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ABSTRACT 

In this paper, we analyze the effects of thermo-physical properties on the axisymmetric flow of a viscous fluid 

induced by a stretching cylinder in the presence of internal heat generation/absorption. It is assumed that the 

cylinder is stretched in the axial direction with a linear velocity and the surface temperature of the cylinder is 

subjected to vary linearly. Here, the temperature dependent thermo-physical properties namely, the fluid 

viscosity and the fluid thermal conductivity are respectively assumed to vary as an inverse function of the 

temperature and a linear function of the temperature. The governing system of partial differential equations is 

converted into a system of coupled non-linear ordinary differential equations with variable coefficients. The 

resulting system is solved numerically using a second order finite difference scheme known as the Keller-box 

method. The governing equations of the problem show that the flow and heat transfer characteristics depend 

on six parameters, namely the curvature parameter, fluid viscosity parameter, injection/suction parameter, 

variable thermal conductivity parameter, heat source/sink parameter and the Prandtl number. The numerical 

values obtained for the velocity, temperature, skin friction, and the Nusselt number are presented through 

graphs and tables for several sets of values of the pertinent parameters. The results obtained for the flow and 

heat transfer characteristics reveal many interesting behaviors that warrant further study on the axisymmetric 

flow phenomena. Comparisons with the available results in the literature are presented as special cases. 

 

Keywords: Thermo-physical properties, Fluid flow, Heat transfer, Permeable cylinder, Boundary layer flow.  

NOMENCLATURE 

A, c          constants  v           radial velocity component 
a                radius of the cylinder vw       velocity of suction or injection 

b              stretching rate x            axial  coordinate 

pc            specific heat at constant pressure          heat source/sink parameter 

fC           skin friction coefficient µ(T)      temperature dependent viscosity 

f              dimensionless stream function        fluid viscosity away from the wall 

wf           suction/injection parameter         kinematic viscosity away from the sheet  

( )K T       temperature-dependent thermal  

conductivity 

γ          curvature parameter 

wk          thermal conductivity at the wall ε          variable thermal conductivity 

k          conductivity of the fluid away from the 

sheet 

         similarity variable  

l              reference length            stream function 

xNu       local Nusselt number        density of the fluid away from the   surface 

Pr           Prandtl number          dimensionless temperature  

Q            dimensional heat generation or absorption r        fluid viscosity parameter 

Journal of Applied Fluid Mechanics, Vol. 7, No. 1, pp. 111-120, 2014. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

DOI: 10.36884/jafm.7.01.21135  



K. Vajravelu et al. / JAFM, Vol. 7, No. 1, pp. 111-120, 2014.  

 

112 

 

r              radial  coordinate          thermal property of the fluid 

Rex       local Reynolds number w        shear stress  

T          fluid temperature Subscript 

 wT x   temperature of the stretching surface  w         condition at the stretching surface 

T         ambient temperature           condition at infinity 

rT         reference state 
Superscript 

Uw (x)    stretching velocity '            differentiation with respect to   

u           axial velocity component  

  

 

1. INTRODUCTION 

The study of two-dimensional viscous fluid flow from a 

permeable stretching surface is not only applicable to 

the elongation of bubbles and pseudopods but is 

particularly  important in extrusion processes; such as 

metal and polymer extrusion, continuous casting, glass 

fiber production, manufacturing of plastic and rubber 

sheets, cable coating, crystal growing, spinning of 

filaments, wire drawing, etc. Also, suction or injection 

of a fluid through an elastic sheet finds applications in 

many engineering processes such as in the design of 

thrust bearing and radial diffusers, and thermal oil 

recovery. Furthermore, suction is applied to chemical 

processes to remove reactants; whereas blowing is used 

to add reactants, cool the surface, prevent corrosion or 

scaling and reduce drag. In general, suction tends to 

increase the skin friction and heat transfer coefficients; 

