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ABSTRACT 

In this paper, the finite volume Lattice-Boltzmann method is used to model the thermo-fluid behavior of nanofluid, in 

which nanoparticles are dispersed. The major internal and external forces including Brownian, repulsion and 

attracting DLVO, drag and buoyancy acting on nanoparticles are taken into account. All these forces make the 

thermal and dynamic mechanism inside the nanofluid improved. These models are established to simulate and 

enhance the heat transfer properties of nanoparticles in the CuO-H2O nanofluid as a test case. Also, convective heat 

transfer coefficient of the nanofluid is computed in different Reynolds numbers. The numerical approach is based on 

a modified and robust finite volume method. 

 

Keywords: Finite volume lattice-Boltzmann, nanofluid, Brownian force, Convective heat transfer, Pressure-based 

flux factor, Energy distribution function.  

NOMENCLATURE 

a  particle acceleration rP  Prandtl number 

HA  Hamaker coefficient u macroscopic velocity 

nD  particle diameter vi particle microscopic velocity 

F  force on a particle Z  zeta potential 

HF  gravitational force 
 thermal diffusivity, 

DF  drag force,   dielectric constant 

BF  brownian force   macroscopic density 

DLVOF  DLVO potential force 
1

D


 debye screening length 

f  particles distribution functions   density relaxation time 

eqf  equilibrium of particle distribution function T  energy relaxation time 

g  energy distribution functions   kinematics viscosity 

eqg
 

equilibrium of energy distribution function   surface potentials 

kbf base fluid conductivity   volumetric fraction of nanoparticles 

Kp particle conductivity DLVO Derjaguin-Landau- Verwey -Overbeek 

pm  particle mass DDF Double Distribution Function 

    

1. INTRODUCTION 

The recent technological developments as well as the 

industrial process intensification have made the need 

for more efficient heat exchanging systems a 

contemporary demand. The liquid coolants are widely 

used for heat transfer enhancement of electronic devices 

and heat exchangers. So, many efforts for dispersing 

small particles with high thermal conductivity in the 

liquid coolant have been conducted to enhance thermal 

properties of the conventional fluids. The enhancement 

of thermal conductivity of fluids by suspending the 

solid particles of millimeter- or micrometer-sized 

suffers from number of drawbacks. The abrasive action 

of the particles causes erosion of components, clogging 

becomes a major problem in small flow passages and 

their requirement of momentum transfer increases the 

pressure drop considerably. The above bottleneck of 

Journal of Applied Fluid Mechanics, Vol. 6, No. 4, pp. 519-527, 2013. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

DOI: 10.36884/jafm.6.04.21207

mailto:j.ghasemi@znu.ac.ir


J. Ghasemi et al. / JAFM, Vol. 6, No. 4, pp. 519-527, 2013.  

 

520 

 

slurries with micron or bigger size particles can be 

removed by using particles of nanometer dimensions. 

The concept was first materialised by series of research 

works at the Argonne National Laboratory and probably 

Choi (1995) was the first to call the fluids with particles 

of nanometer dimension suspended in them as 

“nanofluids” which has gained popularity. The heat 

transfer properties of a nanofluid strongly depend on the 

size, shape, and volume fraction of nanoparticles as 

well as on the type of the nanoparticles and base fluid 

(Duangthongsuk and Wongwises, 2009). In addition, 

the suspended nanoparticles distribution and 

temperature may play important roles in enhancing the 

heat transfer characteristics of nanofluids (Li and 

Peterson, 2006; Chon and Kihm, 2005). Although the 

published papers on heat transfer enhancement by 

nanofluids are increasing, most of them are still limited 

to the macroscopic phenomenon inside the nanofluids. 

Since the volume fraction of nanoparticles is 

insufficient in comparison to base fluid, it is necessary 

to consider the heat transfer in nanofluids as two 

component fluid in microscopic treatments. However, 

in nanofluid as a colloidal fluid, the influences of 

external and internal forces, the suspended 

nanoparticles move in an irregular fashion. Main causes 

have been known, namely the Brownian, attraction and 

repulsion of DLVO, drag, and gravitational forces. 

