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ABSTRACT 

The study of non-linear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically 

conducting and Newtonian fluid over a vertical oscillating porous plate embedded in a porous medium in presence of 

homogeneous chemical reaction of first order and thermal radiation effects have been analyzed. The fluid considered here is 

a gray, absorbing/emitting radiation, but a non-scattering medium. At time   , the plate temperature and concentration 

levels near the plate raised linearly with time . The dimensionless governing coupled, non-linear boundary layer partial 

differential equations are solved by an efficient, accurate, and extensively validated and unconditionally stable finite 

difference scheme of the Crank-Nicolson type as well as by the Laplace Transform technique. An increase in porosity 

parameter     is found to depress the fluid velocities and shear stress in the regime. Also it has been found that, when the 

conduction-radiation     increased, the fluid velocities as well as temperature profiles were decreased. It has been found 

that, when the chemical reaction parameter      increased, the fluid velocities as well as concentration profiles were 

decreased. Applications of the study arise in materials processing and solar energy collector systems. 
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NOMENCLATURE 

  a constant 

  absorption coefficient 

   specific heat at constant pressure  

   chemical reaction coefficient 

  species concentration 

   species concentration in the free stream  

   species concentration at the surface 

  chemical molecular diffusivity 

     complementary error function 

    error function 

    mass Grashof number 

   thermal Grashof number 

  acceleration due to gravity 

   porosity of the porous medium 

  hartmann number parameter  

   Nusselt number 

   Prandtl number 

   radiative heat flux 

   thermal radiation 

   Schmidt number 

  temperature 

 

 

   fluid temperature at the plate 

   fluid temperature in the free stream 

  time parameter 

   dimensionless plate velocity 

      velocity components along      -directions  

  coefficient of volume expansion for heat 

transfer  

  coefficient of volume expansion for mass 

transfer 

  viscosity of fluid 

  dimensionless fluid temperature 

  thermal conductivity 

  kinematic viscosity  

  density 

  electrical conductivity 

  Stefan-Boltzmann constant 

  shearing stress  

  dimensionless species concentration 

Subscripts 

W conditions on the wall 

  free stream conditions 
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1. INTRODUCTION 

The study of heat and mass transfer with chemical 

reaction is of great practical importance to engineers 

and scientists because of its almost universal occurrence 

in many branches of science and engineering. In 

particular, the study of chemical reaction, heat and mass 

transfer with heat radiation is of considerable 

importance in chemical and hydrometallurgical 

industries. A reaction is said to be first-order if the rate 

of reaction is directly proportional to the concentration 

itself. In many chemical processes, a chemical reaction 

occurs between a foreign mass and a fluid in which a 

plate is moving. These processes take place in 

numerous industrial applications, e.g., polymer 

production, manufacturing of ceramics or glassware, 

and food processing Cussler (1998). Chambre and 

Young (1958) analyzed the diffusion of chemically 

reactive species in a laminar boundary layer flow. 

Vajravelu (1986) studied the exact solution for 

hydrodynamic boundary layer flow and heat transfer 

over a continuous, moving horizontal flat surface with 

uniform suction and internal heat generation/absorption. 

Chamkha (2003) presented an analytical solution for 

heat and mass transfer by laminar flow of a Newtonian, 

viscous, electrically conducting fluid and heat 

generation/absorption. 

On the other hand, flow through a porous medium have 

numerous engineering and geophysical applications, for 

example, in chemical engineering for filtration and 

purification process; in agriculture engineering to study 

the underground water resources; in petroleum 

technology to study the movement of natural gas, oil 

and water through the oil reservoirs. In view of these 

applications, many researchers have studied MHD free 

convective heat and mass transfer flow in a porous 

medium; some of them are Raptis and Kafoussias 

(1982), Sattar (1983) and Kim (2004). Jaiswal and 

Soundalgekar (2001) obtained an approximate solution 

to the problem of an unsteady flow past an infinite 

vertical plate with constant suction and embedded in a 

porous medium with oscillating plate temperature. The 

unsteady flow through a highly porous medium in the 

presence of radiation was studied by Raptis and Perdikis 

(2004). Sahin (2008) investigated the effect of 

transverse periodic permeability oscillating with time on 

the heat transfer flow of a viscous incompressible fluid 

through a highly porous medium bounded by an infinite 

vertical porous plate, by means of series solution 

method. Sahin (2010) studied the effect of transverse 

periodic permeability oscillating with time on the free 

convective heat transfer flow of a viscous 

incompressible fluid through a highly porous medium 

bounded by an infinite vertical porous plate subjected to 
a periodic suction velocity. 

