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ABSTRACT 

This study examines the influence of Soret and Dufour effects on double diffusive transient free convective boundary 

layer flow of a couple-stress fluid flowing over a semi-infinite vertical cylinder. A set of non-dimensional governing 

equations namely, the continuity, momentum, energy and concentration equations is derived and these equations are 

unsteady non-linear and coupled. As there is no analytical or direct numerical method available to solve these 

equations, they are solved by using the CFD techniques. An unconditionally stable Crank-Nicolson type of implicit 

finite difference scheme is employed to obtain the discretized forms of governing equations. These equations are 

solved using the Thomas and pentadiagonal algorithms. The numerical results are compared and found to be in good 

agreement with previously published results as special cases of the present investigation. Transient velocity, 

temperature and concentration profiles, average skin-friction, Nusselt number and Sherwood number are shown 

graphically for different values of Soret (So) and Dufour (Du) numbers. In all these profiles it is observed that, as the 

values of So decreases or the Du increases, the time required to reach the temporal maximum and the steady-state 

increases. It is also observed that the average values of skin-friction and heat transfer rate increases with the 

increasing values of So or decreasing values of Du. Whereas the reverse trend is observed for the average mass 

transfer rate. 

 

Keywords: Soret and Dufour effects, Couple-stress fluid, Natural convection, Vertical cylinder, Finite difference 

method.  

NOMENCLATURE 

Bu combined buoyancy ratio parameter 

pc  specific heat at constant pressure 

sc  concentration susceptibility 

C  species concentration 

C dimensionless species concentration 

fC  dimensionless average skin-friction coefficient 

fC  dimensionless local skin-friction coefficient 

 D binary diffusion coefficient  

 Du      Dufour number 

 g        acceleration due to gravity 

CGr    mass Grashof number 

TGr     thermal Grashof number 

Tk       thermal diffusion ratio 

 Nu      dimensionless average Nusselt number 

XNu
  

dimensionless local Nusselt number 

 Pr       Prandtl number 

 r         radial coordinate 

0r       
radius of cylinder 

R        dimensionless radial coordinate 

 t       time 

 t       dimensionless time 

T     temperature 

I   mT     mean fluid temperature 

 T   dimensionless temperature 

     u, v  velocity components in x, r  

             directions respectively 

γ   U, V   dimensionless velocity components  

              in X, R directions respectively 
    x        axial coordinate 

    X       dimensionless axial coordinate 

 
           thermal diffusivity 

    C     volumetric coefficient of expansion 

              with concentration 

   T      volumetric coefficient of thermal expansion   

        density 

            material constant 

           viscosity of the fluid 

            kinematic viscosity 

      Subscripts 
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Sc      Schmidt number 

So      Soret number 

Sh    dimensionless average Sherwood number 

XSh
dimensionless local Sherwood number 

 

 

        w    conditions on the wall 
            free stream conditions 

1. INTRODUCTION 

The double diffusive convection plays a significant role 

in various fields such as high quality crystal production, 

oceanography, production of pure medication, 

solidification of molten alloys, geothermally-heated 

lakes and magmas. For example the quality of the single 

crystal produced from the melts is limited by chemical 

and structural inhomogeneities. The defect generation 

depends on heat and mass transfer rates during 

solidification. When heat and mass transfer occur 

simultaneously in a moving fluid, the relations between 

the fluxes and the driving potentials are of more 

integrate nature. An energy flux can be generated not 

only by temperature gradients but also by concentration 

gradients. The energy flux caused by a concentration 

gradient is termed as the diffusion-thermo (Dufour) 

effect. On the other hand, mass fluxes can also be 

created by temperature gradients and this embodies the 

thermal-diffusion (Soret) effect. These fluxes are 

mainly governed by convective phenomena of the 

liquid phase during processing. In most of the studies 

that are related to heat and mass transfer process, Soret 

and Dufour effects are neglected on the basis that they 

are of smaller order of magnitude than the effects 

described by Fourier's and Fick's laws. But these effects 

are considered as second order phenomena and may 

become significant in areas such as hydrology, 

petrology, geosciences, etc. The Soret effect, for 

instance, has been utilized for isotope separation and in 

mixture between gases with very light molecular weight 

( 2H , He) and of medium molecular weight ( 2N , air). 

