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ABSTRACT 

Numerical analysis of laminar natural convection in a quadrantal cavity filled with water having finned hot and cold 

on adjacent walls have been made to examine heat and fluid flow. Numerical solutions are obtained using a 

commercial computational fluid dynamics package, FLUENT, using the finite volume method. Effects of the 

Rayleigh number, Ra, non-dimensional fin location and non-dimensional fin length on the Nusselt number, Nu, as 

well as stream function and temperature fields are investigated for the range of Ra from 104 to 107. 

Keywords: Natural convection, Quadrantal cavity, adiabatic fin, Rayleigh number, Nusselt number. 

NOMENCLATURE 

c non-dimensional fin location, c’/L 

cp specific heat 

h non-dimensional fin length , h’/L  

H enclosure height 

k thermal conductivity 

Nu Nusselt number 

p pressure 

P non-dimensional pressure 

Pr Prandtl number 

q heat flux 

r, ø cylindrical coordinate system 

R dimensionless length of the hot wall, r/H 

Ra Rayleigh number 

T temperature 

u velocity component in the x-direction 

U non-dimensional velocity component in the 

x-direction 

v velocity component in the v-direction 

 

V non-dimensional velocity component in the 

y-direction 

x, y Cartesian coordinate system 

X, Y non-dimensional coordinates 

Ψ     non-dimensional stream function (=ψ /α) 

ψ     stream function 

ρ     density 

β     co-efficient of thermal expansion 

υ     kinematic viscosity 

α     thermal diffusivity 

μ     dynamic viscosity 

θ     dimensionless temperature 

c     cold wall 

h     hot wall 

max     maximum 

min     minimum 

 

1. INTRODUCTION  

Natural convection phenomena in enclosures filled with 

fluids have been an interesting research topic in recent 

decades since they play a vital role in many engineering 

applications. Application areas include solar energy 

collection, nuclear energy, cooling of electronic 

components, microelectromechanical systems, 

lubricating grooves, etc. Besides its importance in such 

processes, due to the coupling of fluid flow and energy 

transport, the phenomenon of natural convection 

remains an interesting field of investigation.  

 

The existing literature presents a vast number of studies 

on natural convection in enclosures. However, most of 

these studies have been related to either a vertically or a 

horizontally imposed heat flux or temperature 

difference. There is little work regarding natural 

convection in enclosures with differentially heated 

neighboring horizontal and vertical walls. November 

and Nansteel (1987)  performed a numerical study on 

steady natural convection in a square water-filled 

enclosure heated from below and cooled from the 

adjacent wall. It is found that the first contribution to 

the convective heat transfer occurs at order Ra2 and 

convective heat transfer is shown to be most significant 

when slightly less than half of the lower surface is 
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heated. Ganzarolli and Milanez (1995) numerically 

simulated steady natural convection in an enclosure 

heated from below and symmetrically cooled from the 

sides. The Rayleigh number based on the cavity height 

is varied from 103 to 107. Values of 0.7 and 7.0 for the 

Prandtl number are considered. The aspect ratio L/H 

(length to height of the enclosure) is varied from 1 to 9. 

Numerical values of the Nusselt number as a function 

of the Rayleigh number are reported, and the Prandtl 

number is found to have little influence on the Nusselt 

number. Aydin et al. (2011), studied natural convection 

in a quadrantal cavity heated and cooled on adjacent 

walls. Effects of the Rayleigh number, Ra, on the 

Nusselt number, Nu, as well as velocity and 

temperature fields are investigated for the range of Ra 

from 103 to 107. Aydin et al. (2011) also studied natural 

convection in an inclined quadrantal cavity heated and 

cooled on adjacent walls. The effects of the inclination 

angle,   and the Rayleigh number, Ra on fluid flow 

and heat transfer are investigated for the range of angle 

of inclination between 00   3600, and Ra from 105 

to 107. It is disclosed that heat transfer changes 

dramatically according to the inclination angle which 

affects convection currents inside, i.e. flow physics 

inside. 

Compared to extensive investigations of the natural 

convection in cavities with smooth walls, studies on the 

natural convection in cavities with partitions on the 

walls are limited. The characteristics of the natural 

convection flow significantly changed when partitions 

were added to the walls of rectangular cavities. For 

example, Shi and Khodadadi (2013) indicated that a 

partition attached to the heated vertical wall of a square 

cavity degraded the heat transfer capacity on the wall. 

The presence of the partition modified the boundary 

layer flow along the walls of the cavity. Two competing 

mechanisms were attributed for the flow and thermal 

modifications: (i) hydrodynamics blockage effect and 

(ii) the heat transfer characteristics from the partition. 

