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ABSTRACT 

The hemodynamics provides a way to predict effect of atherosclerosis by means of mathematical models. The 

pulsatile flow of blood through an artery with two side-to-side axisymmetric stenoses has been considered. A static 
transverse magnetic field to the flow is taken into account. The velocity profile, Wall Shear Stress and Wall Shear 

Stress Gradient to the flow have been simulated under the influence of magnetic field for various values of length and 

thickness of the stenosis.  The upstream flow velocity in the subsequent stenosis region is significantly lower down 

from the velocity in the preceding stenosis region. The flow velocity decreases with the increase of Hartmann 

number. In the stenosis region wall shear stress (WSS) increases from unstenosed region to maximum thickness of 

stenosis. The wall shear stress (WSS) increases with the increase of Hartmann number and Womersley number. The 
WSSG have local maximum value in the vicinity of the throat of the stenoses and oscillates in the stenosed portion of 

the artery. The magnitude of WSSG is directly proportional to the Hartmann number. WSSG increases in magnitude 

on the upstream and downstream section of both the stenoses with the increase of Womersley number. Generated 

data are analyzed and discussed through graphs. 

 

Keywords: Stenosed artery, Unsteady flow, Newtonian incompressible fluid, Hartmann number, Wall shear stress, 

Wall shear stress gradient.  

NOMENCLATURE 

*
v  velocity components along 

*r  direction 

*
w  velocity components along 

*z direction  

*
t    time 

    
*p   fluid pressure 

   ρ  density of blood 

   µ  viscosity of blood 

 

*σ  electrical conductivity of blood 

*
0B  magnetic field strength 

α  Womersley parameter 

γ   amplitude parameter 

ω  frequency 

ν  kinematic viscosity of blood 

1. INTRODUCTION 

Blood is regarded as a suspension of small cells in 

plasma. So, when blood flows through tubes, due to 

deposition of fatty substances formation of stenosis 

occurs. The detailed studies of flow field in a stenosed 

tube help us to understand arterial diseases. In view of 

this, several studies of fluid dynamics through stenosed 
artery have been carried out to evaluate the flow 

pattern, shear stress and shear stress gradient at the 

walls under steady and pulsatile flow conditions. Young 

and Tasi (1973-I, II) considered flow of blood dealing 

with blood as a Newtonian fluid under steady and 

unsteady flows across a stenosis. Chaturani and 

Upadhya (1979) studied a two fluid model for blood 

flow through small diameter tubes. Above authors 

considered the two fluid model (consists of a core 

suspension of red cells), and a peripheral red cell free 

plasma layer. The core has been considered as a couple 

stress fluids and the plasma layer as a Newtonian fluid. 

It was observed that effective viscosity increases with 

tube radius. Haldar (1987) presented oscillatory flow of 

blood in a stenosed artery to obtained numerical 

solutions for instantaneous flow rate, resistive 
impedance, wall shear stress and phase lag. Haldar and 

Ghosh (1994) studied the effect of an externally applied 

homogeneous magnetic field on the flow characteristics 

of blood in a single constricted blood vessel and 
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simulated the effect of magnetic field on the pressure 

gradient, velocity profile and wall shear stress. Sanyal 
and Maji (1999) discussed the unsteady blood flow 

through an indented tube with atherosclerosis to 

investigate the oscillatory flow characteristics of blood 

in a single constricted blood vessel. Steady 

axisymmetric flow in a constricted rigid tube and flow 

pattern with the distribution of pressure and shear stress 

at the wall were computed using finite difference 

scheme by Pontrelli (2001). Srivastava (2002) 

considered particulate suspension blood flow through 

stenotic arteries, to analyze the effects of hematocrit 

and stenosis shape and observed that the flow resistance 
decreases with increasing shape parameter but increases 

with hematocrit. Ku et al. (1985) and Bonert et al. 

(2003) found that low and oscillatory wall shear be 

positively correlated to localized intimal thickening of 

arterial wall. Misra and Shit (2006) studied the blood 

flow through the arteries in a pathological state taking 

blood as non-Newtonion fluid and used Herschel-

Bulkley equation for flow.  

