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ABSTRACT 

The study of flow and heat transfer in fluid as it passes over a porous surface has attracted considerable scientific 

attention, particularly in technologies where boundary-layer control is important. Therefore, this paper reports the 

effects of radiation and heat source over a stretching surface subjected to a power law heat flux, in the presence of 

transverse magnetic field on two-dimensional boundary layer steady flow and heat transfer of a viscous 

incompressible fluid. Heat transfer equation is reduced to a linear differential equation using non-dimensional 

parameters and the exact solution is obtained in the form of confluent hypergeometric function (Kummer’s Function) 

for prescribed power law wall temperature. The effects of the various parameters entering into the problem on the 

temperature distribution and wall temperature gradient are discussed. 

 

Keywords: Heat transfer, Radiation, Porous medium, Magnetic field, Heat source, Kummer’s function, Heat flux, 

Stretching sheet, Suction. 

NOMENCLATURE 

B0 transverse magnetic field 

u, v fluid velocities in the x and y directions 

c stretching rate 

x, y      cartesian coordinates 

v0         suction velocity across the stretching sheet 

         kinematic viscosity 

K        permeability of the porous medium 

        electrical conductivity 

        density of the fluid 

T         temperature 

k         thermal conductivity 

pc       specific heat at constant pressure 

rq       radiative heat flux in y- direction 

Q        heat sink coefficient 

T       far field temperature 

wT       wall temperature on the sheet at y=0 

A       dimensional temperature coefficient 

       Stefan-Boltzmann constant 

*      mean absorption coefficient 

)(f dimensionless velocity function 

        dimensionless coordinate in y direction 

        permeability parameter 

M      Magnetic parameter 

m       suction parameter 

)(  dimensionless temperature 

N      radiation parameter 

Pr      Prandtl number 

       heat absorption parameter 

        transform parameter 

11 F    Kummer’s confluent hypergeometric   

           function 

a , b ,  ,  ,  , 0a , 0b  constants 

 

 

1. INTRODUCTION  

Studies of heat transfer and flow over moving smooth 

surfaces impact many technological processes. 

Examples include aerodynamic extrusion of plastic 

sheeting and the purification of molten metal to remove 

non-metallic inclusions. For example, continuous 

casting, also called strand casting, is the process 

whereby molten metal is solidified into a 

"semifinished" billet, bloom, or slab for subsequent 

rolling in the finishing mills. In this process, molten 

metal is poured at a controlled rate into a short vertical 

metal die or mould that is open at both ends. The melt is 

cooled rapidly by means of water circulation around the 
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mould, and the solidified product is withdrawn in a 

continuous length from the bottom of the mould at a 

rate consistent with the pouring rate. It is employed 

mainly for copper, brass, bronze and aluminum and 

increasingly for cast iron and steel. 

In spite of this, in actual practice, boundary layer flow 

over a stretching sheet must be addressed. For example, 

in a melt-spinning process, extradite is stretched into a 

filament or sheet while it is drawn from the die, and the 

filament or sheet solidifies as it passes through the 

controlled cooling system. 

Sakiadis (1961) first examined the boundary-layer flow 

of a viscous fluid in the context of plate motion in its 

own plane. Erickson et al. (1966) and Gupta and Gupta 

(1977) extended this problem to the case in which 

suction or blowing existed at the moving surface. Crane 

(1970) and Mc Cormack and Crane (1973) studied the 

boundary-layer flow of a Newtonian fluid caused by the 

stretching of an elastic flat sheet which moves in its 

own plane with the velocity varying linearly with the 

distance from a fixed point by the application of a 

uniform stress. The uniqueness of the exact analytical 

solutions followed by the two different approaches 

(Crane, 1970; Mc Cormack and Crane, 1973) was 

proved simultaneously by Mc Leod and Rajagopal 

(1987) and Troy et al. (1987). Both the basic flow and 

the heat transfer problems for linear stretching of the 

sheet have since been extended in various ways. For 

example, Afzal and Varshney (1980), Kuiken (1981) 

and Banks (1983) considered the power law stretching 

of the plate ( mu x ). Banks and Zaturska (1986) 