Bilgen (2002) observed that the natural convection flow 

circulation was blocked by partitions which were 

attached to the adiabatic horizontal walls of a 

rectangular cavity. The reduction of the heat transfer 

was dependent on the number and position of partitions 

as well as the aspect ratio of the cavity. Previous 

investigations have indicated that changes in the height, 

position and number of partitions affected the 

characteristics of the natural convection flow in 

cavities. Heretofore, most previous investigations have 

mainly focused on the natural convection in partitioned 

rectangular cavities with either adiabatic or insulated or 

conducting horizontal walls. Under these thermal 

boundary conditions, the partition directly suppressed 

the motion of the boundary layer along the walls or had 

an extra heating effect, resulting in changes in natural 

convection flow compared to that in cavities without 

partitions. There have been nearly no studies on 

partitioned cavities with temperature differences in both 

the horizontal and vertical directions, although results 

from cavities with smooth walls suggest that the 

temperature difference between the horizontal walls of 

a partitioned cavity would result in changes in the 

characteristics of natural convection in the cavity.  

 

Oosthuizen and Paul (1985) studied differentially 

heated cavities with aspect ratio between 3 and 7 with a 

horizontal plate attached to the center of the cold 

vertical wall. They found the local heat transfer rate on 

the upper portion of the hot wall increased, but the heat 

transfer rate near the center of the hot wall decreased. 

Frederick studied a similar situation in a inclined cavity 

with diathermal partition at Rayleigh number between 

103 and 105. The partition was attached to the cold wall 

at its center; its relative length was 0.25 and 0.50. The 

inclination angle was from 900(corresponding to 

horizontal partition) to 450. His results showed that the 

partition caused suppression of convection and the heat 

transfer relative to that in an identical cavity without 

partition was reduced considerably. Frederick and 

Valencia studied natural convection in a square cavity 

with a conducting partition at the center of its hot wall 

and with perfectly conducting horizontal walls. 

Partition length and its conductivity were variable. For 

low values of relative conductivity, they reported 

reduced heat transfer with respect to that in an identical 

cavity without partition at Rayleigh numbers between 

104 and 105. Nag et al. (1993) studied numerically in a 

differentially heated square cavity where a horizontal 

plate was attached on the hot wall. The length and the 

position of the partition were varied and Rayleigh was 

between 103 and 106. They considered two cases, one 

with adiabatic partition and the other with perfectly 

conducting partition. They found that with the perfectly 

conducting partition the heat transfer at the cold wall 

increased irrespective of its position or length and it is 

attenuated with the adiabatic partition, which was more 

pronounced when the position of the partition was 

higher. Shi and Khodadadi (2013) studied numerically 

the same problem reported by Nag et al. (1993) with 

almost perfectly conducting partition on the hot wall, 

but with more extensive parametric details. Their 

dimensionless fin length was between 0.20 and 0.50, 

which had seven positions along the hot wall and 

Rayleigh number was from 104 to 107. Since the fin was 

almost perfectly conducting and attached to the hot 

wall, the fins heating enhanced the convection while its 

blockage of the flow field suppressed it. The 

contributions of these two counter-acting mechanisms 

were not clearly quantified. Based on the numerical 

data, they proposed correlations to calculate Nusselt 

number as a function of relevant parameters for this 

particular case. Recently, Wu and Ching (2008, 2009) 

experimentally investigated the laminar natural 

convection in an air-filled partitioned square cavity with 

a temperature difference across the top and bottom 

walls. They found the flow pattern in the partitioned 

cavity was dependent on the top wall temperature of the 

cavity, the partition height and the partition location. 

It should be noted that many of the studies in the open 

literature are rectangular and square cavity. The aim of 

the present study is to investigate numerically the 

buoyancy-induced flow and heat transfer mechanisms 

in a water-filled quadrantal cavity when the vertical 

wall of the cavity having solid adiabatic fin is hot while 

the lower surface is cold. The remaining curved wall is 

kept adiabatic. The work on quadrantal cavity has been 

done by Aydin (2011), and Yesiloz (2011) so far 

without considering adiabatic fin.  Hence this is the first 

natural convection study in quadrantal cavity with solid 

adiabatic fin in the hot wall. 
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2. PROBLEM  DESCRIPTION 

The quadrantal cavity is filled with water inside shown 

in Fig.1. The vertical wall is the hot-wall, the bottom 

wall is the cold-wall and the curved wall is adiabatic. 