The Dufour effect was found to be of order of 

considerable magnitude such that it cannot be neglected 

(Eckeret and Drake, 1972). Dursunkaya and Worek 

(1992) studied diffusion-thermo and thermal-diffusion 

effects in transient and steady natural convection from a 

vertical surface, whereas Kafoussias and Williams 

(1995) presented the same effects on mixed convective 

and mass transfer steady laminar boundary layer flow 

over a vertical flat plate with temperature dependent 

viscosity. Postelnicu (2004) studied numerically the 

influence of a magnetic field on heat and mass transfer 

by natural convection from vertical surfaces in porous 

media considering Soret and Dufour effects. Seddeek 

(2004) has investigated the problem of thermal-

diffusion and diffusion-thermo effects on the mixed 

free-forced convection and mass transfer in the 

presence of suction and blowing. Krishna Murthy et al. 

(2011) investigated the double diffusive free convection 

from a corrugated vertical surface in a darcy porous 

medium under Soret and Dufour effects. Recently, 

Reddy and Rao (2012) studied the heat and mass 

transfer characteristics of mixed convection about a 

circular cylindrical annulus in a porous medium, by 

taking into account the thermo-diffusion and diffusion-

thermo effects. 

With the growing importance of non-Newtonian fluids 

in modern technology and industries, the investigations 

on such fluids are desirable. Stokes (1966) generalized 

the classical Newtonian model to include the effect of 

couple-stresses in a way different from that of Eringen 

(1966). This is one among the several non-Newtonian 

fluid theories that are developed in the twentieth 

century. In his theory Stokes considered a body 

enclosing a volume without considering the 

microstructures of the infinitesimal fluid volume 

element. The set of all forces acting on an infinitesimal 

volume element is, in general, assumed to be equivalent 

to a single resultant force together with a resultant 

couple. The moment of the couple is assumed to be of 

non zero value. With this assumption Stokes has 

proposed the theory of couple-stress fluids allowing for 

the sustenance of couple-stresses in addition to the 

usual stresses. Also, in his theory, curvature twist rate 

tensor is proposed based on the pure kinematic aspects 

of rotation vector and couple-stress is defined in terms 

of this curvature twist rate tensor. Accordingly, in the 

balance of linear momentum of the couple-stress flow 

model, fourth order derivatives of velocities are 

involved and, hence, separate angular momentum 

equation need not be considered. These fluids can also 

sustain the existence of body forces as usual and in 

addition by body couples as well. The stress tensor is no 

longer symmetric in this theory. This couple-stress 

model has been widely used because of its great 

mathematical simplicity compared to that of the other 

models developed for the polar fluids. Recently, the 

study of couple-stress fluid flows has been the subject 

of great interest, due to its widespread industrial and 

scientific applications as in the case of micropolar 

fluids. Important field where couple-stress fluids have 

applications includes squeezing and lubrication (Chu et 

al., 2006; Lin, 1998; Naduvinamani and Patil, 2009; 

Chang-Jian et al., 2010), bio-fluidmechanics 

(Srivastava, 2003; Srivastava, 1986), MHD flows and 

synthesis and plasticity of chemical compounds. 

Another interesting application was studied by 

Umavathi and Malashetty (1999) for the flow and heat 

transfer characteristics of Oberbeck convection of a 

couple-stress fluid in a vertical porous stratum. 

Rudraiah and Chandrashekara (2010) investigated the 

effects of couple-stress fluid on the control of Rayleigh-

Taylor instability at the interface between a dense fluid 

accelerated by a lighter fluid. Recently, Rani et al. 

(2011) obtained the numerical solution for the transient 

free convective couple-stress fluid flow past a vertical 

cylinder. 

From the above studies, it can be noted that the 

unsteady natural convective flow of a viscous 

incompressible couple-stress fluid over a vertical 

cylinder with Soret and Dufour effects has received 

very scant attention in the literature. Hence, in the 

present investigation our attention is focused on the 
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boundary layer regime caused by a uniformly heated 

vertical cylinder, with constant wall temperature along 

the length of the cylinder, immersed in a couple-stress 

fluid with double diffusive effects. In section 2, a 

detailed description about the formulation of the 

problem is given. Also, the governing equations, such 

as mass, momentum, energy and concentration 

equations are derived and non-dimensionalized. In 

section 3, the details about the grid generation and 

numerical methods for solving the above governing 

equations are given. In section 4, transient two-

dimensional velocity, temperature and concentration 

profiles, average skin-friction, heat and mass transfer 

rates are analyzed. Also the comparison between the 

couple-stress fluid and Newtonian fluid flows are 

analyzed. Finally, the concluding remarks are made in 

section 5. 