Along with the main flow of nanofluids, behavior of 

suspended nanoparticles is irregular and all these 

factors must be applied in the thermo-hydrodynamic of 

nanofluid flow.  

2. NANOFLUID MODELING  

The conventional computational methods are not 

applicable to nanofluids as two component flow to 

reveal the nature of microscopic interactions and forces. 

Therefore, a microscopic or mesoscopic approach is 

needed to describe the interaction between the 

suspended nanoparticles and base fluid. Unlike the 

Navier–Stokes equations, the Lattice Boltzmann 

Method (LBM) possesses capability of incorporating 

microscopic interactions between nanoparticles and 

base fluid which can reveal the mesoscopic mechanism 

of thermo-hydrodynamics (Xuan and Yao, 2005; Yang 

and Lai, 2011). Therefore, this method seems to be 

suitable for handling the mentioned problems (Nemati 

et al., 2010; Cao et al., 1997). In finite difference 

LBMs, the Cartesian grid is used, which can be a 

shortcoming (Cao et al., 1997). To deal with complex 

domains, various proposals have been made to use 

boundary-fitted grids. During the past few years, some 

researchers attempted to use irregular lattices. Bouzidi 

et al. (2001) constructed a multi-relaxation LBM on a 

two-dimensional rectangular grid. Ubertini et al. (2005) 

developed a finite-volume scheme for the LBM on 

unstructured meshes in two dimensions, where complex 

boundary geometries could be handled. In this paper 

arbitrary quadrilateral cells are used by combining a 

cell-centered Finite-Volume and Lattice Boltzmann 

Methods (FV-LBM). The approach includes both the 

flow and heat transfer Boltzmann equations. 

 

 

2.1 Hydrodynamic FV-LBM Formulation of 

Nanofluid   

The nanofluid includes the suspension of nanoparticles 

and a base fluid, i.e., 1,2  . Hence, the discretized 

integral form of lattice Boltzmann equation with BGK 

model for collision term in a nanofluid reads 

i

i
i vi i i

S

eq,
i i

f
( v . f . f

t

1
(f f ))ds 0

i 0,1,...,M


  






    



 



 a

 (1) 

where vi shows the particle microscopic velocity in the 

i-direction. The 
p

ma = F is acceleration caused by 

force F on a particle with mass, 
pm  and eqf  denotes 

the equilibrium of particles distribution functions. Also 

  displays the density relaxation time which is related 

to the kinematic viscosity as.  

21
c t

2
   ( )  (2) 

where 
c 3 RT  is the lattice speed. For a Newtonian 

fluid, the kinematic viscosity   is calculated by 

(Rahmati and Ashrafizaadeh, 2009):  

2 1

6





( )  (3) 

For the two-dimensional problem, the well-known 

2 9D Q  lattice is widely used. Also, microscopic 

velocities, vi are determined based on a generic form 

(Nemati et al,. 2010; Bouzidi et al., 2001). A cell-

centered finite-volume on arbitrary cells is shown in 

Fig. 1. According to Fig. 1, the following 

approximations can be made 

i i
I,J

I,J
abcd

f f
ds .S

t t

  
    

 
(4) 

and 

i i i k i k

kabcd

k k

v . f ds v .N [f ]

N ( y x ) , k ab,bc,cd,da


  



    


i j

 
(5) 

Also, we use the convective flux treatment of thermo-

hydrodynamic lattice Boltzmann, which takes into 

account the second-order pressure- and temperature-

based biasing factors (Razavi et al., 2009; Ghasemi and 

Razavi, 2010). This makes the scheme to be dominantly 

upwind, broadens the numerical stability region, and 

improves accuracy for both the velocity and 

temperature fields and reduces the convergence steps. 