whereas injection acts quite the opposite way. In all 

these cases, the quality of final product depends on the 

rate of heat transfer at the stretching surface. The 

investigation of drag and heat transfer in such situations 

belongs to a special class of problems in which the 

boundary layer is quite different from that observed in 

flows over static surfaces. In view of these applications, 

Crane (1970) first obtained an elegant analytical 

solution to the boundary layer flow induced by a 

stretching surface in a quiescent fluid. Crane’s (1970) 

work was subsequently extended to Newtonian and 

non-Newtonian fluids under different situations: To 

mention a few,  Rajagopal et al. (1984), Grubka and  

Bobba (1985),  Vajravelu (1994), Datti et al. (2004), 

Cortell (2005), Prasad et al. (2009), Gupta and Gupta 

(1977), Chen and Char (1988),  Erickson et al. (1966). 

All the above investigators restricted their analyses to 

flow and heat transfer problems over a stretching sheet. 

But not much has been done for the more intricate 

problem of the axisymmetric flow due to a stretching 

cylinder. Flow over a cylinder is considered to be two 

dimensional when the radius of the cylinder is large 

compared to the boundary layer thickness. On the other 

hand, for a thin cylinder, the radius may be of the same 

order as that of the boundary layer thickness. Therefore, 

the flow may be considered as axisymmetric instead of 

two-dimensional. In this case, the governing equations 

contain the transverse curvature term which may affect 

the velocity and the temperature fields. The effect of the 

transverse curvature is important in certain 

technological applications such as hot rolling, wire or 

fiber drawing where accurate prediction of flow and 

heat transfer is required and thick boundary layers can 

exist on slender or near slender bodies. In view of this, 

Crane (1975) studied the boundary layer flow due to a 

stretching cylinder. Wang (1988) extended the work of 

Crane (1975) to study the flow of a viscous fluid at a 

stretching hollow cylinder in an ambient fluid at rest. 

Pop et al. (1990) investigated the boundary layer flow 

past a moving longitudinal cylinder in a non-Newtonian 

power-law fluid at rest. Bachok and Ishak (2010) 

analyzed the effects of the governing parameters on the 

flow and heat transfer over a horizontal cylinder with 

prescribed surface heat flux.   

In the above studies, the thermo-physical properties of 

the fluids are assumed to be constants. However, it is 

well known that, these properties change with 

temperature (Herwig and Wickern, 1986; Lai and 

Kulacki, 1990), especially the fluid viscosity and the 

thermal conductivity. For lubricating fluids, heat 

generated by internal friction and the corresponding rise 

in the temperature affects the physical properties of the 

fluid, and the properties of the fluid are no longer to be 

assumed constants. The increase in temperature leads to 

an increase in the transport phenomenon and therefore 

changes the physical properties across the thermal 

boundary layer, which affects the heat transfer at the 

wall. Therefore, to predict the flow and heat transfer 

rates, it is necessary to take into account the variable 

fluid properties. Available literature on the variable 

fluid properties (Ali, 2006; Hassanien, 1997; Abel et 

al., 2002; Prasad et al., 2010) shows that not much 

work has been carried out for the flow and heat transfer 

over a stretching cylinder. 

Motivated by these applications, in this article, we 

analyze the effects of the variable fluid properties on 

the flow and heat transfer induced by a stretching 

permeable cylinder. In addition to this, we also consider 

the situations of endothermic/exothermic chemical 

reactions by including the effects of internal heat 

generation/absorption in the energy equation. Due to 

the influence of the transverse curvature, internal heat 

generation/absorption, and the temperature dependent 

fluid properties, the momentum and energy equations 

are coupled and highly non-linear. These partial 

differential equations are reduced to a system of 

coupled non-linear ordinary differential equations with 

variable coefficients. These equations are solved 

numerically by a finite difference scheme for different 

values of the parameters. The effects of the governing 

parameters on the velocity and temperature fields as 

well as the skin friction coefficient and the Nusselt 

number are presented in graphical and tabular forms. 
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We believe that the results presented here will provide 

useful information for application and complement the 

results in the previous studies. 

