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ABSTRACT 

Aim of the paper is to study an unsteady boundary layer flow and heat transfer analysis of a viscous, incompressible 

dusty fluid over a porous stretching surface in the presence of time dependent free stream. The governing partial 

differential equations are reduced to couple non-linear ordinary differential equations by similarity transformation. 

Numerical solutions of these equations are obtained by using RKF-45 method. The solution obtained is dependent on 

governing parameters like magnetic parameter, unsteadiness parameter, Prandtl number, dust interaction parameter, 

suction parameter, Eckert number, the ratio of free stream velocity parameter and stretching parameter and thermal 

radiation parameter. Some important findings reported in this work reveals that the effect of radiation have significant 

impact in controlling the rate of heat transfer in the boundary layer region. 

 

Keywords: Unsteady flow and heat transfer, Boundary layer flow, Stretching porous surface, Dusty fluid, 

Numerical solution, Free stream velocity. 

 
NOMENCLATURE 
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
  unsteady parameter 

p
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
  mass concentration 

 1
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1
T

a t
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
 

   local fluid particle interaction 

parameters for heat 
 

2
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c

B
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
 

 

magnetic parameter 

 2
1

1
v

a t
 

   
local fluid particle is local fluid 

particle interaction parameter of 

velocity. 

N  number of dust particals 

0B  induced magnetic field 
* 3

*

1

16
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k k




 
thermal radiative parameter 

 1 1
p

T m

c
b t

c c



 

 

local fluid particle interaction 

parameters for heat transfer  *
Pr

c

k


  Prandtl number 

c  
stretching rate being a positive 

constant rq  radiative heat flux 

mc  specific heat of dust phase 
0v

R
c

  suction parameter 

pc  specific heat of fluid phase ( , )pT T  temperature of the fluid and dust 

Particle 

0

2

Tc
Ec

p




 
Eckert number wT  temperature of the wall 

*k  thermal conductivity T  constant temperature far away from 

the sheet. 

1k  mean absorption coefficient  ,u v  the velocity components of the fluid 
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phase along the x- and y-axis 

 ,p pu v
 

the velocity components of the 

particle phase along the x- and y-axis 
  

positive constant which measures the 

unsteadiness 

( , )
1

bx
U x t

t



 free stream velocity of the fluid  

1
1 t

c
 


   fluid particle interaction parameter 

 
t

cx
txuw




1
,

 
velocity of sheet 

b

c
    free stream velocity parameter 

t

v
v w




1

0  
suction velocity   viscosity of the fluid 

 

1. INTRODUCTION 

Sakiadis (1961) initiated the study of the boundary 

layer flow over a stretched surface moving with a 

constant velocity and formulated a boundary-layer 

equation for two-dimensional and axisymmetric flows. 

He employed a similarity transformation and obtained 

the numerical solution for problem. Tsou et al. (1967) 

analyzed the effect of heat transfer in the boundary 

layer on a continuous moving surface with a constant 

velocity and experimentally confirmed the numerical 

results of Sakiadis (1961). This interest stems from the 

fact that Momentum and heat transfer of boundary layer 

flow over a stretching sheet have been applied in many 

chemical engineering processes like metallurgical 

process, polymer extrusion process involving cooling of 

a molten liquid being stretched into a cooling system. 

The fluid mechanical properties desired for an outcome 

of such a process would mainly depend on two aspects, 

one is the cooling liquid used and the other is the rate of 

stretching. The rate of cooling and the desired 

properties of the end product can be controlled by the 

use of electrically conducting fluid and application of 

magnetic fields. The use of magnetic field has been 

used in the process of purification of molten metal from 

nonmetallic inclusions. In addition, due to the 

significance of the study of flow heat transfer caused by 

a stretching surface in many practical manufacturing 

process such as drawing, annealing and tinning of 

copper wires, continuous stretching, rolling and 

manufacturing of plastic films and artificial fibers, heat 

treated materials traveling on conveyer belts, glass 

blowing, crystal growing, paper production and so on. 

Carragher et al. (1982) investigated the flow and heat 

transfer over a stretching surface when the temperature 

difference between the surface and an ambient fluid is 

proportional to a power of distance from a fixed point. 