2. MATHEMATICAL  FORMULATION  

An unsteady two-dimensional laminar combined heat 

and mass transfer boundary layer flow of a couple-

stress viscous incompressible fluid flow past an 

isothermal semi-infinite vertical cylinder of radius 0r  

is considered as shown in Fig. 1. In addition, the Soret 

and Dufour effects are taken into account. The x-axis is 

measured vertically upward along the axis of the 

cylinder. The origin of x is taken to be at the leading 

edge of the cylinder, where the boundary layer 

thickness is zero. The radial coordinate, r, is measured 

perpendicular to the axis of the cylinder. The 

surrounding stationary fluid temperature and 

concentration are assumed to be of ambient temperature 

(

T ) and concentration ( C

 ), respectively. Initially, 

i.e., at time 0t  it is assumed that the cylinder and 

the fluid are of the same temperature 

T  and 

concentration C
 . As time increases ( 0t  ), the 

temperature and concentration of the cylinder is raised 

to 
wT  ( > 


T  ) and 

wC   ( > C
  ), respectively, and 

maintained at the same level for all time 0t  . It is 

assumed that the effect of viscous dissipation is 

negligible in the energy equation since the flow velocity 

magnitude is expected to be small. The concentration 

C   of the diffusing species is assumed very small in 

the binary mixture and there is no chemical reaction 

between the diffusing species and the fluid. Under these 

assumptions, the boundary layer equations of mass, 

momentum, energy and concentration with 

Boussinesq's approximation are as follows: 

( ) ( )
0

ru rv

x r

 
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(4) 

 

Fig. 1. Schematic of the investigated problem along 

with the boundary conditions, where the notations are 

defined in Nomenclature. 

 

where   is a material constant with the dimension of 

momentum and describes the couple-stress fluid 

property. Usually, the ratio of material constants   and 

  has the dimensions of length square i.e 
2

0r  (see 

Stokes, 1984). 

Stokes (1984) proposed mainly two types of boundary 

conditions, namely, the vorticity of the fluid on the 

boundary is equal to the rotational velocity of the 

boundary and the couple-stresses vanish on the 

boundary. The present problem is solved based on the 

earlier boundary condition. In view of this, the relevant 

initial and boundary conditions are given by: 

0

0 : 0, 0, , for all and

0 : 0, 0, , at

0, 0, , at 0

0, 0, , as

w w

t u v T T C C x r

t u v T T C C r r

u v T T C C x

u v T T C C r

 

 

 

        

         

       

        

 
(5) 

and, 

u v

r x

 


 
     at   0r r   and as r   (6) 

By introducing the following non-dimensional 

quantities  
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(the symbols are explained in the nomenclature) in the 

Eqs. (1)-(4), the following equations are obtained: 
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(11) 

The corresponding initial and boundary conditions in 

non-dimensional quantities are given by 

0 : 0, 0, 0 , 0 for all and

0 : 0, 0, 1, 1 at 1

0, 0, 0 , 0  at 0

0, 0, 0, 0 as

t U V T C X R

t U V T C R

U V T C X

U V T C R

    

     

    

     

 

(12) 

Similarly, Eq. (6) in non-dimensional quantities is given 

by 

2

1

T

U V

R Gr X

 


 

 at R = 1  and as  R  (13) 