The height and the distance of the fin from the cooled 

bottom surface is represented by the two non-

dimensional number h and c. Considering the effect of 

gravity, the natural convection process is studied by 

studying the heat transfer analysis with varying position 

and size of fin. 

 
Fig. 1. Problem Description 

2.1 Governing Equations 

The continuity, momentum and energy equations for a 

two dimensional laminar flow of an incompressible 

Newtonian fluid is written. Following assumptions are 

made: there is no viscous dissipation, the cavity walls 

are impermeable, the gravity acts in negative y-

direction, fluid properties are constant and fluid density 

variations are neglected except in the buoyancy term 

(the Boussinesq approximation) and radiation heat 

exchange is negligible because of very small  

temperature difference. Using non-dimensional 

variables defined in the nomenclature, the non-

dimensional governing equations are obtained as: 

 

 +  = 0 
(1) 

 + V  = -  + Pr   
(2) 

 + V  = -  + Pr + RaPrθ 
(3) 

 + V  =    
(4) 

Appearing in Eq. (2) and Eq. (3), Pr and Ra are the 

Prandtl and Rayleigh numbers, respectively, which are 

defined as 

Pr =   , Ra =   (5) 

where β and υ are the thermal expansion coefficient and 

the kinematic viscosity of the fluid, respectively. 

 

The non-dimensional parameters are listed as 

X =  , Y =   , U =  , V =  ,  (6) 

P =  , θ =  

 

2.2 Boundary Conditions 

Through the introduction of the non-dimensional 

parameters into the physical boundary conditions 

illustrated in Fig. 1, the following non-dimensional 

boundary conditions are obtained:. 

On the adiabatic wall: 

n   = 0, U = V = 0 at 0 < X < 1 and 0 < Y < 1 (7) 

On the bottom wall: 

θ = 0, U = V = 0 at Y = 0 and 0 < X < 1 
(8) 

  

On the vertical wall: 

θ = 1, U = V = 0 at X = 0 and 0 < Y < 1 (9) 

3. NUMERICAL APPROACH 

The continuity, momentum and the energy equations 

are solved using commercially available software 

FLUENT 6.3. Discretization of the momentum and 

energy equations is performed by a second order 

upwind scheme and pressure interpolation is provided 

by PRESTO scheme. Convergence criterion considered 

as residuals is admitted 10-5 for momentum and 

continuity equations and for the energy equation it is 

10-12. In this study, the mesh is structured in such a way 

that the path of the heat lines, which intersect the 

isotherms spanning orthogonally from the isothermal 

hot bottom wall to the isothermal cold curved wall for 

the conduction solution, is considered. 

The Nusselt number along the hot wall can be defined 

as 

r

1
Nu

2hot cold

q r

T T k


  


 

(10) 

    

Thus, we calculated Nusselt number manually using the 

Eq. (10). 

4. GRID INDEPENDENCY AND VALIDATION 

4.1 Grid independency test 

In this study, four different mesh sizes (40×40, 60×60, 

80×80 and 100×100) are adopted in order to check the 

mesh independence. A mesh structure without fin is 

shown in Fig.2. A detailed grid independence study has 

been performed, and results are obtained for the average 

Nusselt number, and the maximum values of the stream 

function, but any considerable changes were not 

obtained. Thus, a grid size of 80×80 is found to meet 

the requirements of both the grid independency study 

and the computational time limits which has shown in 

Table 1. 

 

 

 

 



T. K. Bose et al. / JAFM, Vol. 6, No. 4, pp. 501-510, 2013.  

 

504 

 

 

Table 1 Grid independency test for enclosure without fin 

(Th = 279.2 k, Tc =278.8 k, Ra = 104 ) 

Mesh size 40×40 60×60 80×80 100×100 

ΨMAX 2.01 2.0106 2.0263 2.0296 

Relative 

error (%) 

0.0298      0.7748       0.33 

Nu (avg) 5.9812 6.5737 7.1706 7.607 

Relative 

error (% 

9.013      8.3243     5.737 

  

Fig. 2. Mesh Structure without fin 

The result obtained has been validated against the 

existing results for a inclined quadrantal cavity filled 

with water medium at  =900 which has been studied 

experimentally and numerically by Aydin (2011), and 

Yesiloz (2011). Figure 3 and Fig. 4 indicate that the 

result show good agreement with the literature. 