If the temperature of surrounding fluid is rather high, 

radiation effects play an important role and this 

situation does not exist in space technology. In such 

cases one has to take into account the effect of thermal 

radiation and mass diffusion. Boundary layer flow on 

moving horizontal surfaces was studied by Sakiadis 

(1961). The effects of transversely applied magnetic 

field on the flow of an electrically conducting fluid past 

an impulsively started isothermal vertical plate was 

studied by Soundalgekar et al. (1979). MHD effects on 

impulsively started vertical infinite plate with variable 

temperature in the presence of transverse magnetic field 

were studied by Soundalgekar et al. (1981). The 

dimensionless governing equations were solved using 

Laplace transform technique. Soundalgekar and Takhar 

(1993) have considered the radiation free convection 

flow of an optically thin gray- gas past a semi- infinite 

vertical plate. Radiation effects on mixed convection 

along isothermal vertical plate were studied by Hossain 

and Takhar (1996). In all above studies, the stationary 

vertical plate is considered. Raptis and Perdikis (1999) 

studied the effects of thermal radiation and free 

convection flow past a moving vertical plate. The 

governing equations were solved analytically. Also, 

Sahin and Liu (2010) analyzed the effects of mixed 

convection and mass transfer of three-dimensional 

oscillatory flow of a viscous incompressible fluid past 

an infinite vertical porous plate in presence of 

transverse sinusoidal suction velocity oscillating with 

time and a constant free stream velocity. Singh (2011) 

investigated the flow of fluid through porous medium 

bounded by vertical channel with slip-flow condition 

and in the presence of thermal radiation and the fluid is 

of optically thin with relatively low-density. Recently, 

Sahin (2011) investigated the effects of radiation and 

chemical reaction on a steady mixed convective heat 

and mass transfer past an infinite vertical permeable 

plate with constant suction taking into account the 

induced magnetic field. A study of unsteady laminar 

hydro magnetic flow and heat transfer in a porous 

channel with temperature-dependent properties was 

presented by Chamkha (2001). Sahin and Kalita (2012) 

investigated the effects of porosity and magneto 

hydrodynamic on a horizontal channel flow of a viscous 

incompressible electrically conducting, Newtonian and 

radiating fluid through a porous medium in the presence 

of thermal radiation and transverse magnetic field. 

Jaiswal and Soundalgekar (2001) obtained an 

approximate solution to the problem of an unsteady 

flow past an infinite vertical plate with constant suction 

and embedded in a porous medium with oscillating 

plate temperature. Kumar and Verma (2011) studied the 

problem of an unsteady flow past an infinite vertical 

permeable plate with constant suction and transverse 
magnetic field with oscillating plate temperature. 

Magneto hydrodynamic mixed free–forced heat and 

mass convective steady incompressible laminar 

boundary layer flow of a gray optically thick electrically 

conducting viscous fluid past a semi-infinite vertical 

plate for high temperature and concentration differences 

have studied by Emad and Gamal (2005). Orhan and 

Kaya (2008) investigated the mixed convection heat 

transfer about a permeable vertical plate in the presence 

of magneto and thermal radiation effects using the 

Keller box scheme, an efficient and accurate finite-

difference scheme. Ghosh et al. (2009) considered an 

exact solution for the hydro magnetic natural 

convection boundary layer flow past an infinite vertical 

flat plate under the influence of a transverse magnetic 

field with magnetic induction effects and the 

transformed ordinary differential equations are solved 

exactly. On the other hand, Ghosh and Bég (2008) for 

unsteady convection in porous media, Bég et al. (2009) 
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for coupled species and heat diffusion in nonlinear 

porous media (using a network electrical simulator), 

Zueco and Bég (2009) for hydro magnetic gas flow 

from a two-dimensional wedge in porous media. 