2. MATHEMATICAL FORMULATION 

Let us consider the exterior viscous, incompressible and 

electrically conducting fluid flow due to the extrusion 

of a long impermeable hollow horizontal cylinder with 

radius a. The x-axis is measured along the axis of the 

cylinder from the lower stagnation point and r-axis is 

measured in the radial direction (see Fig.1).  

 
Fig. 1. Physical model and coordinate system 

 

The horizontal cylinder is assumed to have linear 

stretching velocity ( )wU x  and surface temperature 

( ),wT x  which are of the form  ( )wU x b x l and 

 ( )wT x c x l , where  b  is the stretching rate,  c  is 

the constant and l  is the reference length. All over the 

cylinder surface, the fluid is sucked out or ejected in 

with a constant radial velocity wv .  The thermo-

physical fluid properties are assumed to be isotropic 

and constant, except for the fluid viscosity and the 

thermal conductivity, which are assumed to vary as a 

function of temperature in the following forms  

( )
[1 ( )]

T
T T










 

                                            (1)  

 

                                                                     

( ) 1
T T

k T k
T

 


 
  

 
                                        (2) 

where µ(T) and k(T) are respectively, the temperature 

dependent fluid viscosity and the fluid thermal 

conductivity. Here,   and k are respectively, the 

fluid viscosity and thermal conductivity far away from 

the surface. Further,  wk k k     is a small 

parameter known as the variable thermal conductivity 

parameter,   is a thermal property of the 

fluid, wT T T   , is the temperature difference, and 

wT  and wk  are respectively the temperature and 

thermal conductivity at the surface. For convenience, 

Eq. (1) can be rewritten as  

1
( )

( )r

T
A T T

 


                                                    (3) 

 

where 

1
and rA T T



 




                                  (4) 

In the above relation (4), both A  and rT  are constant 

and their values depend on the reference state: In 

general, 0A   for a liquid and 0A   for gases.  Let 

r (fluid viscosity parameter) be the constant which is 

defined by                     

                                                                                                                                                                                                                                                                                                                                         

1r
r

T T

T T





  
 

                                        (5) 

It is worth mentioning here that for 

0, i.e, ( )T    (constant), r  . It is 

also important to note that r  is negative for liquids 

and positive for gases.  This is due to the fact that 

viscosity of a liquid usually decreases with increasing 

temperature; while it increases for gases. The most 

common working fluids found in engineering 

applications are air and water. To demonstrate further 

the appropriateness of Eq. (4), correlations between 

viscosity and temperature for air and water are given 

below 

For air, 
1

123.2 ( 742.6)T

   based on 

0

0 293 (20 )T K C                                                      (6) 

for water, 
1

29.83 ( 258.6)T

    based on 

0

0 288 (15 ).T K C                                     (7) 

 

The data used for these correlations are taken from 

Weast (1986), While Eq. (6) is good up to an error 

within 1.2% to the temperature difference from 278K 

(
05 C) to 373 K (

0100 C), Eq. (7) is good to an error 

within 5.8% to the temperature difference from 283K  

(
010 C) to 373 K (

0100 C). Hence, the reference 

temperature selected here for the correlations are very 

useful for most applications. Under these assumptions, 

the boundary layer equations governing the flow and 

heat transfer in the presence of variable fluid properties 

are 

 

   v 0ru r
x r

 
 

 
                                           (8) 

 

1
v ( )

u u u
u T r

x r r r r




    
   

    
                     (9) 

 

1
v ( )

( )

p

p

T T T
u k T r

x r c r r r

Q
T T

c










      
    

      

          (10) 

 

Here  ,x r  are cylindrical coordinates measured along 

the axis of the cylinder and in the radial direction, 

 , vu are the velocity components measured along 
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the x  and r  directions respectively.   is the density, 