3.  NUMERICAL SOLUTION  

In order to solve the unsteady coupled non-linear 

governing Eqs. (8)-(11) an implicit finite difference 

scheme of Crank-Nicolson type has been employed. To 

solve these equations, the region of integration is 

considered as a rectangle composed of the lines 

indicating Xmin = 0, Xmax = 1, Rmin = 1 and Rmax = 20, 

where Rmax corresponds to R =    which lies very far 

from the momentum, energy and concentration 

boundary layers. In order to obtain an economical and 

reliable grid system for the computations, a grid 

independency test has been performed and shown in 

Fig. 2. The steady-state velocity and temperature values 

obtained with the grid system of 100 × 500 differ in the 

second decimal place from those with the grid system 

of 50 × 250, and differ in the fifth decimal place from 

those with the grid system of 200 × 1000. Hence, the 

grid system of 100 × 500 has been selected for all 

subsequent analyses, with the mesh sizes in X and R 

directions taken as 0.01 and 0.03, respectively. Also, 

the time step size dependency has been tested from 

which ∆t = 0.01 yielded a reliable result. The steady-

state solution is assumed to have been reached when the 

absolute difference between the values of velocity, 

temperature as well as concentration at two consecutive 

time steps is less than 510  at all grid points. Also, this 

finite difference scheme is unconditionally stable and 

therefore, stability and compatibility ensure the 

convergence. 

 
Fig. 2. Grid independency test for velocity, temperature 

and concentration profiles. 

4. RESULT AND DISCUSSION 

For the validation, the temperature and concentration 

profiles of Newtonian fluids obtained by the current 

numerical procedure are compared with the existing 

results of Chen and Yuh (1980) for Sc = 0.2, Pr = 0.7, 

So = 0.0, Du = 0.0 and Bu = 1.0, as there are no 

experimental or analytical studies available to compare 

with the present problem. The current results are found 

to be in good agreement with the previous results 

available in literature as shown in Fig. 3. 

In the present study, the Soret and Dufour effects are 

studied in detail for different values of So and Du, 

respectively, with fixed values of Pr [= 0.71 (air)], Sc [ 

=0.22] and Bu [=1.0] on the transient velocity, 

temperature and concentration profiles for couple-stress 

fluids. The value of the Sc is chosen to represent 

hydrogen in the air at approximately 25OC  at 1 atm 

(Gebhart, 1971). The values of So and Du are to be 

chosen in such a way that their product is constant 

according to their definition, provided that the mT   is 

constant i.e., (0.06) (Kafoussias and Williams, 1995). 

Also, in addition the results have been plotted for So = 

Du = 0.0. The simulated transient behaviour of the 

dimensionless velocity, temperature, concentration, 

average skin-friction coefficient and heat and mass 

transfer rates are discussed in detail in the succeeding 

subsections. 
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Fig. 3. Comparison of the temperature and 

concentration profiles for Newtonian fluids. 

4.1 Velocity (U) 

The simulated transient velocities (U) at (1, 3.39) for 

different So and Du against t are shown graphically in 

Fig. 4(a). It is observed that the velocities increase with 

time monotonically from zero and reach temporal 

maxima, then decrease and at last reach the asymptotic 

steady-state. At the very early time (i.e., t < < 1), the 

heat transfer is dominated by conduction. Shortly later, 

there exists a period when the heat transfer rate is 

influenced by the effect of convection with increasing 

upward velocities with time. When this transient period 

is almost ending and just before the steady-state is 

about to be reached, there exist overshoots of the 

velocities. From Fig. 4(b) it can be observed that 

velocity profiles reach their maximum value 

approximately at (1, 3.39). Similarly, the velocities at 

other locations also exhibit somewhat similar transient 

behavior. The time needed to reach the temporal 

maximum of the velocity increases with decreasing So 

or increasing Du. Also in the absence of Soret and 

Dufour effects (So = Du = 0), it is observed that the 

time required to reach the temporal maximum increases 

incomparison with the presence of Soret and Dufour 

effects.  

Figure 4(b) shows the simulated steady-state velocity 

profiles against the R at X = 1.0. From this figure it is 

observed that the velocity profiles start with the value 

zero at the wall, reach their maxima and then 

monotonically decrease to zero along the radial 

coordinate. From Fig. 4(b) it is observed that in the 

vicinity of the wall the magnitude of the axial velocity 

is rapidly increasing as R increases from Rmin (=1). It is 

observed that for the decreasing So or increasing Du, 

the time to reach the steady-state increases slightly. 