 

 

 

 

 

Fig. 3. Experimental (extreme left), numerical (middle) streamlines from Aydin and Yesiloz and  Numerical 

streamlines (extreme right) of present study at   = 900 (a) Ra = 1.7x105, (b) Ra = 106 

 

Ψ=5.95 (b) 

Ψ=4.199 (a) 
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ΔT=0.4K 

ΔT=2.4K 

 

 

(a) 

 

 

(b) 

Fig. 4.  Numerical isotherms (left) from Aydin and Yesiloz and Numerical isotherms (right) of present study at   = 

900 (a) Ra = 1.7x105, (b) Ra = 106 

5. RESULTS AND DISCUSSION 

Numerical analysis of laminar natural convection heat 

transfer and fluid flow is performed to obtain effects of 

Rayleigh number in an enclosure which is hot from the 

vertical wall. The curved wall is adiabatic in nature and 

the bottom wall has temperature less than that of the 

vertical wall. Results of flow fields and temperature 

distribution for different Rayleigh numbers, Ra, 

dimensionless locations of thin fin c, dimensionless 

lengths of thin fin h, were plotted in this part of the 

study. Dimensionless height of the thin fin varied 

between 0.1 and 0.4. Also, dimensionless location of 

the thin fin on y-direction varied from 0.2 to 0.6. The 

range of the Rayleigh number, Ra, was taken as 104 to 

107. 

Figures 5 and 6 shows the streamlines and isotherms for 

different Rayleigh numbers at c = 0.4 and h = 0.2 to 0.6. 

As the length of the fin increases to h=0.3 or more, two 

cells are formed on the top and bottom of the fin in 

clockwise direction. Due to long fin the flow caused by 

buoyancy effect is obstructed and the flow bends 

around the fin as it moves upwards along the hot 

vertical wall and also forming two separate vortex. 

Thus the adiabatic fin divides the enclosure into two 

parts. The streamlines get crowded up near the bottom 

part of the vertical wall giving a boundary layer 

formation. The static temperature diagram shows 

concentration of isotherms near the cold bottom wall, 

suggesting that heat transfer rate is high near the 

vicinity of the bottom wall. Less packed isotherms are 

formed in the upper part of the partition that indicates 

lower heat transfer. At the lowest Rayleigh number (Ra 

= 104), a relatively weak convective flow exists in the 

quadrantal cavity. As the Rayleigh number increases, 

the flow below the fin moves to the opening between 

the fin and curved wall, and a jet-like flow distribution 

is observed in this area. Isotherms show almost the 

same pattern for all Rayleigh numbers. Effects of the 

thin fin on isotherms become stronger as the Rayleigh 

number increases. For lower Rayleigh numbers, the 

convection intensity in the enclosure is very weak as 

evident from the values of the stream functions. It 

means that the viscous forces are more dominant than 

the buoyancy forces at lower Ra numbers. On the other 

hand, the fin length has a significant effect especially 

on the lower cell, which is located at the below of the 

fin. It enhances the strength of this cell due to the 

increasing strength of the jet flow.  

Different positions of the thin fin are given in Fig. 7 & 

8 for Ra = 104 to 107, h = 0.2, no fin and c = 0.2, 0.4, 

0.6. The first row of the Fig 5 & 6 shows streamlines 

and isotherms obtained numerically for no fin 

condition. At the lowest Rayleigh number Ra=104, 

streamlines form a nearly centrally located single cell 

forming an elliptical shape, and corresponding 

isotherms exhibit the characteristics of quasi-

conduction. The hot fluid layer heated around the hot 
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wall ascends upward by reason of decreasing density 

and the weak circulation in the enclosure. On the other 

hand, nearby the curve wall, the fluid layer with 

increased density moving downward sweeps the hot 

fluid layer forward. These mutual effects of the hot and 

cold fluid layers cause isotherms to widen. Further 

increases in Ra, recirculation intensity increases to a 

degree that boundary layer formations are observed 

adjacent to the heated and cooled walls and heated flow 

impinges to the bottom wall. For the lower position of 

the fin as c = 0.2, an elliptical shape single cell has 

formed at the lowest Rayleigh number Ra = 104. As 

increases Rayleigh number two cells are formed and 

also boundary layer formation occurs near the vertical 

wall and the cavity is divided into two parts. The higher 

rate of heat transfer occurs below the fin. For a further 

fin position, c = 0.4, an elliptical-shaped cell is formed 

at the middle of the quadrantal enclosure at Rayleigh 

number Ra=104, but a further increase of Rayleigh 

numbers formed two cells in the enclosure. The single 

cell were formed with c = 0.6 near the horizontal wall. 

The isotherm plots are concentrated towards the bottom 

wall. 