T  is the temperature of the fluid in the boundary layer, 

pc  is the specific heat at constant pressure, and T  is 

the ambient temperature. The last term containing Q  in 

Eq. (10) represents the temperature-dependent 

volumetric rate of heat addition when 0Q   and heat 

absorption when 0Q  . These deal with the situation 

of exothermic and endothermic chemical reactions, 

respectively. The appropriate boundary conditions are 

 

w( ), v v , ( ) at

0, as

w wu U x T T x r a

u T T r

    

    
(11) 

 

  

The momentum and energy equations can be 

transformed into ordinary differential equations by the 

following transformation (Mahamood and Merkin, 

1988;  Ishak and Nazar, 2009) 

 

 

 

2 2 1

2

1

2

ν ,
2

ν ( ), ( )

w

w
w

r a
U x

a

T T
U x a f

T T



   












 


 

(12) 

 

here η is the similarity variable, f  and   are 

dimensionless quantities and   is the kinematic 

viscosity. The continuity equation is being satisfied by 

the steam function 
1:u r r    and 

1v .r
x

 
 


   

Using Eq. (12), we obtain the velocity components as 
1/2

, vw

v ba
u U f f

r l

 
    

                         
where a prime denotes differentiation with respect to 

 . By defining η in this form, the boundary condition 

at r a reduces to the boundary condition at 0  , 

which is more convenient for numerical computation. 

Substituting Eq. (12) into Eq. (9) and (10), we obtain 

the following ordinary differential equation: 

 

1

21 (1 2 ) ( ) 0
r

f f ff





   
              

(13) 

 (1 2 ) (1 ) 2(1 )

Pr( ) Pr 0f f

    

  

    

    
 (14) 

                  

subjected to the boundary conditions  

 

(0) , (0) 1, (0) 1

0, 0 .

wf f f

f as



 

  

     
(15)   

                

The parameters , , Pr andwf    are the suction/ 

injection parameter, the transverse curvature, the 

Prandtl number, and the heat source/sink parameter, 

respectively: They are defined by 

 

2

ν ν
v , , ,w w r

p

l Ql
f l b P

b cba
  

 
 


 

      

Here, the parameter wf  corresponds to suction when 

0wf  ; whereas 0wf  corresponds to blowing. We 

noticed that in the absence of transverse curvature and 

suction/injection, Eqs. (13) and (14) reduce to those of 

Hassanien (1997), while in the absence of the thermo-

physical properties and no curvature, equations reduce 

to those of Gupta and Gupta (1977), Further, in the 

presence of curvature and no thermo-physical 

properties, the equations reduce to those of Ishak and 

Nazar (2009), Also, when the transverse curvature and 

the thermo-physical properties are absent, the analytical 

solutions of the equations with the boundary conditions 

represent the flow and heat transfer results for the 

Newtonian fluid:  Our results agree very well with the 

results of Crane (1970), and Grubka and Bobba (1985). 

The physical quantities of interest are the skin friction 

coefficient fC and the local Nusselt number xNu  

which are defined by    

 

 2
,

2

w w
f x

ww

xq
C Nu

k T TU



  

 


                (16) 

 

where the surface shear stress and the surface heat flux 

are given by 

 

,w w

r a r a

u T
q k

r r
  

 

    
     

    

               (17) 

 

with   and k  being respectively,  the viscosity and 

the thermal conductivity of the fluid far from the 

surface. Using the similarity variables Eq. (12), we 

obtain 

  

   1 2

1 2

1
Re 0 , and 0

2 Re

x
f x

x

Nu
C f             (18) 

 

where Rex wU x 


 is the local Reynolds number. 