Here, it can be noted that the velocity increases with 

increasing values of So. But the opposite trend is 

observed for the increasing Du. Also, when So is high 

enough, the thermal and the solutal buoyancy forces 

combine their actions to enhance the convection 

velocity, which leads to the increase in the velocity of 

the fluid. If So = Du = 0, the maximum velocity of a 

couple-stress fluid is decreased in comparison to that of 

the presence of Soret and Dufour effects. Also, if So = 

Du = 0, it is noticed that the time required to reach the 

steady-state increases in comparison to that of the 

presence of Soret and Dufour effects. 

 
4(a) 

 
4(b) 

Fig. 4. The simulated (a) transient velocity at (1, 3.39); 

(b) steady-state velocity profile at X = 1.0. 

 

4.2 Temperature (T) 

The simulated transient temperature (T) for different So 

and Du values with respect to t are shown at the point 

(1, 1.22) in Fig. 5(a). Here, it is observed that these 

profiles increase with time, reach temporal maxima, 

decrease and again, after a slight increase, attain the 

steady-state asymptotically. The temperature at other 

locations also exhibit somewhat similar transient 

behavior. During the initial period, the nature of the 

transient temperature profiles is particularly noticeable. 

For all values of So and Du, the transient temperature 

profiles initially coincide and then deviate from each 

other after some time. Here, it is observed that the 

steady temperature value decreases with increasing So 

or decreasing Du. Also, if So = Du = 0,  the temporal 

maximum of the temperature increases in comparison to 

that of the existence of Soret and Dufour effects. This 

tendency is also found in Fig. 5(b) showing the 

simulated steady-state temperature profiles along the 

radial direction at X = 1.0. Here, the temperature 

profiles start with the hot wall temperature (T = 1) and 

then monotonically decrease to zero along the radial 

coordinate. The time needed for the temperature to 

reach the steady-state increases as Du increases or So 

decreases. Also, the time required to reach the temporal 

maximum of the temperature increases with the 

increasing Du or decreasing So. It is noticed that the 
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temperature increases with decreasing So, while the 

reverse trend is observed for the decreasing Du. This 

behavior is a direct consequence of the Soret effect, 

which produces a mass flux from lower to higher solute 

concentration driven by the temperature gradient. 

 

 
5(a) 

 
5(b) 

Fig. 5. The simulated (a) transient temperature at (1, 

1.22); (b) steady-state temperature profile at X = 1.0. 

4.3 Concentration (C) 

The simulated transient concentration (C) for different 

values of So and Du at the point (1, 1.34) against t are 

shown in Fig. 6(a). Here, it is observed that these 

profiles increase at first with time, reach a temporal 

maximum, decrease and again, after slightly increasing, 

attain the steady-state asymptotically. The concentration 

at other locations also exhibit somewhat similar 

transient behavior. Here, it is seen that the steady 

concentration value increases with increasing So or 

decreasing Du. In the absence of Soret and Dufour 

effects (So = Du = 0), it is observed that the time 

required to reach the temporal maximum increases 

incomparison to that of the presence of Soret and 

Dufour effects. The simulated steady-state 

concentration profiles at X = 1.0 along the R direction 

are shown in Fig. 6(b). The concentration profiles start 

with the wall concentration (C = 1) and then 

monotonically decrease to zero along R. As So 

increases, the mass transfer rate decreases and hence the 

concentration profiles increase. But the opposite trend is 

observed as Du increases. This is due to the fact that a 

larger So corresponds to a thicker concentration 

boundary layer relative to the momentum boundary 

layer. This results in a smaller concentration gradient 

near the cylinder. Also, it is observed that the time 

required for the concentration to reach the steady-state 

increases as Du increases or So decreases. If So = Du = 

0, the maximum concentration of a couple-stress fluid is 

decreased in comparison to that of the presence of Soret 

and Dufour effects. 

 

 
6(a) 

 
6(b) 

Fig. 6. The simulated (a) transient concentration at (1, 

1.34); (b) steady-state concentration profile at X = 1.0. 