Muthucumaraswamy and Janakiraman (2006) studied 

the thermal radiation effects on flow past an impulsively 

started infinite vertical plate with uniform temperature 

and variable mass diffusion in the presence of 

transverse applied magnetic field. The governing 

equations are solved by the Laplace-transform 

technique. Rajput and Kumar (2012) considering the 

radiation effects on MHD flow past an impulsively 

started vertical plate with variable heat and mass 

transfer by Laplace transform technique. Ahmed and 

Kalita (2012) presented the magneto hydrodynamic 

transient convective radiative heat transfer in an 

isotropic, homogenous porous regime adjacent to a hot 

vertical plate using the Laplace transform technique. 

Such a study has not appeared in the literature and 

constitutes an important addition to the area of porous 

media convection studies in presence of transverse 

magnetic field. Chamkha et al. (2002) considered the 

natural convection flow from an inclined, semi-infinite, 

impermeable flat plate embedded in a variable porosity 

porous medium due to solar radiation and in the 

presence of an externally applied magnetic field. 

Chamkha (1997) presented the model for Darcian and 

non-Darcian effects of the porous medium and the Hall 

effects of magneto hydrodynamics. It is assumed that 

the magnetic Reynolds number is small so that the 

induced magnetic field is neglected. The flow is 

assumed unsteady, laminar, and incompressible. 

In this paper, we consider the effects of chemical 

reaction as well as magnetic field on the heat and mass 

transfer of Newtonian fluids over an infinite vertical 

oscillating plate with variable mass diffusion. The 

magnetic field is imposed transversely to the plate. The 

temperature and concentration of the plate is oscillating 

with time about a constant non-zero mean value. The 

conservation equations are normalized and then solved 

using both the Laplace Transform technique and stable 

finite difference scheme of the Crank-Nicolson type. 

Excellent agreement is obtained between both analytical 

and numerical methods. 

2. MATHEMATICAL ANALYSIS 

Thermal radiation and mass transfer effects on unsteady 

MHD flow of a viscous incompressible fluid past along 

a vertical oscillating plate with variable temperature and 

also with variable mass diffusion in the presence of 

transverse applied magnetic field and chemical reaction 

of first order have been studied. The   axis is taken 

along the plate in the vertical upward direction and the 

  axis is taken normal to the plate. Initially it is 

assumed that the plate and fluid are at the same 

temperature    in the stationary condition with 

concentration level    at all the points. At time,      

the plate is given an oscillatory motion in its own plane 

with velocity          . At the same time the plate 

temperature is raised linearly with time   and also mass 

is diffused from the plate linearly with time. A 

transverse magnetic field of uniform strength    is 

assumed to be applied normal to the plate. The induced 

magnetic field and viscous dissipation is assumed to be 

negligible as the magnetic Reynolds number of the flow 

is taken to be very small. The fluid considered here is 

gray, absorbing/emitting radiation but a non-scattering 

medium. Then by usual Boussinesq’s approximation, 

the unsteady flow is governed by the following 
equations. 

 

Fig. 1. Physical configuration and coordinate system 
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The initial and boundary conditions are: 
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The local radiant absorption for the case of an optically 

thin gray gas ((2004), (2006), (2012)) is expressed as 
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Where   and   are the Stefan-Boltzmann constant and 

the Mean absorption coefficient, respectively. 

Following (2004), (2006), (2012) and others, we assume 

that the temperature differences within the flow are 

sufficiently small so that  
 
 can be expressed as a linear 

function of   after using Taylor’s series to expand  
 
 

about the free stream temperature    and neglecting 

higher-order terms. This results in the following 

approximation: 
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Introducing the following non-dimensional quantities: 
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Using the transformations Eq. (8), the non-dimensional 

forms of Eq. (1), Eq. (3) and Eq. (7) are 
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The corresponding initial and boundary conditions are 

transformed to: 
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3. METHOD OF SOLUTION 

The unsteady, non-linear, coupled partial differential 

Eq. (9) to Eq. (11) along with their boundary conditions 

Eq. (12) have been solved analytically using usual 

Laplace transform technique and the solutions for hydro 

magnetic flow in the presence of radiation and first 

order chemical reaction are obtained as follows: 
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4. SKIN FRICTION 

The boundary layer produces a drag force on the plate 

due to the viscous stresses which are developed at the 

wall. The viscous stress at the surface of the plate is 

given by 
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5. NUMERICAL TECHNIQUE 

In order to solve the unsteady, non-linear coupled Eq. 