3. NUMERICAL PROCEDURES 

The system of coupled non-linear Eqs. (13) - (14) with 

variable coefficients subject to the boundary conditions 

(15) is solved numerically by an implicit finite 

difference scheme known as the Keller-box method (for 

details see Cebeci and Bradshaw, 1984; Keller,1992;  

Prasad et al., 2009). The axisymmetric flow and heat 

transfer at the permeable horizontal cylinder is 

controlled by the non-dimensional parameters, namely, 

the transverse curvature parameter, the fluid viscosity 

parameter, the injection parameter, the internal heat 

source/sink parameter, the Prandtl number and the 

variable thermal conductivity parameter. The main 

focus of the present study is to bring out the effects of 

these parameters through the numerical results for the 

skin friction and the wall temperature gradient. For 
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numerical calculations, a uniform step size of 0.01h   

is found to be satisfactory and the solutions are 

obtained within an error tolerance of
610 . The step 

size   and the position of the edge of the boundary 

layer   are to be adjusted for different values of the 

governing parameters to maintain the accuracy. For 

brevity, the details of the solution procedure are not 

presented here. It is also important to note that the 

computational time for each set of input parametric 

values should be short. Because the physical domain in 

this problem is unbounded, whereas the computational 

domain has to be finite, we apply the far field boundary 

conditions for the similarity variable 
 
at finite value 

denoted by 
max . We ran the bulk of computations with 

the value 
max 12  , which is sufficient to achieve the 

far field boundary conditions asymptotically, for all 

values of the parameters considered. The accuracy of 

the numerical scheme is validated by comparing the 

skin friction and the rate of heat transfer results with 

those available in the literature: These results agree 

very well (see Table 1 and 2). 

 

Table 1 Comparison of  '' 0f for different values of wf when 0, r     

 
wf =-1.0 wf  = -

0.5 

wf  = -

0.25 

wf  = -

0.1 
wf =0.0 wf =0.1 wf =0.2

5 
wf = 0.5 wf  = 

1.0 

Numerical 

solution 
0.618063 0.780800 0.882798 0.951260 1.000180 1.051255 1.132786 1.280778 1.618034 

Analytical 

solution 0.618034 0.780780 0.882782 0.951250 1.000000 1.051249 1.132780 1.280780 1.618034 
 

 

Table 2 Comparison of  0 for different values of  Pr when 0.0, 0.0, 0.0 and .r        

Pr  Grubkha and 

Bobba (1985) 

Ali (1994) Ishak et al. (2009) Present result 

0.72 0.8086 0.8058 0.808631350 0.808631 

1.0 1.0000 0.9961 1.0000000000 1.000000 

3.0 1.9237 1.9144 1.923682595 1.923663 

10.0 3.7207 3.7006 3.720673901 3.720649 

     
 

4. RESULTS AND DISCUSSION 

The influence of the temperature-dependent fluid 

properties and the transverse curvature on the 

axisymmetric flow and heat transfer at a horizontal 

permeable stretching cylinder is investigated 

numerically. Analytical solutions are obtained for the 

special case when , 0, 0 and 0r       . 

The warranted numerical solution for the general case is 

obtained by using a second order finite difference 

scheme known as the Keller-box method. In order to 

have an understanding of the mathematical model, we 

present the numerical results, graphically for the 

horizontal velocity and the temperature field, 

respectively in Figs. 2(a) to 2(d) and in Figs. 3 to 6. The 

local skin friction  0f  and the dimensionless wall-

temperature gradient  0  are presented in Table 3 for 

different values of the pertinent parameters. 

Figures 2(a) to 2(c) respectively, show the effects of 

suction  0wf  , impermeability  0wf  , and 

blowing  0wf 
 
on the horizontal velocity  f   for 

different values of the fluid viscosity parameter 
r  

and 

the transverse curvature parameter 
 
with Pr = 1.0. 