 

Fig. 1. Cell-centered finite volumes 
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Here, the pressure-based biasing factor for convective 

fluxes is employed. A typical determination of this 

factor,  for side ab of cell (I,J) reads 

L

L

I 1,J
ab

I 1,J I,J

I,J

ab R
I,J I 1,J

ab ab R
ab

p
,

p p

p
,

p p

2





 






 










 










 

(6) 

Consequently, the convective fluxes are approximated 

as following: 

ab ab

bc bc

cd cd

da da

i i
abcd

i ab i I,J i I 1,J

i bc i I,J i I,J 1

i cd i I,J i I 1,J

i da i I,J i I,J 1

v . f ds

{v .N ( [f ] (1 )[f ] )

v .N ( [f ] (1 )[f ] )

v .N ( [f ] (1 )[f ] )

v .N ( [f ] (1 )[f ] )}

 

 

 

 

 

 

 

 









 

  

  

  

 



 

(7) 

Applying the pressure-biasing factor enabled the 

scheme to compensate some shortcomings, specially, 

the numerical instability of randomly behaving force 

term of nanofluid lattice Boltzmann equations. By 

linear approximation, the integration of the collision 

terms in Eq. (1) becomes 

eq
i i

abcd

I,J
i I,J

i i iI 1,J I,J 1 I 1,J

i iI,J 1 I 1,J 1

i i iI 1,J 1 I 1,J 1 I 1,J 1

eq
i i i

1
(f f )ds

S 1
f

4

1
{ f f f

8

1
f } { f

16

f f f }

f f f

;

[

]









  

  

     

  

    

               

         

              

  



 

(8) 

The 
if 's  are updated by a modified fifth-order Runge-

Kutta scheme (Ghasemi and Razavi, 2010). The 

particles equilibrium function is given by Peng et al. 

(2003): 

 

 

eq
0 2

2eq
i i1,2,3,4 2 4 2

2eq
i i5,6,7,8 2 4 2

f [1 . ];
c

3 9 3
f 1 v . v . .

c 2c 2c

3 9 3
f 1 v . v . .

c 2c 2c

4 3

9 2

1

9

1

36







 

 
    

 

 
    

 

u u

u u u u

u u u u

 

(9) 

In Eq. (1), third term shows the force which is 

important for the action of base fluid on the 

nanoparticles. Since the volumetric fraction of 

nanoparticles is very small compared to the base fluid, 

therefore, it is ignored. In practice, due to the 

complexity of numerical calculations, reducing the 

computing time and accelerating the convergence, a 

part of this force as an additional term is included in the 

collision and the other part is inserted in the equilibrium 

distribution function. Hence, one can write 

 

2

1
( , ) ( , )

2 1

2

eq

c

f
f t f t

t

D

M c













 
    

 



x x

v F.

 
(10) 

In Eq. (10), D shows the dimension and the following 

relation is established 

1
( , )

2

eq eqf f 


  Fu  
(11) 

This scheme is of second-order accuracy having better 

stability compared to the others (Buick and Greated, 

1999).   

2.2 Main Forces Acting on Nanoparticles in a 

Nanofluid 

Similar to a colloidal fluid, the nanoparticles in 

nanofluid are under the influence of buoyancy, 

gravitational, drag, and Brownian forces. Also, the 

aggregation and dispersion forces determined resulting 

from the attractive and repulsive potential based on the 

DLVO theory. For the buoyancy,
HF , due to 

gravitational force one would write 

34

3
HF a g    (12) 

where a  and   are radius of nanoparticles and 

density difference of nanoparticles with base fluid 

respectively. The drag force, 
DF , is expressed as: 

6 .DF a u     (13) 

where   shows the viscosity of base fluid and u  the 

velocity difference between the particle and fluid. 