(9) to Eq. (11) under the conditions Eq. (12), an implicit 

finite difference scheme of the Crank-Nicolson type has 

been employed. The finite difference equations 

corresponding to Eq. (9) to Eq. (11) are as follows: 
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Fig. 2. Finite difference space grid 

The region of integration is considered as a rectangle 

with sides          and          , where 

    corresponds to      which lies very well outside 

both the momentum and energy boundary layers. The 

maximum of   was chosen as 14 after some preliminary 

investigations so that the last two of the boundary 

conditions (14) are satisfied within the tolerance 

limit     . After experimenting with a few set of mesh 

sizes, the mesh sizes have been fixed at the level 

        with time step         . In this case, the 

spatial mesh sizes are reduced by     in one direction, 

and later in both directions, and the results are 

compared. It is observed that, when the mesh size is 

reduced by     in the   direction, the results differ in 

the fifth decimal place while the mesh sizes are reduced 

by     in   direction or in both directions; the results 

are comparable to three decimal places. 

Hence, the above mesh sizes have been considered as 

appropriate for calculation. The coefficients     
 and 

    
 appearing in the finite-difference equations are 

treated as constants in any one time step. Here 

  designates the grid point along the   direction,   
along the   direction. The values of           are 

known at all grid points at     from the initial 

conditions. 

The computations of             at time level       

using the values at previous time level     are carried 

out as follows: The finite difference Eq. (19) at every 

internal nodal point on a particular   level constitutes a 

tridiagonal system of equations. Such systems of 

equations are solved by using Thomas algorithm as 

discussed in Carnahan et al. (1969). Thus, the values of 

  are found at every nodal point for a particular   at 

           time level. Similarly, the values of   are 

calculated from Eq. (18). Using the values of   and   at 

           time level in the Eq. (17), the values of   at 

           time level are found in a similar manner. 

Thus, the values of   ,   and   are known on a 

particular   level. This process is repeated for various 

  level. Thus the values of  ,      are known, at all 

grid points in the rectangular region at            time 

level.   

In a similar manner, computations are carried out by 

moving along the   direction. After computing values 

corresponding to each   at a time level, the values at the 

next time level are determined in a similar manner. 

Computations are repeated until the steady-state is 

reached. The steady state solution is assumed to have 

been reached, when the absolute difference between the 

values of  , as well as temperature   and concentration 

  at two consecutive time steps are less than      at all 

grid points. 

 

5.1 Stability Analysis 

The stability criterion of the finite difference scheme for 

constant mesh sizes are examined using Von-Neumann 

technique as explained by Carnahan et al. (1969). The 

general term of the Fourier expansion for           at 

a time arbitrarily called    , are assumed to be of the 

form                      √   . At a later time   , 

these terms will become, 

                 

                 

                  

(20) 
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Substituting Eq. (20) in Eq. (17) to Eq. (19) under the 

assumption that the coefficients           are 

constants over any one time step and denoting the 

values after one time step by  
    

        
 . After 

simplification, we get 
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Equations (21) to (23) can be rewritten as, 
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After eliminating   
  and   

  in Eq. (24) using Eq. (25) 

and Eq. (26), the resultant equation is given by, 
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Equations (27) to (29) can be written in matrix form as 

follows: 
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where    
     

          
      

      

          
. 

Now, for stability of the finite difference scheme, the 

modulus of each Eigen value of the amplification matrix 

does not exceed unity. Since the matrix Eq. (28) is 

triangular, the Eigen values are its diagonal elements. 

The Eigen values of the amplification matrix are 

                         and           
  . 

Assuming that,   is everywhere non-negative and   is 

everywhere non-positive, we get 
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Since the real part of   is greater than or equal to zero, 
|           |    always. Similarly, |   
         |   and|           |   . Hence, the 

finite difference scheme is unconditionally stable. The 

local truncation error is            and it tends to 

zero as    and    tend to zero. Hence, the scheme is 

compatible. Stability and compatibility ensures 

convergence. 