 

410Ra   51.7 10Ra    610Ra   65 10Ra    710Ra   

 

Ψ=1.644                                     Ψ=4.182                       Ψ=6.459 Ψ=8.479 Ψ=9.460 

 

Ψ=1.149 Ψ=3.871 Ψ=6.443 Ψ=8.607 Ψ=9.623 

 

Ψ=0.914 Ψ=3.752 Ψ=6.378 Ψ=8.645 Ψ=9.673 

 

Ψ=0.889 Ψ=3.68 Ψ=6.311 Ψ=8.669 Ψ=9.721 

Fig. 5. Streamlines for dimensionless fin location, c= 0.4, column wise different Raleigh Numbers, 
410Ra  , 

51.7 10Ra   , 
610Ra  , 

65 10Ra   , 
710Ra  ; row wise different dimensionless fin length, h=0.1, h=0.2, 

h=0.3, h=0.4 
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410Ra   51.7 10Ra    610Ra   65 10Ra    710Ra   

 

Fig. 6.  Isotherms for dimensionless fin location, c= 0.4, column wise different Raleigh Numbers, 
410Ra  , 

51.7 10Ra   , 
610Ra  , 

65 10Ra   , 
710Ra  ; row wise different dimensionless fin length, h=0.1, h=0.2, h=0.3, 

h=0.4 

410Ra   51.7 10Ra    610Ra   65 10Ra    710Ra   

 

Ψ=1.975                                     Ψ=4.199 Ψ=5.951 Ψ=7.296 Ψ=8.072 

 

Ψ=1.647 Ψ=3.810 Ψ=5.229 Ψ=7.120 Ψ=8.665 
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Ψ=1.149 Ψ=3.891 Ψ=6.438   Ψ=8.61 Ψ=9.626 

 

Ψ= Ψ=1.891 Ψ=4.122 Ψ=6.557   Ψ=8.247 Ψ=9.342 

Fig. 7. Streamlines for dimensionless fin height, h= 0.2, column wise different Raleigh Numbers, 
410Ra  , 

51.7 10Ra   , 
610Ra  , 

65 10Ra   , 
710Ra  ; row wise different dimensionless fin location, no fin, c=0.2, 

c=0.4, c=0.6 

410Ra   51.7 10Ra    610Ra   65 10Ra    710Ra   

 

Fig. 8. Streamlines for dimensionless fin height, h= 0.2, column wise different Raleigh Numbers, 
410Ra  , 

51.7 10Ra   , 
610Ra  , 

65 10Ra   , 
710Ra   
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Fig 9(a) shows the effects of dimensionless fin location 

on mean Nusselt number. For small Rayleigh numbers, 

Nu number values are almost equal to each other due to 

quasi-conductive regime. However, as expected, these 

values increase as Ra number increases. Dimensionless 

location of the fin plays an important role for higher 

Rayleigh numbers.  

The value of the mean Nusselt number as a function of 

the dimensionless fin height is presented in Fig. 9(b).  

for c = 0.4. The variations of the mean Nusselt number 

are shown for different Rayleigh numbers. As the 

dimensionless fin height increases, the value of the 

mean Nusselt number almost remains constant. When 

these values are compared to the no-fin condition, it is 

observed that the no-fin condition gives more heat 

transfer. 

 

 

Fig. 9(a). Variation of mean Nu no. with Rayleigh number (104 to 107) for different fin locations (c=0.2, 0.3, 0.4, 0.5, 

0.6 and no fin) for h=0.2 

 

Fig. 9(b). Variation of mean Nu no. with Rayleigh number (104 to 107) for different fin locations (h=0.1, 0.2, 0.3, 0.4 

and no fin) for c=0.4 

 

 

6. CONCLUSIONS 

Numerical study has been performed to analyze the 

flow and temperature fields as well as the heat transfer 

rate on laminar natural convection in quadrentral cavity 

filled with water having finned hot vertical wall and 

cold bottom wall. The effects of Rayleigh number (104 

to 107), non-dimensional fin location(c= 0.2 to 0.6) and 

non-dimensional fin height (h= 0.1 to 0.4) have been 

studied. 

The result of the numerical analysis lead to the 

following conclusions: 

1) Heat transfer increases with increase of Rayleigh 

number. Values of stream function (flow strength) also 

increase with the increasing of Rayleigh number. 



T. K. Bose et al. / JAFM, Vol. 6, No. 4, pp. 501-510, 2013.  

 

510 

 

2) Non-dimensional fin location changes the shape of 

vortices and enhances the strength of the flow. 

3) With the increasing of dimensionless fin length, the 

fin causes blockage effect for the flow. 

4) It was observed that the fin can be a passive control 

parameter for heat transfer and fluid flow. 
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