature profile Vs  for different values 

of Pr with  =0.4, Mn =0.5, 0.0, 0.1Ec    . 

 

 
Fig. 8. Values of skin friction (0)f Vs   for different 

values of Mn . 

Figurs. 8 and 9 display the variation of skin friction 

 0 ,f  wall temperature gradient  0  (PST Case) 

and wall temperature  0  (PHF case) vs. the Maxwell 

parameter for zero and non-zero values of the magnetic 

parameter. It can be noted that the skin friction 

decreases with an increase in the Maxwell parameter as 
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well as with the magnetic parameter; whereas quite 

opposite holds for non-isothermal temperature 

boundary conditions.  

 
Fig. 9. Values of skin friction (0) Vs  (PST case), 

(0) Vs  (PHF case) for different values of Mn with 

0.0Ec Nr    , Pr 1.0 . 
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