Keblinski et al. (2002) estimated effect of Brownian 

motion in conductive heat transfer of nanofluids 

according to the Einstein theory. This theory 

demonstrates that whatever the particles be tiny, the 

diffusion time for them would be shorter compared to 

the heat diffusion time, and the Brownian motion 

becomes more observable. The Brownian force, BF , on 

a particle, i, is shown as (Nemati et al., 2010; Xuan  et 

al., 2005) 

i i B i
B B

k T r
F C

a


( )
 (14) 

where i

BC and 
Bk denote the compatibility factor and 

Boltzmann coefficient respectively. When a 

nanoparticle is placed in the polarized solution, 

depending on the chemical properties of particle and 

base fluid,  due to solution ionization, the ion bonding 

or exchanging the particle surface becomes charged 

which produces electrostatic repulsion and Van der 

Waals attraction forces. Regarding this theory, 

electrostatic repulsion is formed because of the 

generation of electric potential. This potential is 

produced due to the formation of the charged dual layer 

caused by the fluid. The repulsion potential for two 

particles having the radii 
1a , 

2a  and surface potentials  

1s  , 
2s  is expressed as (Duncan and Linavre, 1997) 
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2 2

1 2 1 2

1 2

( 2 )

1 2

( 2 )2 2

1 2

2 ( 2 )

( )
( , )

( )

2 1

( ) 1

(1 )

{

}

D

D

D

s s
R

r a

s s

r a

s s

r a

a a
r T

a a

e
Ln

e

Ln e







   


 

 

 

 

 






 
 

  

 

x

 (15) 

By equating the radii (
1 2a a a  ) and surface 

potentials (
1 2s s s    ) for two neighboring 

particles, one obtains 

2
( 2 )( , ) (1 ), 2

2
D r as

R

a
r T Ln e r a        (16) 

In (Eq. (16),   denotes the dielectric constant of base 

fluid, and 
s  the particle surface potential as 

following: 

2( )
s

D

Ze

a a


 



 (17) 

In Eq. (17), Ze  shows the nanoparticles charge ( Z  is 

called the Zeta potential), and  1

D


 denotes the Debye 

screening length. Hence, one gets 

1

2

(1 )

( )

B
D

i

k T

e nZ

 




 



 (18) 

In Eq. (18), the presence of nanoparticles has been 

appeared by (1 ) , where   presents the volumetric 

fraction of nanoparticles. Also, 
i  denotes the ions 

crowd. The other considerable force is the Van der 

Waals attraction. According to the DLVO theory, this 

attraction potential is determined as, 

2 2 2

2 2 2 2

1
2 1

12

n n n
A H

n

D D D
A Ln

r D r r


  
      

   
 (19) 

where, 
nD  and 

HA  show the particle diameter and 

Hamaker coefficient. Here, 
HA  is independent of 

particle geometry and being a function of physical 

properties of nanoparticles and base fluid. Hence, the 

total DLVO potential reads, 

( , ) ( , ) ( , )R Ar T r T r T    (20) 

The resulting force from this potential is determined by, 

( , )
DLVO

r T
F

r





 (21) 

Thence, vector summation of mentioned forces exerting 

on n nanoparticles in unit volume becomes: 

.( )

.

DLVO B D Hn F F F F

Vol

  
F =  (22) 

Actually, the volume fraction of nanoparticles is 

negligible in comparison to the base fluid. Then the 

internal force of nanoparticles to base fluid is vanished. 

The macroscopic density  , and velocity, u  are 

determined as 

8 8

i i i
i 0 i 0

f , v f
 

  u  (23) 

2.3 Thermal FV-LBM Formulation of 

Nanofluid 

The existing lattice Boltzmann models for thermal 

flows in the literature fall into three categories, i.e., the 

passive scalar, the multi-speed, and Double Distribution 

Function (DDF) approaches. The passive-scalar 

approach utilizes the fact that the macroscopic 

temperature satisfies the same evolution equation as a 

passive scalar if the viscous heat dissipation and 

compression work done by the pressure are negligible 

(Massaioli  et al., 1993; He et al., 1998). The multi-

speed models are build up of the Lattice Bhatnagar-

Gross-Krook (LBGK) models for isothermal flows. The 

main disadvantage of the multi-speed LBGK models is 

that they suffer from numerical instability and are suited 

for problems with restricted temperature ranges (Shi et 

al., 2004). In addition, the multi-speed LBGK models 

using a single relaxation time are limited to problems 

with fixed Prandtl numbers, which have less 

engineering application. The DDF applies an additional 

distribution function as energy distribution to describe 

the evolution of temperature field (Palmer et al., 2000). 