The motivation of present problem is quantitative 

assessment of flow and mass transfer in mild stenoses is 

of great importance, since such stenoses represent the 

early stage of disease development. Several studies 

have examined flow through single stenosed artery, but 

there are only few studies in multiple stenoses. Prasad 

et al. (2008) studied the flow of Herschel-Bulkley fluid 

through an inclined tube of non-uniform cross-section 

with multiple stenoses and observed that flow 
resistance increases with the heights of stenoses 

decreases with inclination. Misra et al. (2008) 

formulated a mathematical model for the flow of blood 

through a multi-stenosed artery with blood as two-

layered fluid. Verma and Parihar (2009) discussed the 

effects of magnetic field and hematocrit on blood flow 

in an artery with multiple stenosis. They observed that 

rise in systolic pressure and fall in diastolic pressure are 

very harmful for weak heart. Layek et al. (2009) 

worked on the numerical solution of the unsteady 

viscous flow in the neighborhood of an overlapping 

constriction under laminar flow conditions and found 
that the recirculation regions are formed in the 

downstream of the overlapping constriction.  

Kelvin et al. (2010) worked out on modelling of blood 

flow resistance for an atherosclerotic artery with 

multiple stenoses and poststenotic dilatations and 
observed that variation in resistance to flow ratio are 

subjected to alterations in flow behaviour index, 

structural variations in relation to magnitude of vessel 

stenosis and multiple abnormal segments. 

2. FORMULATION  OF THE PROBLEM 

The geometry of the present model consists of an artery 

of circular cross section with two side-by-side 

axisymmetric stenoses of impermeable wall. The 
motivation of considering this sort of geometry is 

experimental and physiological findings near the 

branching of artery where atherosclerosis lesion 

generally occurs.  

Fig. 1.  Physical model of the problem 

 

3. The present model is first level approximation of the 

realistic situation where stenoses are taken 

axisymmetric and situated in a line. A transverse 

magnetic field of constant strength 
0

B  is applied. The 

calibrating parameters to define double stenosed arterial 

blood flow are length of stenoses 
1
L  and 

2
L , thickness 

of stenoses 
1

δ  and 
2

δ . The boundaries of the stenoses 

are taken smooth so that it can be approximated in 

cosinosoidal form. The artery is taken as a straight 
vessel along the axis of z (See physical model). Under 

these considerations, the governing equations of motion 

of blood through artery with double stenosed in the 

presence of magnetic field in cylindrical coordinate 

system 
* * *(r , , z )θ  are given by 

4. Equation of continuity 

( )* *

* *

1
0

ru w

r r z

∂ ∂
+ =

∂ ∂
 (1) 

The governing equation of motion 

* * *
* *

* * *

* 2 2
* * *2 *

0* *2 * * *2

1

w w w
v w

t r z

p
w B w

z r r r z

ρ

µ σ

 ∂ ∂ ∂ + +
 ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ =− + + + −
 ∂ ∂ ∂ ∂ 

 (2) 

The boundary conditions are  

*

* * * * * *

0 :                  * ( *, *) 0

( ) :          ( , ) 0    

r w r t
r

r h z w r t

∂
= =

∂

= =

 (3) 

3. MATHEMATICAL ANALYSIS 

Using the following non-dimensional parameters 

*

0

r
r

R
= ,   

*

0

z
z

R
= ,  * *t tω= ,       

*

0*
( )

p
q q t

z

∂
=−

∂
,  

*

2
0 0

2

w
w

q R

µ

=
 
 
 
 

,         
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*

0R
ω

α
ν

=   ,          

( )
* *2
0

2
0

B
M

R

σ

µ
=  

into the Eq. (2), we get  

2
2

2

1
2 ( )

w w w
q t M w

t r rr
α

∂ ∂ ∂
= + + −

∂ ∂∂
 (4) 

Corresponding boundary conditions are reduced to  

0 :               ( , ) 0

( ) :           ( , ) 0

r w r t
r

r h z w r t

∂
= =

∂
= =

 (5) 

where 

1

1 1
1 1 1 1

1

1 1 2

2 2
2

2

1 0

2
1 1 cos

2 2

( ) 1

2
1 1 cos

2 2

1

≤ ≤


    − + − − ≤ ≤ +  
   



= + ≤ ≤ −


   

− + − + − ≤ ≤   
   



 ≤

if z d

L
z d if d z d L

L

h z if d L z L L

L
z L if L L z L

L

if L z

δ π

δ π

 

Assuming  

( ) 1 cos ( )= +q t tγ ω   

and using into the Eq. (4),  we get 

2
2

2

1
2(1 cos( ))

w w w
t Mw

t r rr
α γ ω

∂ ∂ ∂
= + + + −

∂ ∂∂
 (6) 

Consider, 

1 2( , ) ( ) ( , )w r t w r w r t= +  (7) 

 and using into the Eq. (6), the following perturbation 
equations are obtained  

1
1

1 ( )
( ) 2 0

w r
r Mw r

r r r

∂ ∂ 
− + = ∂ ∂ 

 (8) 

2

2
2

( , )2
2 cos( ))