Vajravelu et al. (1992) discussed hydromagnetic flow 

of a dusty fluid over a stretching sheet. Sharidan (2006) 

studied similarity solutions for unsteady boundary layer 

flow and heat transfer due to a stretching sheet. 

Elbashbeshy et al. (2010) have studied the effects of 

thermal radiation and magnetic field on an unsteady 

mixed convection flow and heat transfer over a porous 

stretching surface. Subhas Abel et al. (2008) discussed 

the heat transfer in MHD viscoelastic fluid flow over a 

stretching sheet with the effects of variable thermal 

conductivity, non-uniform heat source and radiation. 

Grubka et al. (1985) studied the temperature field in the 

flow over a stretching surface when subjected to a 

uniform heat flux. Andersson et al. (2000) presented a 

new similarity solution for the temperature fields, which 

transforms the time-dependent thermal energy equation 

to an ordinary differential equation. Aziz (2009) 

obtained the numerical solution for laminar thermal 

boundary over a flat plate with a convective surface 

boundary condition using the symbolic algebra software 

Maple. Ali et al. (2010) studied an unsteady flow and 

heat transfer past an axisymmetric permeable shrinking 

sheet with radiation effect. Pop et al. (2004) have 

studied Radiation Effect on flow near the stagnation 

point. Mustafa et al. (2008) have obtained solutions for 

an unsteady MHD memory flow with oscillatory 

suction, variable free stream and heat source. Sharma et 

al. (2009) obtained the results for the effects of variable 

thermal conductivity and heat source/sink on MHD 

flow near a stagnation point on a linearly stretching 

sheet. The governing similarity equations contain 

Prandtl number, Eckret number, number density and 

unsteadiness parameter. Although a similarity solution 

is accomplished by these authors, some physically 

unrealistic phenomena are encountered for specific 

values of the unsteadiness parameter. 

The present analysis concern with the investigation  of 

two dimensional unsteady flow and heat transfer of a 

viscous incompressible dusty fluid about stagnation 

point on permeable stretching sheet in the presence of 

time dependent free stream velocity with radiation 

effect. Further, both the variable wall temperature 

(VWT) and variable heat flux (VHF) conditions have 

been considered. The governing equations are solved 

numerically using RKF-45 method with the help of 

symbolic algebra software Maple. 

2. MATHEMATICAL  FORMULATION AND 

SOLUTION OF THE PROBLEM 

Consider the two-dimensional unsteady boundary layer 

flow of a dusty viscous and incompressible fluid (with 

electric conductivity 0 ) in a stagnation point on 

stretching sheet in the presence of time dependent free 

stream. The fluid occupies the upper half plane i.e. y > 

0. The flow is considered to be generated by stretching 

of an elastic boundary sheet from a slit with the 

application of two equal and opposite forces in such 

way that velocity of boundary sheet is quadratic order 

of the flow directional coordinate x. A uniform 

magnetic field 0B is imposed along the y-axis.  

Two-dimensional boundary layer equations of dusty 

fluid in usual notation are: 

0
u v

x y

 
 

 
 (1) 
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

  

    
    
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
   


 

(2) 

( )
p p p

p p p

u u u K
u v u u

t x y m

  
   

  
 

(3) 

( )
p p p

p p p

v v v K
u v v V

t x y m

  
   

  
 

(4) 

   
0

p p p pu v

x y

  
 

 
 (5) 

In deriving these equations, the Stokesian drag force is 

considered for the interaction between the fluid and 

particle phase and the induced magnetic field is 

neglected. It is also assumed that the external electric 

field is zero and the electric field due to polarization of 

charges is negligible. 