The DDF holds better numerical stability and 

engineering applications. Hence, it has been used in 

present work. Considering the fact that the 

nanoparticles energy obeys the Boltzmann distribution 

and assuming the BGK approximation, thermal 

Boltzmann equation for base fluid ( 1)  and 

nanoparticles ( 2) is stated as, 

i
i i

s

eq,
i i

T

g
( v . g

t

1
(g g ) )ds 0,

i 0,1,...,M









  



  





 

(24) 

where 
T  shows the energy relaxation time which is 

related to the thermal diffusion coefficient as 
2

T T

1
c t

2
   ( )  (25) 

For a fluid with low Prandtl number (or low Eckert 

number) the term   could be neglected (Van et al., 

1997). In this case the Prandtl number is defined as, 

2 1
Pr =

2 1

v

T

 

 





 (26) 

The discretization of Eq. (24) in two dimensions on a 

2 9D Q lattice is similar to Eq. (1). Where in Eq. (6) the 

pressure is replaced by temperature (Ghasemi and 

Razavi, 2010). The equilibrium energy distribution 

function, eqg , is expressed as following 
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 

 

2
eq
0 2

2eq
1,2,3,4 i i2 4 2

2eq
5,6,7,8 i i2 4 2

2
g

3 c

3 3 9 3
g v . v . .

9 2 2c 2c 2c

6 9 3
g 3 v . v . .

36 c 2c 2c







 

 
    

 

 
    

 

u

u u u u

u u u u

 

(27) 

where DRT
2  

and, 

8

i
i 0

g


   (28) 

The Chapman-Enskog expansion for density distribution 

function can recover the continuity, Navier-Stokes, and 

energy equations. The detailed derivation can be found in 

D’Orazio and Succi (2004), Succi (2001) and will not be 

shown here. The physical properties of nanofluid are 

determined as following 

2 2

1 1

2 2

1 1

, 2 1 6,

,

( , )

( , )
p

T x t

T x t
C

    

 

  

 
 





 



        

 
  

 




 





u
u  

(29) 

3. VELOCITY AND THERMAL BOUNDARY 

CONDITIONS 

In order to transform thermo-hydrodynamic boundary 

conditions into the boundary conditions for the 

distribution functions, we employ additional 2 9D Q  

lattices at the edge of each cell for inflow, outflow, and 

solid boundaries, as shown in Figs. 2(a), 2(b) and  2(c), 

respectively ( replaced by f for velocity and by 

g for thermal boundary condition).  

A suitable velocity boundary condition has been 

applied for hydraulic Boltzmann equation (Razavi et 

al., 2009). For thermal boundary conditions, a 

consistent open and solid boundary treatment is also 

used. The unknown energy distribution population at 

the boundary cells is decomposed into its equilibrium 

and non-equilibrium parts. Then, the 
ig 's  at the node 

of boundary cell can be determined (Guo et al., 2007) 

i

i i

eq
i

eq

g g ( )

[g ( ) g ( )]

( )b b b b

f f f f

, ,

, ,

x x ρ

x x ρ

 







 (30) 

where, subscripts b and f shows the boundary cell and 

the nearest neighboring cell to  boundary cell, 

respectively. 

 

 

 

Fig. 2. Typical boundary cells 

(a) inflow, (b) outflow, (c) solid wall 

 

A good approximation for unknown b
in boundary 

cells is f . For the Dirichlet type condition, the given 

temperature by energy distribution function, is applied 

directly on the boundary. The Neumann type condition 

is transferred to the Dirichlet type condition through the 

conventional second order finite difference 

approximation to obtain boundary temperature (Shu et 

al., 2002). Residuals, Res  and 
thRes  of the velocity 

and temperature convergence criterion are set to  

th

n 1

2 2 n 1 2 2 n
I,J I.J I,J I.J

I,J

2 2 n
I,J I.J

I,J

2
n

I,J I.J
I,J

2
n
I.J

I,J

(u v ) (u v )

;

(u v )

T T

T

Res

Res





  

















 (31) 

Res  and 
thRes  are limited in numerical calculations 

to 5.0E-6 and 1.0E-5, respectively. 

