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ABSTRACT 

Steady two-dimensional stagnation point flow and heat transfer of a nanofluid over a porous stretching sheet is 

investigated analytically using the Homotopy Analysis Method (HAM). The employed model for nanofluid includes 

two-component four-equation non-homogeneous equilibrium model that incorporates the effects of Brownian 

diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-

point boundary value problem via similarity variables. The effects of thermophoresis number ( Nt ), Brownian motion 

number ( Nb ), suction/injection parameter ( S ), source/sink parameter (  ), permeability parameter ( 1k ), stretching 

parameter ( / )a b  and Lewis number ( Le ) on the temperature and nanoparticle concentration profiles are studied in 

detail. Moreover, special attention is paid on the variations of reduced Nusselt and Sherwood number on the effects 

of physical parameters. The obtained results indicate that for 2bN  , reduced Sherwood number remains constant; 

however, 0.5bN  corresponds to negative Sherwood number, i.e. concentration rate is reversed. 
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NOMENCLATURE 

, ,a b c  constants 0Q  dimensional heat generation/absorption (kg.m2/s) 

C  nanoparticle volume fraction Re  Reynolds number 

BD  Brownian diffusion coefficient Sh  Sherwood number 

TD  thermophoresis diffusion coefficient T  temperature (1/K) 

k  permeability of the porous medium (m2) m  thermal diffusivity (m2/s) 

1k
 

permeability parameter   parameter defined by ( ) / ( )P fc c   

Le  Lewis number   similarity variable 

Nb  Brownian motion parameter   dynamic viscosity (kg/m·s) 

Nt  thermophoresis parameter   heat source/sink 

Nu  Nusselt number   rescaled nanoparticle volume fraction 

n  stretching parameter  w  condition on the sheet 

Pr  Prandtl number   ambient conditions 

    
 

1. ELECTRONIC SUBMISSION 

Stagnation point flow has been attracted considerable 

attention by many authors through the years. Hiemenz 

(1911) developed an exact solution of the two 

dimensional stagnation point flow by using the 

similarity solution. Then, Homann (1936) extended the 

problem to the axisymmetric three dimensional 

stagnation point flow. Later on, different concepts and 

applications of stagnation point have been investigated 

in many fluid flow and heat transfer problems (Layek et 

al. 2007; Paullet and Weidman 2007; Wang 2008; 

Bachok et al. 2010; Bhattacharyya 2011; Hamad and 

Pop 2011; Rosali et al. 2011; Chamkha and Ahmed 

2011; Gangadhar 2012; Singh et al. 2012; Veerraju et 
al. 2012 and Mahapatra and Nandy 2013). 
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Based on recent studies, scientists have realized that a 

more effective way to cool different parts of industrial 

setups is needed which has been responded by using 

nanofluids in which nanometer-sized particles are 

added into the working fluid. These tiny particles have 

high thermal conductivity, so the mixed fluids have 

better thermal properties. The materials of these 

nanoscale particles are aluminum oxide (Al2O3), 

copper (Cu), copper oxide (CuO), gold (Au), etc., that 

are suspended in base fluids such as water, oil, acetone 

and ethylene glycol. The main obstacle in this field is 

how to keep the particles suspended in the static fluid 

homogeneously. It is noteworthy to say that nanofluids’ 

behavior are modeled mathematically and 

experimentally by many researchers which can be 

found in Mustafa et al. (2011), Alsaedi et al. (2012) and 

Bachok et al. (2012). 

To obtain accurate solution of above-mentioned 

problems, numerical techniques have been developed 

for years but due to some restrictions (Xu et al. (2008)), 

analytical approaches have been considered as 

alternative techniques. Perturbation techniques are the 

most common methods which are widely applied in 

science and engineering (Prober and Stewart 1963; Aziz 

and Benzies 1976; Skobelev and Struminskii 1977). 

Lack of perturbation techniques are that they strongly 

depend upon small/large physical parameters, so they 

cannot apply to strongly nonlinear problems. Hence, 

non-perturbation techniques such as Homotopy 

Perturbation method (Malvandi et al. 2012) and 

Variational Iteration Method (Hedayati et al. 2012) 

appeared in order to omit the dependency to small/large 

parameters. It must be noted that, these methods cannot 

ensure the convergence of series solution. On the other 

hand, The Homotopy Analysis Method (HAM) 

proposed by Liao (2012), is a general analytical 

approach to obtain series solutions of strongly nonlinear 

equations which can provides us a simple way to ensure 

the convergence of solutions series. In addition, we 

have great freedom to choose a proper base function to 

approximate a nonlinear problem. Therefore, the HAM 

is valid even for strongly nonlinear problems. 