considered the eigen-value problem for boundary-layer 

over the stretching plate. The hydromagnetic flow and 

heat transfer case for a linearly stretching plate has been 

studied by Chakrabarti and Gupta (1979), Chiam (1995) 

and Abo-Eldahab and Salem (2004). Series solution of 

unsteady boundary-layer flow that results from a 

stretching sheet has been considered by Kechil and 

Hashim (2007) and Liao (2006). Effects of variable 

thermal conductivity on MHD flow near a stagnation 

point on a linearly stretching sheet is studied by Sharma 

and Singh (2009) and study of chemically reactive 

solute distribution in a steady MHD boundary layer 

flow over a stretching surface is presented by Uddin et 

al. (2011). 

All these authors have neglected the importance of 

porous medium; however the analysis of flow through a 

porous medium has become the core of several 

scientific and engineering applications.  This type of 

flow is important to a wide range of technical problems, 

such as flow through packed beds, sedimentation, 

environmental pollution, centrifugal separation of 

particles and blood rheology. Moreover, these authors 

neglected the effects of radiation and internal heat 

generation. At the same time, however, the study of 

flow and heat transfer in fluid past a porous surface has 

attracted considerable scientific attention based on 

applications in, for example, chemical engineering, 

where boundary-layer control, transpiration cooling and 

gaseous diffusion are important. Equally important is 

the study of heat generation or absorption in moving 

fluids for problems involving chemical reactions and 

those concerned with dissociating fluids. Specifically, 

the effects of heat generation may alter the temperature 

distribution, consequently affecting the particle 

deposition rate in nuclear reactors, electronic chips and 

semiconductor wafers. In fact, the literature is replete 

with examples of heat transfer in the laminar flow of 

viscous fluids. For instance, Vajravelu and 

Hadjinicolaou (1993) studied heat transfer 

characteristics in the laminar boundary-layer of a 

viscous fluid over a stretching sheet with viscous 

dissipation or frictional heating and internal heat 

generation. Abel et al. (2001) studied convective heat 

and mass transfer in a viscoelastic fluid flow through a 

porous medium over a stretching sheet with variable 

viscosity. Bhargava et al. (2003) have taken the 

problem of mixed convection micropolar fluid driven 

by a porous stretching sheet and found the solution by 

the finite element method. Rashad (2007) has studied 

the radiative effects on heat transfer from a stretching 

surface in a porous medium.  Finally, Veena et al. 

(2007) found the non-similar solution for heat and mass 

transfer flow in an electrically conducting visco-elastic 

fluid over a stretching sheet embedded in a porous 

medium. 

Moreover, when the temperature of surrounding fluid is 

high, radiation plays an important role that cannot be 

ignored (Modest, 2003; Siegel and Howell, 1992). The 

effects of radiation in steady flows have been reported 

many studies, including Cess (1966), Arpaci (1968), 

Cheng and Ozisik (1972), Hasegawa, Echigo and 

Fakuda (1972), Bankston, Lioyed and Novony (1977), 

Hossain and Takhar (1996, 1997) and Hossain, Pop and 

Rees (1998). For an impulsively started infinite vertical 

isothermal plate, Ganesan, Loganathan and 

Soundalgekar (2001) studied the effects of radiation and 

free convection by using Rosseland approximation 

(Brewster, 1992). Recently, Kumar (2009) has studied 

radiative heat transfer with hydromagnetic flow and 

viscous dissipation over a stretching surface in the 

presence of variable heat flux. This paper reports the 

effects of radiation and heat source over a stretching 

surface which is subjected to a power law heat flux, in 

the presence of transverse magnetic field. 

2. FORMULATION AND SOLUTION OF 

PROBLRM 

The present problem is based on a steady two-

dimensional incompressible viscous laminar flow 

caused by a stretching sheet, of an electrically 

conducting fluid under the action of a transverse 

magnetic field B0, placed in quiescent fluid 

(Newtonian) in presence of radiation and heat source. 

The flow is assumed to be in the x-direction which is 

chosen along the sheet and the y-axis perpendicular to 

it. The sheet issues from a thin slit at the origin (0, 0). It 

is assumed that the speed of a point on the plate is 

proportional to its distance from the slit, Fig. 1, and that 

the boundary-layer approximations are still applicable. 