4. NUMERICAL RESULTS 

For water as a base fluid one has 20 31.2044 10i m   , 

7PH   at 300k . Experimental measurements show 
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that 2 310 10Z   in a typical nanofluid. For CuO, 
457Z   was taken. Due to the dilute crowd of 

nanoparticles 
p bfk k  is considered. Also copper 

oxide nanoparticles read 6 33.0 10 / .C J m k   (Shukla 

and Dhir, 2008). Hence, 

2
244.833 10

6

Bn k T T

a a

 
  

15 .
4.4 10

6

BCk T T

a a

 
 




 
(32) 

Having dielectric coefficient of water as 
9 2 28.9 10 /C N m   , therefore 

0.5
14 2 3

.3.175664 6.7143 .
.

(1 ). . (1 )
D

a Z
a

T aT

 
   

     

x10 x10

 

(33) 

In Fig. 3, temperature variations, volumetric fraction, 

and nanoparticle sizes are plotted versus Debye 

screening length. The results reveal the loose 

dependence of temperature to Debye screening length 

where compared to the others. For CuO one has 
2018.1 10HA J  (Linavre and Jordan, 2009). 

Although the force convection in nanoparticles depends 

on Reynolds and Prandtl numbers, however, it is a 

function of several parameters as (Kakaç and 

Pramuanjaroenkij, 2009) 

(Re,Pr, , , , ,( ) ,

, , )

NF bf p p pNu f Pe k k kn c

particle shape flow type

 


 

(34) 

By imposing the buoyant, drag, Brownian, and DLVO 

attraction and repulsion forces in thermo-hydrodynamic 

Boltzmann equation and employing the combined 

method in force and DDF for energy, the so-called 

equation has been solved. Extensive mesh testing was 

performed to   guarantee a grid independent solution. 

The resulting force vectors exerting on the 

nanoparticles are shown in Fig. 4, for a two-

dimensional channel 

 
Fig. 3. Effect of temperature and nanoparticle 

volumetric fraction on Debye screening length 

 

  

Fig. 4. Vectors of exerting forces on nanoparticles by 

base fluid, a=5 nm ، 0 04.   

 

   
Fig. 5. The Nu variations on non-dimensional length of 

lower wall in 2D channel Re=73, Pr=1.0, 
0.01  , 5a nm  

 
Thus, the uniform inlet temperature is higher than the 

constant wall temperature. Fig. 4 depicts that this force 

is prevailing in high temperature regions. It is the origin 

of microscopic disturbances resulting from ballistic 

motion of nanoparticles which in turn enhances the heat 

transfer process. Fig. 5 presents the mean Nu variations 

along the lower channel wall for CuO-water at Re 73 . 

It is observed from Fig. 5 that Nu of nanofluid 

undergoes small fluctuations along the wall. These 

fluctuations at the inlet higher temperature are due to 

the chaotic Brownian movements. Within the fully-

developed region, the Nu of nanofluid is about 32% 

higher than the Nu of pure fluid, which is acceptable 

qualitatively in comparison to the results of other 

investigators (Al-Aswadi et al., 2010). The mean 

Nusselt variation versus volumetric fraction along the 

lower channel wall is observed in Fig. 6 for Pr=1.0 at 

different Reynolds numbers. Here, the mean Nu 

experiences increment when the volumetric fraction of 

nanoparticles within the base fluid grows. Also, to 

validate the thermo-hydrodynamic numerical results 

firmly, a backward-facing step is utilized. 