Moreover, in contrast with numerical methods, it can be 

implemented with boundary condition at infinity; 

problems such as boundary layers have boundary 

condition at infinity and numerical methods are not able 

to evaluated infinity without the aid of previous studies, 

see Liao (2012). 

To the best of author's knowledge, no analytical studies 

have thus far been reported with regard to the boundary 

layer stagnation-point flow on a heated porous 

stretching sheet saturated with a nanofluid. Recently, 

Hamad and Ferdows (2012) studied the problem 

numerically with similarity solution. It is not surprising 

that their numerical results are limited to only special 

parameters that consistent with presumed similarity 

variable at infinity. However, the presented analytical 

results are independent to the value of similarity 

variable at infinity and cover a wide range of physical 

parameter. This method has been used by many authors 

in the wide range of engineering problems (Ziabakhsh 

et al. 2009, Hassani et al. 2011, Si et al. 2011). 

Moreover, the effects of non-dimensional parameters 

such as Prandtl number Pr , Lewis number Le , 

Brownian motion number bN  and thermophoresis 

number tN  on the Nusselt and Sherwood numbers are 

investigated. 

 

Fig. 1. Geometry of physical domain. 

2. GOVERNING EQUATION 

Consider the steady laminar two-dimensional flow near 

a stagnation-point at a porous surface saturated by a 

nanofluid as shown in Fig. 1. It is assumed that 

temperature and concentration at the surface have 

constant values of wT and wC  respectively, while the 

ambient temperature and concentration beyond 

boundary layer has constant values T  and C   

respectively. The coordinates x , y  are taken with the 

origin  O  at the stagnation point. Two opposite forces 

are applied along the x-axis similarly so that the wall is 

stretched while the position of the origin is kept fixed. 

The boundary layer equations governing the flow and 

heat transfer in the presence of heat source/sink can be 

expressed as 
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Subject to the boundary conditions 
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where u  and v  are the velocity components along the 

x and y coordinates,  U x  the stagnation point 

velocity of the free stream, f  is the density of the 
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base fluid, m  is the thermal diffusivity,   is the 

kinematic viscosity, ,a b  the positive constant,   BD  the 

Brownian diffusion coefficient, TD  is the 

thermophoretic diffusion coefficient,   is the ratio 

between the effective heat capacity of the nanoparticle 

material and heat capacity of the fluid, C  and  T are 

the volumetric volume expansion coefficient and local 

temperature respectively, p the density of the 

particles, k  is the permeability of the porous medium 

and finally 0  Q is the dimensional heat generation or 

absorption coefficient. With introduction of the 

following similarity parameters 

   ,

( ) ,      ,      

          
w w

T T C C

T T C

c
y
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Equations  (1)-(4) collapse into 
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with the transformed boundary condition Eq. (5) 
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(11) 

where Pr , ,   ,  Le Nb Nt  denote the Prandtl number, 

the Lewis number, the Brownian motion parameter and 

the thermophoresis parameter respectively. According 

to Bachok et al. (2012), the local Nusselt and Sherwood 

numbers can be defined as: 
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(12) 

Here w  is the surface shear stress and   wq , mq  are 

heat and mass flux at the surface respectively, and are 

defined as follows 
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It is worth mentioning that using dimensionless 

variables Eq. (6), the rate of heat and mass transfer and 

skin friction can be written as 
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Like Bachok et al. (2012) , in the present context 

,  / /x xNu ShRe Re and 2 x fRe C  are referred as 

the reduced Nusselt number, reduced Sherwood number 

and reduced skin friction coefficient which are 

represented by ' '(0),   (0)   and ''(0)f  respectively. 

3. SEMI ANALYTICAL SOLUTION 

For HAM solutions, the appropriate initial guesses can 

be chosen as: 
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and auxiliary linear operators 
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Where ic  ( 1 7i   ) are constants and [0,1]p   

denotes the embedding parameter and h  indicate the 

non-zero auxiliary parameters. So, the zero-order 

deformation problems are constructed as follows 
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According to the Taylor series with respect to p , the 

mth -order deformation equations may be achieved 
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and the boundary conditions are 
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which i (i = 1,2,3)h  is chosen in such a way that these 

three series are convergent at p = 1 . Equation (22) 

represents the system of non-homogeneous linear 

differential equations whose general solutions are the 

sum of complementary and particular solutions which 

can be expressed as: 
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To determine the values of these unknown constants, 

the boundary conditions Eq. (24) may be applied. 