( , ),wu u x t   ,wv v x t , at 0,y   

 , ,wu U x t   ,p wu U x t      

pv v ,  p pk      as ,y              

(6) 

Equations (1) to (5) subjected to boundary conditions 

Eq. (6) admit self-similar solution in terms of the 

similarity function f and the similarity variable   and 

defined by 

  '

1

cx
u f

t






,      

1

c
v f

t





 


 

 
1

cx
u F n

t



,      

1
p

c
v G

t





 


 

,
(1 )

c
y

t


 



      r H      

(7) 

where a prime denotes the differentiation with respect 

to . Substituting the set of Eq. (7) into Eqs. (1) to (5) 

gives 

         

     

  

2' ' ' ' ' ' '

'' '

' 2

2

0,

f f f f A f

f l H F f

M f A

    


   

   

  


       

    

  (8) 

       

     

' '

2 '

2

0,

A F F G F

F f f


   

   

 
  

 

    
  

 (9) 

       

   

' '

2 2

0,

A
G G G G

f G


   

  

 
  

 

     

 (10) 

           ' ' 0.H F G H G H         (11) 

The corresponding boundary conditions are transformed 

to: 

 ' 1,f          f R          at    0   

 ' ,f          ,F           ,G f       

  ,H E    as  ,   

(12) 

If 0A  and 0,   the analytical and numerical 

solutions of Eqs. (1) to (5) was given by   Vajravelu and 

Nayfeh (1992). 

3. HEAT TRANSFER AND ANALYSES  

The boundary layer heat transport equations in the 

presence of thermal radiation in space for two 

dimensional flows are given by  

   

2
*

2

2
,

p

p r
p p

T v

T T T T
c u k

t x y y

Nc N q
T T u u

y

 

 

    
    

    


   



 (13) 

 .

p p p
m p p

p
p

T

T T T
Nc u v

t x y

Nc
T T



   
  

   

  

 (14) 

The Rosseland approximation Eq. (12), i.e., the 

irradiative heat flux rq is modeled as 

* 4

1

4

3
r

T
q

k y

 
 


 (15) 

Assuming that the differences in the temperature within 

the flow are such that the term 
4T can be expressed as 

linear combination of the temperature, we expand 
4T in 

a Taylor’s series about T as follows 

   
24 3 2

4 4 6T T T T T T T T           (16) 

and neglecting higher order terms beyond the first 

degree in  ,T T we get 

4 4 33 4 .T T T T    (17) 

Substituting Eq. (17) in Eq. (15) we obtain 
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4 2

2
1

16
.

3

rq T T

y k y

 
 

 
 (18) 

The solution of Eq. (13) to Eq. (14) depends on the 

nature of the prescribed boundary condition. Here, the 

two types of heating processes are discussed. 

3.1 Variable wall temperature (VWT) 

For this heating process, the variable wall temperature 

is assumed to be a quadratic function of x and it is 

given by 

 
2

2
0 1w

cx
T T T T t






 
    
 
 

   at  0y   

,T T      pT T      as    ,y              

(19) 

In order to obtain similarity solution for the 

temperatures     and  p  we define 

dimensionless temperature variables as: 

  ,
w

T T

T T
  







       ,

p
p

w

T T

T T
 









          (20) 

where    
2

2
9 1 .

cx
T T T t  






 
   
 
 

 

Using Eq. (18), Eq. (19) and Eq. (20) in the Eq. (13) 

and Eq. (14), we get 

       

       

   

   

'' '

' '

1

2
2

1 Pr

2 Pr 4
2

Pr

Pr 0,

p

Nr f

A
f

N a

N Eca F f

    

      

   

 

 


    
    

  

     

 (21) 

         

     

'

'
1

2 4
2

0,

p p p

p

A
G F

b

       

     

 


     
 

 (22) 

Using the Eq. (19) and Eq. (20), the corresponding 

boundary conditions for     and  p  reduces to 

the following form 

  1         at      0,   

  0,        0p     as          
(23) 

3.2 Variable heat flux (VHF) 

For this heating process, employ the following variable 

heat flux boundary conditions, 

 
*

,wq x tT

y k


 


  at    0,y   

,T T   pT T    as  ,y                

(24) 

where    

3
5

22
20, 1 .w w

c
q x t q x t



 
  

 
 

In order to obtain similarity solution for temperature, 

define the dimensionless temperature variables in VHF 

case as in Eq. (20) where as 

 
 

2
0

* 2
.