 
Fig. 6. Comparison of Nu versus nanoparticles 

volumetric fraction in various Reynolds numbers, 

5a nm 

Figure 7(a) shows the configuration and solution 

domain parameters. In the x-direction, a fine grid was 

used in the regions near the point of reattachment to 

resolve the steep velocity gradients while a coarser grid 

was employed for downstream of that point. However, 

in the y-direction, a fine grid is generated near the top 

and bottom walls, also at the step. Figure 7(b) 

demonstrates a part of generated grids for expansion 

ratio ER=2 (ER=H/s). Grid independence test is carried 

out for the nanofluid and it was found that a grid size of 

798x48 ensures grid independent solution in this case. 
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Similar to Aswadi et al. (2010), the step height and 

expansion ratio were fixed at 4.8mm and 2, 

respectively. The upstream wall ( UL ) and downstream 

wall ( DL ) were taken 50mm and 1000mm, respectively. 

The flow at the duct entrance was considered to be 

hydro-dynamically steady and fully developed. Figure 

8(a) depicts the velocity distributions at different 

sections of downstream for Re=175 with 5% volume 

fraction of CuO-water nanofluid. Figures 8(b) to 8(d) 

show the distribution of velocity at four positions 

downstream the step. The results are in favorable 

agreement with other numerical solutions for the same 

conditions (Aswadi et al., 2010). Moreover, we 

compared the numerical heat transfer results of present 

study with other numerical solutions in backward-

facing step (Abu-Nada, 2008). 

 
(a) 

  
(b) 

Fig. 7. (a) Schematic diagram for backward-facing step, 

(b) a part of generated grids. 

 

Thus, the non-dimensional temperature defined as 

c

h c

T - T
θ =

T - T
                                         (35) 

where 
c hT ,T  are cold and hot wall temperatures, 

respectively. The boundary conditions are prescribed as 

follows: 

2

1
s H 1

2

u y 12 y s 2 y s s y H

1 2 y s s y H

1 step and downstream walls

0 Upstream wall

,

( ) (( ) ( ) ),

( ),

,

,


 


     


     
 

 



   

Fig. 9 presents the Nu variations along the bottom 

downstream step wall for CuO-water. 

Where, Re = 400,Pr =1.0 ,a = 5nm and = 0.1  

This result reveals that the peak value of Nu is 

approximately located in reattachment point and the Nu 

of nanofluid is about 30% higher than the Nu of pure 

fluid. Moreover, the present solutions have reasonable 

agreement with the numerical results of Abu-Nada 

(2008). 

     
(a) 

         
(b) 

             
(c)       

  
(d) 

Fig. 8. Velocity distributions (Re=175) for CuO-water 

nanofluid at different x/s, (a) Velocity profiles (b) 
x/s=1.04, (b) x/s=1.92, (c) x/s= 2.6, (d) x/s=32.8. 
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Fig. 9. The Nu variations on bottom downstream wall 

of backward-facing step. 

5. CONCLUSIONS 

In this paper the 2 9D Q lattice along with non-uniform 

grids is used to simulate the thermo-fluid of nanofluid 

by combining a cell-centered FVM and DDF of thermal 

lattice Boltzmann method. The Brownian, repulsion and 

attracting DLVO, drag, and buoyancy forces acting on 

nanoparticles are considered for modeling the 

convective heat transfer and nanoparticles behavior in 

CuO-H2O nanofluid. In 2D channel within the fully-

developed region, the present model determined that the 

Nu of nanofluid is about 32% higher than the Nu of 

pure fluid as reported in other researches. Moreover, 

this model enabled us to analyze the enhanced heat 

transfer of nanofluid for various practical Re and Pr 

numbers which is limited in classic lattice Boltzmann, 

especially for flow with heat transfer. This enhancement 

of LBM combined with FVM manifests itself by high 

numerical stability of nanofluid thermo-hydrodynamic 

in backward-facing step in presence of randomly 

Brownian force thermal lattice Boltzmann equations.  

In general, the distinguished features of our work in 

comparison to the related previous investigations can be 

summarized as: 

a) Utilizing the pressure- and temperature-based 2nd-

order convective fluxes. 

b) Considering the ballistic motion affected by 

randomly Brownian forces.   

c) Applying DDF combined with 2nd-order accuracy 

of force term in LB equation and broadening the 

numerical stability. 
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