1 ( , )
( , )

w r t
t

t
w r t

r Mw r t
r r r

α γ ω
∂

= +
∂

∂ ∂ 
− ∂ ∂ 

 (9) 

The corresponding boundary conditions are obtained 

1 2

1 2

( ) ( , )
 0 :          0,       0

( ) :     ( ) 0,          ( , ) 0

w r w r t
r

r r
r h z w r w r t

∂ ∂
= = =

∂ ∂
= = =

 (10) 

The Eq. (8) is a well known Bessel’s differential 

equation and its solution is given by  

1 0 2 01

2
 ( ) ( ) ( )w r c I M r c K M r

M
= + +  (11) 

where 
0
I  and 

0
K  are modified Bessel’s functions. 

1c and 2c are constants of integration and their values 

are obtained by applying boundary conditions Eq. (9).  

Through straight forward calculations the expression of 

1
( )w r  is known and given by 

0
1

0

2 ( )
 ( ) 1

( ( ))

I M r
w r

M I M h z

 
= − 

  
 (12) 

Taking Laplace transform of Eq. (9), we get 

( )

2

2
2 2 2

1 ( , )
 

2
( , )

w r s
r

r r r
s

M s w r s
s

γ
α

ω

∂ ∂ 
− ∂ ∂ 

+ =−
+

 (13) 

The corresponding boundary conditions are reduced to  

2

2

 0 :               ( , ) 0

( ) :          ( , ) 0

r w r s
r

r h z w r s

∂
= =

∂
= =

 (14) 

The Eq. (13) is a non-homogeneous Bessel’s 

differential equation whose solution is given by 

( )
( )

( )
02 3

04 2 2 2

 ( , ) ( )

2
( )

( )

w r s c I r g s

s
c K rg s

s g s

γ

ω

= +

+
+

 (15) 

where 
2( ) = +g s M sα , 

3
c and 

4
c are constant of 

integration and their values are obtained using boundary 

conditions Eq. (14). Through straight forward 

calculation, the expression of 
2
( , )w r s  in the Laplace 

domain is known and given by  

( )
( )

( )
0

2 2 2 2
0

( )2
 ( , ) 1

( ) ( )( )

I r g ss
w r s

I g s h zs g s

γ

ω

 
 = −
 +  

 (16) 

Taking Laplace inversion on both sides of Eq. (16) 

(Carslaw and Jaeger), we get 

( )
( )

( )

2 2 2

2

0

0

( )
 ( , )

( )
1

( ) ( )

st
se

s g s
w r t ds

i I g s r

I g s h z

ωγ
π

∞

−∞

 
 
 +

=  
 

−      

∫  (17) 

=±s iω  and 

2

2

( )+
=− ka M
s

α
 are poles of integrand 

of the Eq. (17) with ( )=k ka h zβ  and kβ  are zeros 
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of the Bessel’s function of order zero, i.e. 

0 ( ) 0; 1, 2,3...kJ kβ = =  Applying Cauchy Residue 

Theorem the solution of 2 ( , )w r t  is obtained and 

hence 1 2( , ) ( ) ( , )= +w r t w r w r t  

( )
( )

( )
( )

( )
( )
( )

( ) ( )

0

0

0 1

2
0 11

0 2

2
0 22

3 03

2 2 2 13

2 2
1 2

2

3 2

( )2
( , ) 1

( ( ) )

1
( )

1
( )

4

where

,

( )

i t

i t

A t
k

kkk

k

I r M
w r t

M I h z M

I A re

I A h zA

I A re

I A h zA

J a rA e

JA

A M i A M i

a M
A

ω

ω

γ

γ

γ
βα ω β

α ω α ω

α

−

−

 
= − 

  

 
  

−   
  

   + + −   
  

  
 −    +    

= + = −

+
=

∑
 

3.1 Volumetric flow rate 

T r

0 0

2
Q r w (r, t)dr dt

T

π
= ∫ ∫   

( , )w r t  involves complicated expression in the form of 

Bessel’s function therefore its integration has been 

obtained numerically by using Simpson’s one-third rule 

for double integration and then flow rate profiles are 

given in Fig. 17.    