1
w

qw
T T

k t


 

 


 
  
  

 

Using dimensionless variable Eq. (20), the temperature 

Eq. (13) and Eq. (14) take the form 

       

       

   

   

'' '

' '

1

2
2

1 Pr

2 Pr 4
2
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Pr 0,

p

Nr f

A
f

N a

N Eca F f

    

      

   

 

 


    
    

  
 

     

 (25) 

         

     

'

'
1

2 4
2

0,

p p p

p

A
G F

b

       

     

 


     
 

 (26) 

The corresponding boundary conditions become 

 ' 1      at    0,   (27) 

  0,      0p    as  .   (28) 

The physical quantities of interest in this problem are 

the skin friction coefficient fC and the local Nusselt 

number ,xNu which are defined as 

2
,w

f
w

C
U




    

 
,w

x
w

xq
Nu

k T T



 (29) 

where the skin friction w and the heat transfer from 

the sheet wq are given by 

0

,w
y

u

y
 



 
  

 
       

0

,w
y

T
q k

y


 
   

 
 (30) 

Using the non-dimensional variables, we obtain 

1/2 ''Re 0,xCf f     

  

 

'1 / 2 0 ,
Re

1
( ).

Re 1 / 2 0

x
x

x

x

Nu
VWT case

Nu
VHF case





 


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4. NUMERICAL SOLUTIONS 

Equations (8) to (11) together with the boundary 

conditions Eq. (12) form a nonlinear coupled boundary 

value problem, which has been solved numerically 

using a very efficient Runge Kutta Fehlberg fourth-fifth 

order method (RKF45 Method), which was discussed 

by Aziz (2009). In this method it is most important to 

choose the appropriate finite values of   . Here in 

our calculation process we take 5.   The accuracy 

of this numerical method was validated for the case of 

(VWT) by a direct comparison with the numerical 

results reported by Pop et al. (2004) and Phool Singh et 

al. (2010) for the steady state flow case ( 0)A   and 

 0Nr Ec  .Table 1 represents results of this 

comparison for  ' ' 0f . It is observed from this table 

that a very good agreement achieved between the 

results. 

Table 1 Comparison of the values of 
''(0)f for 

different values of stretching parameter   

0A Ec M R N     and 1Nr   

  
Pop et.al. 

(2004) 

Phool  

Singh et.al. 

(2010) 

Present 

Study 

0.1 -0.9694 -0.9696 -0.9696 

0.2 -0.9181 -0.9181 -0.9181 

0.5 -0.6673 -0.6672 -0.6672 

2.0 2.0174 2.0173 2.0170 

3.0 4.7290 4.7290 4.7290 

5. RESULTS AND DISCUSSION 

An unsteady boundary layer flow and heat transfer of a 

dusty incompressible fluid over a stretching sheet in the 

presence of free stream velocity and thermal radiation 

effect is examined in this paper. The boundary layer 

equations of momentum and heat transfer are solved 

numerically. The temperature profile ( )   in VWT and 

VHF case depicted graphically. The numerical solutions 

are obtained for various values of the governing 

parameters such as , , . , , ,A M R pr Ec   and 

.Nr Figures 1(a), 1(b), and  1(c) represent horizontal 

velocity profile of both fluid and dust particles for 

various value of A when Pr 0.71,  0,R   0.1,M   

0.2, 1,N Nr  0.1,  and 0.5, 2.0,1.0   One can 

observe from the Figs. 1(a) and 1(b) that the velocity 

decreases with the increase of the unsteady parameter A 

for all values of .  At 1   there is an formation of 

inverted boundary layer. At 1  , there would be no 

formation of boundary layer, as the fluid velocity is 

equal to the surface velocity. It is interesting to note that 

the thickness of boundary deceases with increasing 

values of A and .  

 
Fig. 1(a). Effect of unsteady parameter A for fluid and 

dust phase velocities when Pr 0.71, 2,R    

0.1, 0.2, 1M N Nr   and 0.1 0.5.    

 

 
Fig. 1(b). Effect of unsteady parameter A for fluid and 

dust phase velocities when Pr 0.71, 2,R    

0.1, 0.2, 1M N Nr   and 0.1 2.0.    

 
Fig. 1(c). Effect of unsteady parameter A for fluid and 

dust phase velocities when Pr 0.71, 2,R    

0.1, 0.2, 1M N Nr   and 0.1 1.0.    