In writing the following equations, it is assumed that 

the external electric field and the electric field resulting 

from the polarization of charges are negligible. Under 

these conditions, equations of momentum and energy 

are: 

0
u v

x y

 
 

 
 

(1) 
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Fig. 1. Boundary-layer flow over a stretching porous 

surface. 

 

The last term in the RHS of Eq. (3) denotes the heat 

generation varying directly with the temperature. 

The appropriate boundary conditions for the problem 

are 

u = c x,          v = –v0,          at     y = 0 

u = 0,     as        y → ∞                                              
(4) 

where c is a positive stretching constant. 

In addition, boundary conditions on the temperature are 

as follows: 

2xA
y

T





  at     y = 0 

 TT      as     y→∞ 

(5) 

We assume the Rosselanda approximation (Brewster, 

1992) for radiative heat flux, which leads to 

4

*

4

3
r

T
q

y





 
 


. 

where    is the Stefan-Boltzmann constant and 
*  is 

the mean absorption coefficient. 

If the temperature differences within the flow are 

sufficiently small such that 
4T  may be expressed as a 

linear function of the temperature, then the Taylor 

series for 
4T  about T , after ignoring higher order 

terms, is given by
434 34   TTTT . 

The solution of Eq. (1) and Eq. (2), satisfying the 

boundary conditions Eq. (4) is as follows: 

y
c

fcv

fxcu














,)(

,)(

 
(6) 

where prime denotes differentiations with respect to 

‘ ’ and  

( )f a be     

2 M 1,a b
 



 
    

2 4(1 )

2

m m M


   
  

(7) 

where, 
c K

  , 0v
m

c
  and

2

0B
M

c



  

Magnetic parameter. 

In order to solve Eq. (3), considering boundary 

conditions Eq. (5), we assume the dimensionless 

temperature )( as  

2 ( )T T A x
c


    (8) 

On using Eqs. (6)-(8), Eq. (3) takes the following form: 

 41 Pr 2Pr 0
3

f f
N

           (9) 

subject to the boundary conditions  

1     at    0  

0)(                                                                 
(10) 

where, 
*

34

k
N

T



 

 , Pr
pc

k


 and

Q
k c


  . 

If we assume  41
3N

  , then to obtain the solution 

of Eq. (9), we introduce a new variable   as follows: 




  e

2

Pr
 (11) 

Hence Eq. (9) reduces to 

2

2 2

1

2

1 ( )
1 Pr

2 0

d M d

dd

  
 

   


 

 



  
     

  

 
   
 

                                              (12) 

The corresponding boundary conditions are  

Pr
Pr

2



 







    and     00   (13) 

Solution of the hypergeometric equation, one may refer 

to Erdélyi (1953),  

2

2
( ) 0

d y dy
x b a x x y

dx xdx


 

 
         

 
 

 

is  2 2 , ,

b a x

y x e W k  

 
 

  

where,  
1

2 24 ,
2

a b
k a 

  
     

 
 

 
1 1

2 22 21
( 1) 4 , 4

2
b a x   


        
 

] 
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Applying the above method the solution of Eq. (12) 

satisfying boundary conditions Eq. (13) in terms of  is 

given by: 

0 0( )

2

0 0
1 1 0 2

( )

4 Pr
; 1 ;

2

a b

C e

a b
F b e

 



 

 








  
   

 

 

 

(14) 

where, 0 2

1 ( )
Pr

M
a



  

 
  

 
, 2


 

 , 

1
2 2

2
0 2

1 ( )
Pr 4

M
b




  

  
    
   

,  

0 0 0 0
1 1 1 0 2

0

4 2Pr Pr
; 2 ;

2(1 ) 2

a b a b
L F b

b  

      
           

 

, 0 0 0 0
2 1 1 0 2

( ) 4 Pr
; 1 ;

2 2

a b a b
L F b



 

   
    

 
 

and  
1 2

1
( )

C
L L




. 