Invoking the boundary conditions for , ,m m mf    as 

  , it can be obtained 
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Similarly using the conditions at 0   in Eq. (27), it 

can be deduced 

 
*

*
1 3 3

( )
0   ,   0m m m m

m

f
C C f C







    


 

 * *
5 70  ,     (0)m m

m mC C      

(29) 

 

Hence, the velocity  f  , the tempreture     and the 

concentratiom     can be obtained by 
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4. RESULTS AND DISCUSSION 

The system of Eqs. (7)-(9) and the boundary condition 

of Eq. (10) have been solved analytically via Homotopy 

Analysis Method (HAM). As pointed by Liao (2012), 

the convergence rate of approximation for the HAM 

solution strongly depend on the value of auxiliary 

parameter, i (i = 1,2,3)h . In order to seek the 

permissible values of 1 2  , and 3  of the functions of 

''' ',  (0) (0)f   and '(0) curves are plotted at 20th-order 

of approximations. Figures. 2(a) and 2(b) clearly depict 

the acceptable range, for values of 10.7       0.2  ħ  and 

2 30.6 , 0.2   ħ ħ  respectively. The present 

calculations are carried out based on the value of 

1 0.6 ħ  and 2 0.3 ħ . Furthermore, the best 

accuracy of the results is compared with the previous 

literatures in Table 1. 
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Table1 Comparison of results for '(0)  

when 
1

/ 0.Nb Nt S a b k        

Pr 
Present 

results 

Hamad And 

Ferdows (2012) 

Wang 

(2008) 

0.07 0.06557 0.06556 0.0656 

0.2 0.16911 0.16909 0.1691 

0.7 0.45391 0.45391 0.4539 

2 0.91138 0.91136 0.9114 

Before goes farther in the results, it is worth to describe 

the physical aspects of governing parameters more 

which appears in the nanofluid’s model, i.e. Brownian 

motion and thermophoresis. Brownian motion ( )Nb  

can be observed as random drifting of suspended 

nanoparticles, on the other hand, thermophoresis ( )Nt  

is nanoparticles migration due to imposed temperature 

gradient across the fluid. A mentioned phenomenon is 

the two important slip mechanisms which emerge as a 

result of nanoparticles’ slip velocity to the base fluid. 

For hot surfaces, due to repelling the sub-micron sized 

particles, the thermophoresis tends to blow nanoparticle 

volume fraction boundary layer away from the surface. 

Also, owing to size scale of particles, Brownian motion 

has significant influence on the surrounding liquids. 

Temperature and concentration profiles are analyzed in 

Figs. 3-5. In Figs. 3(a) and 3(b) the variation of 

temperature and concentration versus   at three 

different Lewis numbers are depicted. It is evident from 

the figures that dimensionless temperature is almost 

independent of Le  but the concentration profile 

decreases when Le  increases. Moreover, it can be 

realized that for Le<1 , the concentration trend on the 

wall reverses; this leads to a noticeable rise in the 

concentration boundary layer. 

 

  
(a) (b) 

Fig. 2. ''  (0) f plots for determining the optimum 1h  coefficient.  (b)  '(0)  plots for determining the optimum 

2 3 and h h coefficients 

 

 

 
 

(a) (b) 

Fig. 3. Effects of Lewis number on (a) Temperature, (b) Concentration 
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Next, we focused on the thermophoresis parameter 

effects on the temperature and concentration profiles 

which are displayed in Figs. 4(a) and 4(b) respectively. 

As is obvious, an increase in the thermophoresis 

parameter, Nt , increase both of fluid temperature and 

nanoparticle concentration. It must be mentioned that 

for 2Nt  , the parameter affects the temperature 

profile significantly which distinguishes this profile 

from conventional fluid. The effects of Nb  on the 

temperature and concentration profiles are revealed in 

Figs. 5(a) and 5(b) respectively. It is obvious that as 

Nb  increases, the values of   increases as well. 

Unlike , the values of  , decreases by increasing the 

.Nb  Concerning Fig. 5(b), it can be realized that for the 

values of 0.5Nb  , the variational trend at the wall 

changes. It is noteworthy to say that Brownian motion 

can be observed as random drifting of suspended 

nanoparticles, on the other hand, thermophoresis is 

nanoparticle migration due to imposed temperature 

gradient across the fluid. Mentioned mechanisms are 

two important slip mechanisms which appears as a 

result of nanoparticles’ slip velocity to the base fluid.  

Effect of Lewis number on the reduced Nu  and Sh  

numbers inside the boundary layer are plotted in Figs. 