 

The magnetic parameter M represents the impact of 

magnetic field on the flow. The presence of Lorentz 

force retards the force on the velocity field and 

therefore as M increases velocity decreases. This is 

shown in Fig. 2(a) when 1  . In case when 

1.  which is just opposite of 1,  as expected the 

velocity profile increases with the increase in the M as 

shown Fig. 2(b). 
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Fig. 2(a). Effect of Hartman number M  for fluid and 

dust phase velocities when Pr 0.71, 2,R   

0.5, 0.2, 1A N Nr   and 0.1, 0.5.    

 

 
Fig. 2(b). Effect of Hartman number M  for fluid and 

dust phase velocities when Pr 0.71, 0,R   

0.5, 0.2, 1A N Nr   and 0.1, 2.    

 

It is observed from the Table 2 that the skin friction 

decreases as unsteady parameter increase for 

1.  Here the negative value of  ' ' 0f means the 

solid surface exerts a drag force on the fluid. This is due 

to the development of the velocity boundary layer is 

caused solely on the stretching plate. For 1,  skin 

friction increases as unsteady parameter increase, this is 

due to fact that inverted boundary layer formed. Nusselt 

number decreases with increase in unsteady parameter 

for both VWT and VHF case. 

Figures 3(a) and 3(b) are the graphical representation 

for temperature distribution of VWT and VHF case, for 

different values of unsteady parameter A versus 

 0.5.  It is evident that temperature of fluid 

and dust particle decreases with the increase of 

unsteady parameter .A Temperature at a point of 

surface decreases significantly with the increase of A  

i.e. rate of heat transfer increases with increasing 

unsteady parameter .A  

 
Fig. 3(a). Effect of unsteady parameter A on 

temperature distribution with Pr 0.71, 1,Ec   

2,R  0.2, 0.1, 1N Nr   when 0.5.   

 

 
Fig. 3(b). Effect of unsteady parameter A on 

temperature distribution with Pr 0.71, 1,Ec   

2, 0.2, 0.1, 1R N Nr     when 0.5   

 

Figures 4(a) and 4(b) represent the temperature 

distribution for VWT and VHF case, for different 

values of unsteady parameter A versus 

2.0.   It shows that the temperature of fluid and dust 

particle increases with the increase of unsteady 

parameter ,A due to formation of invert boundary layer. 

Thermal boundary layer thickness decreases with the 

increase in A and .  

 
Fig. 4(a). Effect of unsteady parameter A on 

temperature distribution with Pr 0.71, 1,Ec   

2, 0.2, 0.1, 1R N Nr     when 2.   
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Fig. 4(b). Effect of unsteady parameter A on 

temperature distribution with Pr 0.71, 1,Ec   

2, 0.2, 0.1, 1R N Nr     when 2.   

 

Figures 5(a) and 5(b) depict temperature profiles of 

    and  p  versus  , for different values of 

Pr. We infer from these figures that temperature of 

fluid and dust particles decreases with the increase in 

Pr which implies momentum boundary layer is thicker 

than the thermal boundary layer. The temperature in 

both VWT and VHF cases asymptotically approaches to 

zero in the free stream region. 

 
Fig. 5(a). Effect of Prandtl number Pr on temperature 

distribution with 0.5, 1,A Ec   

2, 0.2, 0.1, 1, 0.5R N Nr       

 
Fig. 5(b). Effect of Prandtl number Pr on temperature 

distribution with 0.5, 1,A Ec   

2, 0.2, 0.1, 1, 0.5R N Nr       

 

Figures 6(a) and 6(b) indicate the temperature profile of 

    and  p  versus  , for VWT and VHF cases 

respectively. Here the effect of increasing values of 

Ec is to enhance the temperature of fluid and dust 

particles at any point which is true for both the cases 

VWT and VHF. This is due to fact that the heat energy 

is stored in the considered liquid due to frictional 

heating. 