The recovery temperature at the stretching plate is given 

by:  

0 0
1 1 0 2

4 Pr
(0) ; 1 ;

2

a b
C F b

 

  
   

 
 (15) 

3. RESULTS AND DISCUSSION 

The effects of radiation and heat sink over a stretching 

surface in the presence of transverse magnetic field, 

caused by stretching a porous wall are presented 

graphically. The analytical solutions are obtained in 

terms Kummer’s function (on using the theory of 

Whittaker function) and the numerical computations of 

those results obtained by using FORTRAN, are shown 

in figures. 

The dimensionless temperature distribution )(  is 

plotted against   for different values of parameters 

M,  , Pr,  , m and   in Fig. 2 to Fig. 6, 

respectively. It has been shown that )( increases 

with Pr or   or m increases. Temperature rise due to 

heat flux impinging on the plate and suction parameter 

increases with temperature, due to hot suction of fluid. 

The presence of a heat source in the boundary layer 

generates energy, which causes the temperature of the 

fluid to increase. Whereas )( decreases as M or   

or   increases. Increasing permeability reduces the 

presence of solid particles in the medium, thereby 

reducing the conduction heat transfer which affects the 

convection transfer process. Temperature decreases as 

  increases (or N decreases) as it can be seen that an 

increase in the thermal radiation parameter produces 

significant increases in the thermal condition of the 

fluid and its thermal boundary layer. As magnetic field 

parameter M increases; the Lorentz force, which 

opposes the flow also increases and leads to an 

enhanced deceleration of the flow. This result 

qualitatively agrees with the expectations, since the 

magnetic field exerts a retarding force on the free 

convection flow. 

 
Fig. 2. Dimensionless temperature against η for 

different values of M with λ=1, m = 0.2, Pr =1, β= 0.1 

and 27.1  

 

 
Fig. 3. Dimensionless temperature against η for 

different values of λ with M=2, m = 0.2, Pr =1, β= 0.1 

and 27.1  

 

 
Fig. 4. Dimensionless temperature against η for 

different values of Pr with M=1, m = 0.2, λ =1, β= 0.1 

and 27.1  

 

 
Fig. 5. Dimensionless temperature against η for 

different values of β with M=1, m = 0.2, Pr =1, λ= 1 

and 27.1  
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Fig. 6. Dimensionless temperature against η for 

different values of m with M=1, β=0.1, Pr =1, λ= 1 

and 27.1  

 

The recovery temperature )0(  is plotted against Pr for 

different values of variables, M,  ,  , m and  , as 

shown in Fig. 7 to Fig. 11, respectively. It is noted that 

)0(  is increased with   or m and it is decreased as 

M or   or   is increased. The profiles of the 

function )0( are negative in all the cases. Furthermore, 

the negative values of the wall temperature gradient for 

all values of the parameters are indicative of the 

physical fact that the heat flows from the surface to the 

ambient fluid. 

 
Fig. 7. Dimensionless temperature against η for 

different values of  with M=1, β = 0.1, Pr =1, λ= 1 

and m = 0.2 

 

 
Fig. 8. Dimensionless recovery temperature against Pr 

for different values of M with λ=1, β= 0.1, m= 0.2 

and 27.1  

 

 
Fig. 9. Dimensionless recovery temperature against Pr 

for different values of λ with M= 2, β= 0.1, m= 0.2 

and 27.1  

 

 
Fig. 10. Dimensionless recovery temperature against Pr 

for different values of β with M=1, λ = 1, m =0.2 

and 27.1  

 

 
Fig. 11. Dimensionless recovery temperature against Pr 

for different values of m with M=1, λ = 1, β =0.1 and 

27.1  

 

 
Fig. 12. Dimensionless recovery temperature against Pr 

for different values of   with M=1, λ = 1, β =0.1 and 

m = 0.2. 
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4. CONCLUSIONS 

In the present research, the effects of heat source and 

porosity on temperature distribution are obtained in Eq. 

(14) and Eq. (15) which can be interpreted as follows: 

1. Radiation and heat source increase the thermal 

boundary-layer. 

2. Porosity and magnetic field decrease the 

temperature. 

3. Radiation and heat source increase the wall 

temperature gradient. 
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