From these figures it can be seen that  f  decreases 

asymptotically to zero as the variable   increases.  The 

effect of increasing values of the fluid viscosity 

parameter 
r  is to decrease the momentum boundary 

layer thickness. Also, for 1 0r   , the boundary 

layer thickness decrease and the  horizontal velocity 

distribution asymptotically tend to zero (see Figs. 2(a) 

to 2(c)). This is due to the fact that, for a given fluid, 

when  is fixed, smaller 
r  implies higher 

temperature difference between the wall and the 

ambient fluid. The results presented in this paper 

demonstrate clearly that 
r , the indicator of the 

variation of fluid viscosity with temperature, has a 

substantial effect on the horizontal velocity  f   and 

hence on the skin friction. This observation also holds 

for non-zero values of the transverse curvature 

parameter. The effect of increasing values of the 

transverse curvature parameter is to increase the 

horizontal velocity and thereby enhance the boundary 

layer thickness. This phenomenon is even true for all 

values of injection parameter. It can be seen that the 

suction reduces the horizontal boundary layer thickness 

whereas the blowing has the opposite effect on it. These 

results are consistent with the physical situation. 

In Figs. 3 to 6, the numerical results for the temperature 

profiles      for several sets of values of the 

governing parameters are presented. The general trend 

is that the temperature distribution is unity at the 

surface and with the changes in the physical parameters 

tends asymptotically to zero in the free stream region.  
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The effects of fluid viscosity parameter and the 

transverse curvature parameter on temperature profiles 

    in the boundary layer for all values of injection 

parameter namely, suction, impermeability and blowing 

cases are shown respectively in Figs. 3(a) to 3(c). From 

the Fig. 3(a), we observe that the effect of increasing 

values of the fluid viscosity parameter 
r  is to enhance 

the temperature. This is due to the fact that an increase 

in the fluid viscosity parameter  
r  results in an 

increase in the thermal boundary layer thickness. This 

behavior is quite the opposite with non-zero values of 

the transverse curvature.  The effect of increasing the 

values of the transverse curvature leads to decrease the 

thermal boundary thickness. This observation holds true 

for all values of the injection parameter. 
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From the graphical representation (Fig. 3(d)), we 

observe that an increase in fw leads to a decrease in the 

temperature and hence, the magnitude of the wall-

temperature gradient increases. This is due to the fact 

that the thermal boundary layer is thicker in the case of 

suction as compared to the case of impermeability: 

However, it is thinner in the case of blowing.  

Figures 4(a) and 4b exhibit the temperature distribution 

  with  
 

for different values of the curvature 

parameter and the heat source/sink parameter   for 

both suction and blowing. From these graphs we 

observe that the temperature distribution is lower 

throughout the boundary layer for negative values of 

  (heat sink) and higher for positive values of   

(heat source). Physically 0   implies wT T i.e. 

the supply of heat to the flow region from the wall. 

Similarity, 0   implies wT T  i.e. the transfer of 
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heat is from the fluid to the wall. The effect of 

increasing values of the heat source/sink parameter   

is to increase the temperature. This holds true for all the 

values of the transverse curvature. The effect of the 

variable thermal conductivity parameter   and the 

curvature parameter on the temperature for both suction 

and blowing parameters are shown graphically in Figs. 

5(a) and 5(b). These profiles demonstrate quite clearly 

that an increase in the value of   results in an increase 

in the temperature and hence the thermal boundary 

layer thickness increases as    increases. This is due to 

the fact that the assumption of temperature-dependent 

thermal conductivity causes a reduction in the 

magnitude of the transverse velocity by the quantity 

( ) :k T r  Seen from the energy Eq. (14).  The 

variations of the temperature with 
 
for various values 

of the Prandtl number Pr are displayed in Figs. 6a and 

6b for both suction and blowing, respectively. These 

figures demonstrate that an increase in the Prandtl 

number Pr results in a decrease in the temperature 

distribution; and hence the thermal boundary layer 

thickness decrease. 

 The values of  0f 
 
proportional to the local skin 

friction, and the wall temperature gradient 

 0  proportional to the local Nusselt number for 

different values of the pertinent parameters are recorded 

in Table 3. Analysis of the tabular data shows that the 

effect of the injection parameter and the variable 

viscosity parameter is to decrease the skin friction: But 

quite the opposite is true with the rate of heat transfer. 