 
Fig. 6(a). Effect of Eckert number Ec on temperature 

distribution with 0.5,Pr 0.71,A    

0, 0.2, 0.1, 1, 0.5.R N Nr       

 
Fig. 6(b). Effect of Eckert number Ec on temperature 

distribution with 0.5,Pr 0.71,A    

0, 0.2, 0.1, 1, 0.5.R N Nr       

 

Figures 7(a) and 7(b) represent the temperature profile 

for various values of thermal radiation parameter Nr in 

case VWT and VHF respectively. The effect of 

radiation is also to intensify the heat transfer. Thus the 

radiation should be at its minimum in order to facilitate 

the cooling process. This is agreement with the physical 

fact that the thermal boundary layer thickness increases 

with increasing .Nr  
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Fig. 7(a). Effect of thermal radiation parameter Nr  on 

temperature distribution with Pr 0.7  

0.5,1, 0, 1, 0.1, 0.5.A R Ec      

 
Fig. 7(b). Effect of thermal radiation parameter Nr  on 

temperature distribution with 0.5,A   

Pr 0.71, 0, 1, 0.1, 0.5.R Ec        

Table 2 Skin friction coefficient  '' 0 .f Wall temperature gradient  ' 0 . and temperature function  0 for different 

values of unsteady parameter A and stretching parameter .  

 0.5   2.0   

A   '' 0f               ' 0 (VWT)       0 (VHF)  '' 0f                ' 0 (VWT)        0 (VHF) 

0.0 

0.2 

0.4 

0.5 

-0.865010       -0.839736      1.185007 

-0.903257       -0.897433      1.109868 

-0.965240       -0.946227      1.054195 

-1.074451       -0.962418      1.037168 

2.221132        -1.161893      0.866282 

2.246273        -1.196650      0.843498 

2.270278        -1.228909      0.824060 

2.281756         -1.244141     0.815445 

 

Table 3 Wall temperature gradient  ' 0 and temperature function  0 for different values of the parameters 

, ,Pr, , ,A Ec N  and Nr  


 

A  Pr  Ec  Nr   ' 0 (VWT case)  0 (VHF case) 

0.01 0.5 0.71 1 1 -0.967132 1.031953 

0.05     -0.965604 1.033679 

0.1     -0.962418 1.037168 

0.1 0 0.71 1 1 -0.675387 1.185007 

 0.3    -0.745782 1.079694 

 0.5    -0.779171 1.037168 

0.1 0.5 0.71 1 1 -0.779171 1.037168 

  1.0   -0.931270 0.875396 

  2.0   -1.338263 0.627679 

0.1 0.5 0.71 0 1 -1.537350 0.989002 

   0.5  -1.405633 1.013085 

   2.0  -1.010485 1.085333 

0.1 0.5 0.71 1 1 -1.639629 1.037168 

    2 -1.209158 1.270959 

    3 -1.010485 1.468540 

 

6. CONCLUSION 

The results are analyzed for the situation when 

stretching boundary is prescribed by non-isothermal 

variable wall temperature (VWT) and variable heat flux 

(VHF) which are  varies quadratically with the flow 

directional coordinate .x The effect of various physical 

parameter like unsteady parameter .A Prandtl number 

Pr, Eckret number Ec Hartmann number ,M ratio of 

free stream velocity parameter to stretching sheet 

parameter  and thermal radiation parameter Nr on 

various momentum and heat transfer characteristics are 

obtained. Some of the interesting observations of this 

study are listed as follows; 

The effect of magnetic parameter is to decrease the 

fluid and particle velocity when 1.   
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The effect of magnetic parameter is to increase the fluid 

and particle velocity when 1,  which is due to the 

formation of invert boundary layer. 

Effect of unsteady parameter decrease the temperature 

profile of fluid and dust phases for both the cases of 

VWT and VHF when 1.   

Effect of unsteady parameter increase the temperature 

profile of fluid and dust phases for both the cases of 

VWT and VHF 1.   

At 1.0,  there is no formation of a boundary layer. 

Effect of thermal radiation parameter increases the 

temperature profile of fluid and dust phases for both the 

cases of VWT and VHF. 

Always the rate of heat transfer  ' 0 is negative and 

 0 is positive. 

 ' 0 and  0 increase with the increase of radiation 

parameter, fluid interaction parameter and Eckert 

number. 

The increase in Prandtl number decreases the thermal 

boundary layer thickness. 

 If 0, 0, 1, 0A Nr M     and 0N   then our 

results coincides with the results of Pop et al. (2004) 

and Phool Singh et al. (2010) for various values of .  
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