6(a) and 6(b) respectively. It is clear that an increase in 

the Lewis number leads to a decrease in the Nusselt 

number; however, Sherwood number increases with 

increasing in Le . It is worth mentioning that at lower 

values of Lewis numbers, Sherwood number is negative 

i.e. reverse mass transfer occurs. In addition, for heat 

source 0  , reduced Nusselt number decreases but 

reduced Sherwood number climbs up. It is true to say 

that   has negligible effects on trends of Nu  and Sh  

versus Le . In Figs. 7(a) and 7(b) Reduced Nusselt and 

Sherwood variations versus Prandtl number have been 

plotted. Accordingly, it can be realized that when Pr  

increases, unlike Nusselt number, the values of 

Sherwood number decreases.  

  

(a) (b) 

Fig. 4. Effects of thermophoresis parameter on (a) Temperature, (b) Concentration 

  

(a) (b) 

Fig. 5. Effects of Brownian motion parameter on (a) Temperature, (b) Concentration 
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(a) (b) 

Fig. 6. Effects of Lewis number on (a) Reduced Nusselt number, (b) Reduced Sherwood number 

  
(a) (b) 

Fig. 7. Effects of Prandtl number on (a) Reduced Nusselt number, (b) Reduced Sherwood number 

 

Figures 8(a) and 8(b) show the variation of reduced 

Nusselt and Sherwood numbers versus thermophoresis 

parameter. It is obvious that when Nt  increases, the 

values of reduced Sherwood and Nusselt numbers 

decrease. Indeed, it can be seen that for 2Nt  , 

thermophoresis parameter has minor effects on reduced 

Sherwood number. 

 
 

(a) (b) 

Fig. 8. Effects of thermophoresis parameter on (a) Reduced Nusselt number, (b) Reduced Sherwood number 
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The effect of Brownian motion Nb  on the reduced 

Nu  and Sh  numbers inside the boundary layer are 

plotted in Figs. 9(a) and 9(b) respectively. As is 

evident, an increase in Nb  , unlike the Nu  profile, is 

accompanied by an increase of Sh  number. 

Considering Fig. 9(b), there is a special value for 

  2Nb  beyond which the values of Sh  number is 

independent of  Nb . Also it can be seen that for small 

value of  Nb , opposite transfer, i.e. negative Sherwood 

number, occurs.  

Figures 10(a) and 10(b) display the effects of 

source/sink parameter  on  Nu and Sh  respectively. 

As   increases, unlike Sh  , Nu  decreases. It is worth 

mentioning that the effects of   on Nu , depends on 

/a b . Moreover, as can be seen in Fig. 10b, the ratio of 

/a b  has greater impacts on Sh  for 0  . Finally 

The effects of permeability, 1k  on  Nu and Sh  have 

been investigated in Figs. 11(a) and 11(b) respectively. 

Both figures indicate a declining trend when 1k   

increases. It is obvious that 1k   has stronger effects on 

the profiles when the velocity ratio becomes very small. 

 

 

  
(a) (b) 

 

Fig. 9. Effects of Brownian motion parameter on (a) Reduced Nusselt number, (b) Reduced Sherwood number 

 

 

 

(a) (b) 
 

Fig. 10. Effects of heat source/sink on (a) Reduced Nusselt number, (b) Reduced Sherwood number 
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(a) (b) 

Fig. 11. Effects of permeability on (a) Reduced Nusselt number, (b) Reduced Sherwood number 

5. CONCLUSION 

In this paper, the two-dimensional stagnation-point 

flow and heat transfer towards a heated porous 

stretching sheet saturated with a nanofluid with heat 

source and suction / blowing boundary condition are 

studied. The transformed ODE equations for mass, 

momentum, energy and nanoparticles conservation 

have been solved analytically with the homotopy 

analysis method (HAM). The effects of various non-

dimensional parameters on the temperature and 

concentration profiles are studied in details. Results for 

the reduced Nusselt number (wall heat transfer rate) and 

reduced Sherwood number (wall mass transfer rate) are 

presented. The main results of the paper can be 

summarized as follows: 

 It is found that when the Brownian motion 

parameter Nb  increases, unlike temperature  , the 

concentration   decreases. However, an increase in 

the thermophoresis parameter, Nt , leads to an increase 

in the values of temperature   and concentration   

both. 

 Rising in Brownian motion parameter Nb , 

corresponds with climbing in reduced Sherwood 

number up and falling in reduced Nusselt number. 

Also, increasing the thermophoresis parameter Nt , 

increases reduced Nusselt number and decreases 

reduced Sherwood number. 

 Both of reduced Nusselt and Sherwood numbers 

decrease as permeability parameter 1k  grows. 

 The influence of heat source/sink   is to decrease 

reduced Nusselt number and to increase reduced 

Sherwood number. 

 With increasing in Prandtl number Pr , unlike the 

Nusselt number, the values of Sherwood number 

decreases. 

 Reduced Nusselt number declines with increasing in 

Lewis number; on the other hand, reduced Sherwood 

number increases. 
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