3.2 Shear Stress 

The shear stress in dimensionless form is defined as 

dw

dr
τ =  

( )
( )

( )
( )

( )
( )

( )

1

0

1 1

1 0 1

1 2

2 0 2

3 13

2 2 2 13

2 ( )

( ( ) )

( )

( )

4

( )( )

i t

i t

A t
k

k
k

I r M

M I h z M

I A re

A I A h z

I A re

A I A h z

J a rA e

J a h zA h z

ω

ω

γ

γ

γ

α ω

−

−

 
= −  

  

 
  
   
  

   − +    
  

  
 −    +    

∑

 

3.3 Wall Shear Stress    

 Wall Shear Stress = 

( )=

 
 
 r h z

dw

dr
 

 

3.4  Wall Shear Stress Gradient  

The wall shear stress gradient is given by  

WSSG= 

( )r h z

d dw

dz dr

  
      =
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1 2

2
0 2

3
3

2 2 2
3
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1
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( )

( )

( )
( )

( )

4

( )

( )2
*
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i t
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A t

k k k

k
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h z
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e I A h z

I A h z
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h z
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A e
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ω
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γ

α ω

−

−

′=

 
 
 
 
 
 
 
 
 
 
 ′+ +
 
 
 

  
  
 + 
  −       −        

∑

 

4. RESULTS AND DISCUSSION  

The effect of double stenoses and magnetic field on the 

flow of the blood and wall shear stresses is analyzed 

through Figs. 2 to 17. Figure 2 depict that upstream 

flow velocity decreases when it proceed from 

unstenosed region to first and second stenosed region. 

This indicates that the volume flow will reduce due to 
stenosis. Also, it is plausible that the upstream flow 

velocity in the second stenosis is less than the velocity 

in the first stenosis. In Fig. 3 it is observed that with the 

increase of length of first stenosis the flow velocity 

increases even the stenosis thickness remains 

unchanged. Figure 4 shows the blood velocity decreases 
along radial direction with the increases in thickness of 

first stenosis. Figure 5 demonstrates the effect of 

Hartmann number on the flow profiles. The flow 

velocity decreases with the increase of Hartmann 

number. Figure 6 shows velocity profiles of the flow 

during a cardiac period at the cross-section 

corresponding to the peaks of the stenoses. The 

pulsatile nature of the flow is revealed from the Fig. 6 

and magnitude of the flow velocity is higher in the 

circular region while it decreases in first and second 

stenoses successively. The variation in shear stress 
radially at the entry of the stenosed region, in the region 

of first and subsequent stenosis are shown in Fig. 7, 

which reveals that the shear stress in the subsequent 

stenosis is less in magnitude to the shear stress at the 

preceding stenosis. Also, when the stenosis thickness 

2δ  was taken 60% of 0R  the shear stress in the cross-

sectional plane through the apex of the second stenosis 

changes its sign. This behaviour has not been observed 

in 20% and 40% case.  
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Fig. 2. Variation in velocity profile along radial 

direction for 1 2 020%    , 1.82, / 6of R tδ δ α ω π= = = =  

 

 
Fig. 3. Variation in velocity versus radial direction for 

1 2 020%    , 1.82,   0.5of R Mδ δ α= = = =  

 

 
Fig. 4. Variation in velocity profile along radial 

direction for 

1 2 1 2 0 ,  / 6,  1.82, 0.5L L d d R t Mω π α= = = = = = =  

 

 
Fig. 5. Variation in velocity profile versus radial 

direction for 1 2 020%    , of Rδ δ= =
 

1 2 1 2 0 , 1.82, / 6L L d d R tα ω π= = = = = =  

 
Fig. 6. Variation in velocity versus time for 1.82,  α =

 

1 2 1 2 0 1 2 0, 20%   , / 6L L d d R of R tδ δ ω π= = = = = = =  

 

 
Fig. 7. Variation in shear stress versus radial direction 

1 2 1 2 0 ,  / 6,  1.82, 0.5L L d d R t Mω π α= = = = = = =  

 

Figures 8 and 9 respectively show the variation in shear 

stress with time (t) at cross-section corresponding to the 

apex point of the stenoses at z = 0.186 and z = 0.434. 

Also, shear stress is of same nature in both the stenoses 

and at r = h/4 and r = h/2 reveals that shear stress 
oscillates in the period of cardiac output and for the 

systolic flow magnitude of shear stress is higher for 

downstream to second stenosis while this pattern turned 

into reversal for the diastolic flow. The shear stress 

changes its sign twice during a cardiac period when the 

maximum thickness of stenosis is 60% of 0R  and 

Womersley number α =1.82. The wall shear stress 

variation with time (t) plotted in Fig. 10 at the cross-

section corresponding to the maximum thickness point 

of the stenoses, in both, along the upstream and 

downstream stenosis. The wall shear stress changes its 

sign during the cardiac period for the case when 2δ = 

60% of 0R , it reveals that the point of separation will 

come into existence. In Fig. 11 it is plausible that in the 
stenosis region wall shear stress (WSS) increases from 