4.4 Average Skin-friction Coefficient, Heat 

and Mass Transfer Rates 

Knowing the unsteady behavior of velocity, 

temperature and concentration profiles, it is worth to 

study the average skin-friction coefficient, average heat 

transfer rate (Nusselt number) and the average mass 

transfer rate (Sherwood number). The friction 

coefficient is an important parameter in the heat and 

mass transfer studies since it is directly related to the 

heat and mass transfer coefficients. Increased skin 

friction is generally a disadvantage in technical 
applications, while the increased heat and mass transfer 

can be exploited in some applications such as heat and 

mass exchangers, but should be avoided in others such 

as gas turbine applications, for instance. For the present 

problem these skin-friction coefficient, heat and mass 
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transfer rates are derived and given in the following 

equations: 

The wall shear stress at the wall can be expressed as 

0rr

w
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(14) 

By introducing the non-dimensional quantities given in 

Eq. (7), the Eq. (14) can be written as 
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 to be the characteristic shear stress, 

the local skin-friction coefficient can be written as 
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The integration of the Eq. (16) from X = 0 to X = 1 

gives the following average skin-friction coefficient. 
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The local Nusselt number is given by 
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w
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where the heat transfer, wq  is given by 
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Thus, with the non-dimensional quantities introduced in 
Eq. (7), Eq. (18) can be written as 
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(19) 

The integration of the above Eq. (19) with respect to X 

from 0 to 1 yields the following average Nusselt 

number. 
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The Sherwood number can be written as follows: 
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where the mass transfer, wm  is given by 
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Thus, in the same way Eq. (21) can be written as 
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The integration of the above Eq. (22) with respect to X 

yields the following average Sherwood number. 
1

10 R

C
Sh dX

R 

 
   

 
  (23) 

The derivatives involved in Eqs. (17), (20) and (23) are 

evaluated by using a five-point approximation formula 

and then the integrals are evaluated by using the 

Newton-Cotes closed integration formula. The 

simulated average non-dimensional skin-friction 

coefficient, heat and mass transfer rates for couple-

stress fluids have been plotted against the time in Figs. 

7-9 for different parameters, respectively. 

The effects of So and Du on the simulated average skin-

friction coefficient are shown in Fig. 7. It is observed 

that for all values of So and Du the average skin-friction 

coefficients increase at first with time, attain the peak 

values and, after slight decrease, reach asymptotically 

steady-state. Because the buoyancy-induced flow 

velocity is relatively low at the initial transient period, 

as seen in Fig. 4(a), the wall shear stress remain small, 

as shown in Fig. 7. However, the wall shear stress 

increases as the time proceeds, yielding an increase in 

the skin-friction coefficient. It is also observed that 

either by increasing So or by decreasing Du, the average 

skin-friction coefficient increases. If So = Du = 0, the 

average skin-friction is decreased in comparison to that 

of the presence of Soret and Dufour effects. This result 

lies in the same line with the velocity profiles plotted in 

Fig 4. 

 
Fig. 7. The simulated average skin-friction. 

 

 
Fig. 8. The simulated average Nusselt number. 
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Fig. 9. The simulated average Sherwood number. 

 

In Fig. 8 the effects of So and Du on the simulated 

average heat transfer rate are shown. It is observed that 

for short period of time after t = 0, the average Nusselt 

numbers are almost the same for all values of So and 

Du. This shows that initially heat conduction is 

dominating compared with heat convection. It is seen 

that an increase in the value of So leads to a increase in 

the values of the average heat transfer rate. Increasing 

So speeds up the spatial decay of the temperature near 

the heated surface together with increased flow velocity 

near the wall, yielding an increase in the rate of heat 

transfer. While the reverse trend is observed for 

increasing values of Du. If So = Du = 0, the trend of 

average heat transfer rate is similar to that of the 

presence of Soret and Dufour effects. In Fig. 9, the 

effects of So and Du on the simulated average mass 

transfer rate are presented. Figure 9 shows that during 

an initial period of time mass diffusion is dominating 

compared to mass convection. For all values of So and 

Du, the average Sherwood number decreases 

monotonically, then after slight fluctuation, reaches the 

asymptotic steady-state. It is noticed that the average 

mass transfer rate increases with decreasing So or 

increasing Du. If So = Du = 0, the average Sherwood 

number is increased in comparison to that of the 

presence of Soret and Dufour effects. 

4.5 Comparison between the couple-stress and 

Newtonian fluids 

Figure 10 illustrates the steady-state velocity, 

temperature and concentration contours for couple-

stress and Newtonian fluid flows with fixed So = 2.0 

and Du = 0.03. From Figs. 10(a) and Figs. 10(b) it is 

observed that the maximum velocity occurs at X = 1.0. 