5.2 Accuracy 

We have obtained a comprehensive range of solutions 

to the transformed conservation equations. To test the 

validity of numerical Crank Nicolson computations, we 

have compared the flow velocity and Concentration 

distributions in Tables 1 and Table 2 with the Laplace 

transform solutions. It is clearly seen from Table 1 and 

Table 2 that the results are in excellent agreement. As 

the accuracy of the numerical solutions is very good, the 

values of u and   corresponding to analytical and 

numerical solutions are very close to each other. Table 1 

shows that the flow velocity is found to accelerate with 

free convection parameter G from    through     to 

      On the other hand, increasing the Schmidt 

number    from      through     to      the 

Concentration distribution is found to depress (Table 2). 

Table 1 Comparison of values of the flow velocity     

for the present results (Laplace Technique and Crank 

Nicolson Method) with                    
                             

Laplace Technique 

    

y              

0.0 1 1 1 

2.0 4.173150 4.573802 4.941724 

4.0 0.401362 0.438209 0.461072 

6.0 0.074019 0.084105 0.098704 

8.0 0.005317 0.007518 0.009371 

10.0 0.000852 0.000952 0.002504 

Crank Nicolson Method 

    

y              

0.0 1 1 1 

2.0 4.174024 4.573983 4.942107 

4.0 0.402033 0.438571 0.461310 

6.0 0.075105 0.084791 0.098872 

8.0 0.005451 0.007619 0.009502 

10.0 0.000863 0.000971 0.002514 

 

 

 



S. Ahmed and K. Kalita / JAFM, Vol. 6, No. 4, pp. 597-607, 2013.  

 

 

603 
 

Table 2 Comparison of values of the Concentration     

for the present results (Laplace Technique and Crank 

Nicolson Method) with          : 

Laplace Technique 

    

                 

0.0 1.000000 1.000000 1.000000 

2.0 0.347031 0.317402 0.284172 

4.0 0.118063 0.075043 0.038730 

6.0 0.024571 0.006527 0.002743 

8.0 0.003620 0.001209 0.000451 

10.0 0.000852 0.000372 0.000085 

Crank Nicolson Method 

    

                 

0.0 1.000000 1.000000 1.000000 

2.0 0.348051 0.317541 0.284308 

4.0 0.118131 0.075170 0.038855 

6.0 0.024618 0.006617 0.002782 

8.0 0.003704 0.001314 0.000507 

10.0 0.000867 0.000383 0.000091 

6. RESULTS AND DISCUSSION 

To gain a perspective of the physics of the flow regime, 

we have numerically evaluated the effects of Hartmann 

number    , radiation-conduction parameter     , 

dimensionlesstime    , porosity parameter      and 

chemical reaction parameter     , on the velocity, , 

temperature,  , shear stress function, 
  

  
|
   

. Here we 

consider                (cooling of the plate) i.e. 

free convection currents convey heat away from the 

plate in to the boundary layer,                 

throughout the discussion.The Prandtl number    is 

taken for air at 20 oC            , electrolytic solution 

           and water           . 

 

Fig. 3. Flow velocity for Hartmann number 

In Fig. 3 we have presented the influence of Hartmann 

number square root   on the velocity   distributions 

with distance normal to the plate (transverse 

coordinate,  ). The hydromagnetic term in the 

dimensionless equation (2.9),     is a linear drag force 

term. With increasing magnetic field strength,      is 

increased and this serves to decelerate the flow along 

the plate. In accordance with this, we observe in Fig. 3 

that   profile values are strongly reduced with 

increasing  . We also note that as   rises, the profiles 

decay to zero progressively for shorter distances from 

the plate surface. The strong inhibiting effect of 

magnetic field is therefore evident. Also it is noticed 

that the velocity distribution increases with the increase 

in time parameter. 

 

Fig. 4. Flow velocity for chemical reaction 

Figures 4 and 5 display the effects of the chemical 

reaction parameter    on the velocity   and 

concentration   profiles, respectively. As expected, the 

presence of the chemical reaction significantly affects 

the concentration profiles as well as the velocity 

profiles. It should be mentioned that the studied case is 

both for destructive         and generative         

chemical reaction. In fact, as         increases, the 

considerable reduction in the velocity profiles is 

predicted, and the presence of the peak indicates that the 

maximum value of the velocity occurs in the body of 

the fluid close to the surface but not at the surface. Also, 

with an increase in the chemical reaction parameter, the 

concentration decreases. It is evident that the increase in 

the chemical reaction    significantly alters the 

concentration boundary layer thickness but does not 

alter the momentum boundary layers. Moreover, these 

results are observed to be opposite for the case of     
  . 