unstenosed region to maximum thickness depict that the 

flow rate decreases through this length which is good 

agreement with the study of Nicolas et al. (2003). The 

wall shear stress (WSS) increases with the increase of 

Hartmann number which is in agreement that Lorenz’s 

force caused by transverse magnetic field decelerate the 

flow velocity leads to increase in WSS. Figure 12 

shows the WSSG have local maximum value in the 

vicinity of the throat of the stenoses and oscillates in the 

stenosed portion of the artery. It also reveals that the 

magnitude of the local maxima of WSSG in the second 
stenosis along the downstream is lesser in compare to 
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the first stenosis. It suggests that in case of multiple 

stenoses the aggregation of particles will be more in the 
downstream stenosis and the magnitude of WSSG is 

directly proportional to the Hartmann number. Figure 

13 and 14 shows that WSS increases with the increase 

of Womersley number. Besides it, the difference of 

WSS on the stenosed region to WSS on the unstenosed 

region decreases with the increase of Womersley 

number. The point of separation is arises when 

1.82=α and maximum thickness of stenosis is 60% 

of 0R . The separation points are confined in the vicinity 

of the apex of stenoses on the either sides. 

 
Fig. 8. Variation in shear stress versus time for 

/ 4r h=  

1 2 1 2 0 ,  / 6,  1.82, 0.5L L d d R t Mω π α= = = = = = =  

 

 
Fig. 9. Variation in shear stress versus time at 

/ 2,  1.82r h α= =  

1 0 1 2 1 2 020%    ,  ,  / 6of R L L d d R tδ ω π= = = = = =  

 

 
Fig. 10. Variation in WSS versus time 

for 1 020%    , of Rδ =  

1 2 1 2 0 ,  / 6,  1.82L L d d R tω π α= = = = = =  

 

 
Fig. 11. Variation in wall shear stress versus axial 

direction for 1 0 1 2 1 2 020%    ,  ,of R L L d d Rδ = = = = =  

1.82,  / 6tα ω π= =  

 

 
Fig. 12. Variation in wall shear stress versus gradient 

along axial direction for 1 2 1 2 0 ,L L d d R= = = =  

1 2 01.82,  20%    ,  / 6of R tα δ δ ω π= = = =  

 

 
Fig. 13. Variation in wall shear stress along axial 

direction 1 2 1 2 0 ,L L d d R= = = =  

1 020%    ,  / 6,  0.5of R t Mδ ω π= = =  

 

Figure 15 explains the effects of severity of stenosis on 

the flow behaviour. The separation in the flow arises 

when maximum thickness of stenosis is 60% of 0R .  

Figure 16 shows the variation of WSSG with 

Womersley number. It is plausible that WSSG increases 

in magnitude on the upstream and downstream section 

of both the stenoses. The magnitude of WSSG on the 

left stenosis is greater than the stenosis right to it in the 

flow direction. Figure 17 demonstrates flow rate 
decreases with the increase of Hartmann number. Also, 

it depict that flow rate decreases with the increase of 

Womersley number.  
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Fig. 14. Variation in wall shear stress along axial 

direction 1 2 1 2 0 , L L d d R= = = =  

2 0 20%    ,  / 6,  0.5of R t Mδ ω π= = =  

 

 

Fig. 15. Variation in wall shear stress along axial 

direction 1 2 1 2 0 ,   1.82L L d d R α= = = = =  

2 0 20%    ,  / 6,  0.5of R t Mδ ω π= = =  

 

 
Fig. 16. Variation in wall shear stress gradient along 

axial direction 1 2 1 2 0 ,  L L d d R= = = =  

1 2 0  20%    ,  / 6,  0.5of R t Mδ δ ω π= = = =  

 

 

 
Fig. 17. Variation in flow rate versus axial direction for 

1 0/ 6,  20%    , t of Rω π δ= =  

1 2 1 2 0 2 0 , 40%    L L d d R of Rδ= = = = =  

5. CONCLUSION 

(i) The flow velocity is proportional to the 

length of stenosis even the thickness 

remains unchanged. 

(ii) The transverse magnetic field decelerate 
the flow velocity leads to increase in 

WSS. 

(iii) The magnitude of WSSG on the left 

stenosis is greater than the stenosis right 

to it in the flow direction and directly 

proportional to the Hartmann number. 

(iv) In case of multiple stenoses the 

aggregation of particles will be more in 

the downstream stenosis. 

(v) The point of separation arises when 

1.82=α and maximum thickness of 

stenosis is 60% of 0R . The separation 

points are confined in the vicinity of the 

apex of stenoses on the either sides. 

(vi) The flow rate decreases with the 

increase of Hartmann number or 

Womersley number.   
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