This is the reason that the simulated steady-state 

velocity, temperature and concentration profiles are 

plotted at X = 1.0 in Figs. (4)-(6). It can be noticed that 

from Figs. 10(a) and 10(b), the velocity of a couple-

stress fluid is smaller compared to that of the 

Newtonian fluid. This is due to the fact that in couple-

stress fluid flow there are additive diffusion terms 

(biharmonic term) compared with the Newtonian fluid 

(refer Eq. (9)). Also, from Figs. 10(a) and 10(b) it is 

observed that the steady-state velocity, temperature and 

concentration contours of couple-stress fluid are 

different from that of the Newtonian fluid. Thus, it can 

be concluded that the steady-state velocity, temperature 

and concentration profiles for the couple-stress fluid 

flow differ from those of the Newtonian fluid flow. 

 
Fig. 10. Steady-state velocity, temperature and 

concentration contours with So = 2.0 and Du = 0.03 for 

(a) couple-stress fluid; (b) Newtonian fluid. 

5. CONCLUSION 

A numerical study has been carried out for the transient 
natural convection boundary layer flow of a couple-
stress viscous incompressible fluid over a semi-infinite 
vertical cylinder with thermal-diffusion and diffusion-
thermo effects. The governing equations are derived 
and normalized based on the length dependent effect 
introduced by the couple-stress fluid flow where the 
biharmonic operator is involved. A Crank-Nicolson 
type of implicit method is used to solve the system of 
coupled governing equations together with the 
tridiagonal and pentadiagonal algorithms. The 
computations are carried out for the values of So ( = 
2.0, 1.6, 1.2, 0.8, 0.4 and 0.0) and Du ( = 0.03, 0.0375, 
0.05, 0.075, 0.15 and 0.0). 

From the present study, it is observed that for the 
velocity, temperature and concentration profiles, the 
time elapsed to reach the temporal maximum and the 
steady-state increases with the increasing Du or 
decreasing So. Also, if So = Du = 0, it is noticed that the 
time required to reach the steady-state increases in 
comparison to that of the presence of Soret and Dufour 
effects. It is noticed that as So increases or Du 
decreases, velocity and concentration profiles are 
increasing, but the temperature decreases. The influence 
of So or the Du is less on the temperature profiles in 
comparison with the velocity and concentration 
profiles. The concentration and Sherwood number are 
more affected by So. Also, the average values of the 
skin-friction and Nusselt number increases as So 
increases or Du decreases. While the opposite trend is 
observed for the Sherwood number. Particularly, this 
study reveals that the results pertaining to the couple-
stress fluid differ significantly from those of the 
Newtonian fluid. The deviations of velocity, 
temperature and concentration profiles of couple-stress 
fluid flow from those of the Newtonian fluid flow turn 
out to be considerable. 
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Though the present study deals only with laminar flows, 
this work can be extended to studies on turbulent flows. 
Also, the body forces like electromagnetic force arising 
from the MHD flows and the body couples arising in 
the momentum equation due to the couple-stress fluid 
can be taken into consideration. Also, the present model 
can be expanded into studies of flow past plates, 
wedges, cones, and spheres etc., based on required 
applications.  

ACKNOWLEDGEMENTS 

The authors are thankful to the reviewers for their 

valuable suggestions and comments. 

REFERENCES 

Carnahan, B., H.A. Luther and J.O. Wilkes (1969). 

Applied numerical methods. John Wiley Sons, New 

York. 

 

Chang-Jian, C., J. Chen and H. Yau (2010). Nonlinear 

dynamic analysis of a hybrid squeeze-film damper-

mounted rigid rotor lubricated with couple-stress 

fluid and active control. Appl. Math. Modell.  34, 

2493-2507. 

 

Chen, T.S. and C.F. Yuh  (1980). Combined heat and 

mass transfer in natural convection along a vertical 

cylinder. Int. J. Heat and Mass Transfer 23, 451-

461. 

 

Chu, H.M., S.Y. Hu  and W.L. Li (2006). Effects of 

couple-stresses on pure squeeze EHL motion of 

circular contacts. J.Mech. 22(1), 77-84. 