The effect of time     and radiation-conduction 

parameter   on spatial distribution of the dimensionless 

temperature function (  ) is shown in Fig. 6. 

Temperature is seen to decrease from a maximum value 

at the wall       to a minimum value with maximum 

distance, y. However with increasing time     we 

observe that there is a clear increase in temperatures. 

This trend is maintained at all locations in the flow 

regime. At fixed time,        , an increase in thermal 

radiation-conduction parameter      is observed to 

strongly increase temperatures throughout the fluid with 
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distance normal to the wall in the fluid regime. Larger 

     values correspond to an increased dominance of 

thermal radiation over conduction. As such thermal 

radiation supplements the thermal diffusion and 

increases the overall thermal diffusivity of the regime 

since the local radiant diffusion flux model adds 

radiation conductivity to the conventional thermal 

conductivity. As a result the temperatures in the fluid 

regime flow are significantly increased. 

 

Fig. 5. Concentration for chemical reaction 

 
Fig. 6. Temperature for radiation and time 

In Fig.7 the collective influence of the thermal 

radiation-conduction parameter      on the shear stress 

function variation against Hartmann number is shown. 

Increasing   clearly increases shear stress function 
  

  
|
   

values. Similarly in consistency with previous 

computations, an increase in thermal radiation also 

serves to acceleratethe flow which increases shear stress 

function values i.e. the maximum shear stress function, 
  

  
|
   

, corresponds to the maximum  value (highest 

magnetic body force). 

 

 

Fig. 7. Skin friction for porosity and Pr 

 

Fig. 8. Flow velocity for porosity and Pr 

Figure 8 reveals the effects of    on the velocity 

profiles. The presence of a porous medium increases the 

resistance to flow resulting in decrease in the flow 

velocity. This behavior is depicted by the decrease in 

the velocity as    decreases for both air and water. The 

magnitude of velocity for air is higher than that of 

water. 

Figure 9 shows the skin-friction against time   for 

various values of parameters    and   . It is observed 

that as time passes the skin friction decreases. The skin-

friction decreases with increasing permeability 

parameter    for both air and water. The magnitude of 

the skin-friction for water is greater than that for air (Pr 

= 0.71) and electrolytic solution          . 

Figure 10 illustrate the temperature ( ) profiles for 

different Prandtl numbers  . The results show that the 

increasing Prandtlnumber results in a decrease in the 

thermal boundary layer and in general lower average 

temperature within the boundary layer. The reason is 

that smaller    is equivalent to the increase in the 

thermalconductivity of the fluid, and heat is able to 

diffuse away fromthe heated surface more rapidly for 

higher values of  . Therefore, in the case of smaller 
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Prandtl numbers, the thermal boundary layeris thicker, 

and the rate of heat transfer is reduced. 

 

Fig. 9. Skin friction for Ra and   number 

 

Fig. 10. Temperature distributions for    

7. CONCLUSION 

A mathematical analysis has been presented of the 

transient free convection-radiation magneto 

hydrodynamic viscous flow along an infinite vertical 

permeable plane under a transverse magnetic field in 

presence of chemical reaction. A flux model has been 

employed to simulate thermal radiation effects, valid for 

optically-thick gases. The dimensionless momentum, 

energy and mass conservations equations have been 

solved using both the Laplace transform technique and 

Numerical Crank Nicolson method. The study has 

shown that the flow is accelerated with a decrease in 

Hartmann number square root      The velocity as well 

as theconcentration decreases with an increase in the 

chemical reaction parameter. Temperature of the gas is 

shown to be enhanced both with the elapse of time     

and increasing conduction-radiation     i.e. greater 

thermal radiation heat transfer contribution. The 

currentstudy has employed a Newtonian viscous model. 

Presently the authors are extending this work to 

examine several non-Newtonian fluids of interest in 

glass rheological thermal processing including 

viscoelastic models; the results of these investigations 

will be communicated imminently. 
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