However, the effects of the heat source/sink parameter 

and the variable thermal conductivity parameter are to 

enhance the rate of heat transfer. On the other hand, the 

effect of the Prandtl number and the transverse 

curvature is to decrease the wall-temperature gradient. 

 
Table 3 Numerical values for the skin friction  0f   and the wall-temperature gradient  0 for different values 

of the physical parameters 

Pr     wf  
r
 

0   0.25   0.5   0.75   1.0   

 0f    0   0f    0   0f    0   0f    0   0f    0  

1.0 0.1 -0.1 0.0 

∞ 1.00001 0.98940 1.09183 1.08233 1.18242 1.17129 1.27115 1.25745 1.35821 1.34151 

-10.0 1.06119 0.98082 1.15670 1.07363 1.25101 1.16250 1.34344 1.24860 1.43416 1.33262 

-3.0 1.18921 0.96251 1.29280 1.05513 1.39524 1.14384 1.49574 1.22984 1.59447 1.31380 

-2.0 1.27668 0.95037 1.38816 1.04275 1.49839 1.13128 1.60656 1.21716 1.71282 1.30103 

1.0 0.1 -0.1 

-0.2 

-5.0 

1.00387 0.88978 1.10502 0.98382 1.20351 1.07307 1.29952 1.15924 1.39354 1.24319 

0.0 1.11823 0.97270 1.21713 1.06543 1.31486 1.15423 1.41069 1.24028 1.50480 1.32427 

0.5 1.45888 1.21741 1.54468 1.30086 1.63461 1.38446 1.72568 1.46730 1.81666 1.54917 

1.0 0.1 

-0.5 

0.5 -5.0 

1.46213 1.40406 1.54878 1.50060 1.63947 1.59278 1.73119 1.68151 1.82272 1.76758 

0.0 1.45785 1.16189 1.54325 1.23795 1.63291 1.31833 1.72378 1.39979 1.81460 1.48107 

0.1 1.45665 1.10032 1.54148 1.16382 1.63082 1.24103 1.72149 1.32211 1.81218 1.40380 

1.0 

0.0 

-0.1 0.5 -5.0 

1.46023 1.31596 1.54623 1.40282 1.63635 1.48981 1.72761 1.57603 1.81875 1.66127 

0.2 1.45765 1.13437 1.54326 1.21499 1.63302 1.29582 1.72392 1.37588 1.81474 1.45496 

0.4 1.45547 1.00178 1.54075 1.07804 1.63019 1.15457 1.72080 1.23035 1.81134 1.30515 

1.0 

0.1 -0.1 0.5 -5.0 

1.45888 1.21741 1.54468 1.30086 1.63461 1.38446 1.72568 1.46730 1.81666 1.54917 

2.0 1.47135 2.01658 1.55869 2.09528 1.64999 2.17279 1.74222 2.24932 1.83419 2.32505 

3.0 1.47941 2.70835 1.56779 2.78399 1.66006 2.85881 1.75321 2.93298 1.84602 3.00656 
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5. CONCLUSION 

Some of the interesting conclusions are as follows: 

  

 In the presence of temperature-dependent thermo-

physical properties, the effect of increasing 

values of transverse curvature parameter is to 

increase the velocity and the thermal boundary 

layer thicknesses; 

 In the presence of transverse curvature, the effect 

of the variable viscosity parameter is to decrease 

the velocity boundary layer thickness. However, 

quite the opposite is true with the thermal 

boundary layer thickness; 

 The effect of increasing the values of the Prandtl 

number is to decrease the thermal boundary layer 

thickness and the wall temperature gradient; 
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 The effects of the variable thermal conductivity 

and the heat source/sink parameter are to enhance 

the temperature; and 

Of all the parameters, the variable thermo-physical 

property parameters have the strongest effect on the 

drag, heat transfer characteristics, the horizontal 

velocity and the temperature fields.   
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