 

Dursunkaya, Z. and W.M. Worek  (1992). Diffusion-

thermo and thermal diffusion effects in transient 

and steady natural convection from a vertical 

surface. Int. J. Heat and Mass Transfer 35, 2060-

2065. 

 

Eckeret, E.R.G. and R.M. Drake (1972). Analysis of 

heat and mass transfer. McGraw Hill, New York. 

 

Eringen, A.C. (1966). Theory of micropolar fluids. J. 

Math. and Mech. 16, 1-18. 

 

Gebhart, B. (1971). Heat transfer. McGraw-Hill, New 

York. 

 

Kafoussias, N.G. and N.G. Williams (1995). Thermal-

diffusion and diffusion-thermo effects on mixed 

free-forced convective and mass transfer boundary 

layer flow with temperature dependent viscosity. 

Int. J. Engg. Sci,. 33, 1369-1384. 

 

Krishna Murthy, S.V.S.S.N.V.G., P. Chandra, M. 

Nigam, B.V. Rathish-Kumar and V. Sangwan, 

(2011). A study of double diffusive free convection 

from a corrugated vertical surface in a darcy porous 

medium under Soret and Dufour effects. ASME J. 

Heat Transfer, 133, 601-607. 

 

Lin, J. (1998). Squeeze film characteristics of finite 

journal bearings: couple-stress fluid model. 

Tribology International, 31(4), 201- 207. 

 

Naduvinamani, N.B. and S.B. Patil (2009). Numerical 

solution of finite modified Reynolds equation for 

couple-stress squeeze film lubrication of porous 

journal bearings. Computers and Structures, 87, 

1287-1295. 

 

Postelnicu, A. (2004). Influence of a magnetic field on 

heat and mass transfer by natural convection from 

vertical sufaces in porous media considering Soret 

and Dufour effects. Int. J. Heat and Mass Transfer, 

47, 1467-1475. 

 

Rani, H.P., G. Janardhana Reddy and C.N. Kim (2011). 

Numerical analysis of couple-stress fluid past an 

infinite vertical cylinder. Engineering applications 

of computational fluid mechanics, 5(2), 159-169. 

 

Reddy, P.S. and  V.P. Rao (2012). Thermo-Diffusion    

        and Diffusion –Thermo Effects on convective  

        heat and mass transfer through a porous medium  

        in a circular cylindrical annulus with quadratic  

       density temperature variation – Finite element  

        study. J. appl. Fluid Mech., 5(4), 139-144. 

 

Rudraiah, N. and G. Chandrashekara (2010). Effects  

       of couple-stress on the growth rate of Rayleigh-  

        Taylor instability at the interface in a finite  

         thickness couple-stress fluid. J. appl. Fluid  

         Mech,. 3(1), 83-89. 

 

Seddeek, M.A. (2004). Thermal-diffusion and 

diffusion-thermo effects on mixed free-forced 

convective flow and mass transfer over an 

accelerating surface with a heat source in the 

presence of suction and blowing in the case of 

variable viscosity, Acta Mechanica,172, 83-94. 

 

Srivastava, L.M. (1986). Peristaltic transport of a 

couple-stress fluid, Rheol Acta, 25, 638-641. 

 

Srivastava, V.P. (2003). Flow of a couple-stress fluid 

representing blood through stenotic vessels with a 

peripheral layer. Indian J. Pure and Appl. Math. 

34(12), 1727-1740. 

 

Stokes, V.K. (1984). Theories of Fluids with 

Microstructure. Springer-Verlag, New York Tokyo. 

 

 



H. P. Rani and G. J. Reddy / JAFM, Vol. 6, No. 4, pp. 545-554, 2013.  

 

554 

 

Stokes, V.K. (1966). Couple-stress in fluids. Physics of 

Fluids 9, 1709-1715. 

 

Umavathi, J.C. and M.S. Malashetty (1999). Oberbeck 

convection flow of a couple-stress fluid through a 

vertical porous stratum. Int. J. Non-Linear Mech. 

34, 1037-1045. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Von Rosenberg, D.U. (1969). Methods for the 

Numerical Solution of Partial Differential 

Equations. American Elsevier Publishing Company, 

New York. 

 

 

 

 


