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ABSTRACT 

Nonlinear oberbeck convection in a chiral incompressible Boussinesq fluid flowing through a vertical  channel 

bounded by rigid permeable isothermal boundaries kept at different temperatures is investigated in this paper in the 

presence of a uniform transverse magnetic field, under the influence of viscous dissipation. The nonlinear-coupled 

momentum and energy equations are solved analytically using a regular perturbation method valid for small values of 

buoyancy parameter N. To validate the results obtained from the analytical solutions of the non-linear equations, 
which are also solved numerically using a finite difference method supplemented with the successive over recreation 

(SOR) technique. The velocity, temperature, skin friction, mass flow rate and the rate of heat transfer are computed 

for various values of electromagnetic thermal number Wemt, buoyancy parameter N, and suction Reynolds Number 

Re. The results obtained are represented graphically and found that an increase in Wemt, increases the velocity and 

temperature. Physically, we attributes this to setting up of small scale turbulence by magnetic filed. The effect of 

perturbation parameter N is shown to increases the skin friction, heat transfer and the mass flow rate. 
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NOMENCLATURE 

0B   applied magnetic field  

pC   specific heat capacity 

D    dielectric field   

H    magnetic field 

E     electric field 

g     acceleration due to gravity 

 b    width of the channel  

J    convective current density  

k     thermal conductivity 

emtw electromagnetic thermal number  

N    buoyancy parameter 

    magnetic permeability   

    viscous dissipation 

Pe

  

Peclet number  

p     pressure 

( , )q u v  velocity components in x and y    directions 

1R   viscosity variation parameter  

Re  Reynolds number  

T    absolute temperature 

T    coefficient of thermal expansion of density 

    dielectric constant 

    chirality coefficient  

   kinematic viscosity 

 f   viscosity of fluid 

e   distribution of electric charge density 

   non dimensional temperature  
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   density of fluid 

               

0  reference quantity 

 
 

1. INTRODUCTION 

This Mechanical, electrical and electronic devices give 

off heat as a byproduct of power consumption when a 

device is being used. Fans and regular fluids are usually 

used to improve the cooling processes, but they increase 

the device weight, size and bulk. Now a day, the 

industries continue to churn out miniature and portable 

devices. For this purpose, manufactures are challenged 

to find new ways to combat the persistence problem of 

thermal management. In addition, miniaturization has 

an increasing importance in many fields in the present 

day modern technological world. In the current 

industrial environment, there is a growing need to 

miniature devices, which are capable of delivering more 

power. There is of great concern for ensuring safety and 

integrity of contacting components which are to be 

enabled to resist fretting, wear, erosion, galling, 

scuffing and damage with thermal management 

application.  When reduced to sub-millimeter size, the 

integrity of the material typically used for cooling 

structure breaks down, materials like silicon become 

very brittle and easily shatter, while metallic structures 

used become bendable and weak. Therefore, there is an 

urgent need of suitable materials to overcome the above 

deficiencies. At present, there is no doubt that nano and 

smart materials are becoming popular for use in 

overcoming the above deficiencies, but they continue to 

be aggravated by heat. Apart from using these novel 

materials, for the first time in the literature an attempt is 

made to use a chiral material (solid or fluid) for the 

above purpose. The works of Arago (1811), Boit 

(1812), Jaggard et al. (1979) and Engheta and Micklson 

(1982) reveal that solid chiral materials have been used 

to manufacture devices like antennas. However, much 

attention has not been given to chiral fluids like 

turpentine, sugarcane solution used in sugar industries, 

body fluids used in designing artificial organs, and so 

on. 

A chiral material is defined as the one which cannot be 

brought into congruence with its mirror image by any 

amount of translation and rotation, and therefore having 

the property of handedness, either a left-handed or a 

right- handed, Rudraih et al. (1977). Since most of the 

chiral fluids are volatile in nature, they can be 

efficiently used for cooling purposes involving effective 

heat transfer. This heat transfer may also be due to 

density changes with temperature, when the 

temperature gradient is aligned to the direction of 

gravity, called natural convection, also called Rayleigh-

Benard convection. However, if the temperature 

gradient is maintained perpendicular to gravity, fluid 

movement arises instantaneously, due to the generation 

of vortices at the boundaries see Rudraiah et al. (1977), 

a phenomenon called Oberbeck convection. The 

Oberbeck convection in ordinary fluid and fluid 

saturated porous media, have been investigated by 

Rudraiah and Nagaraju (1977) and Rudraiah et al. 

(1982). But, to our knowledge, much attention has not 

been given to the study of Oberbeck convection in 

chiral fluids through a vertical channel in spite of their 

importance in many practical applications like in 

purification of sugar cane solution in sugar industries, 

in the biomedical engineering in the study of 

controlling stonosis in trachea (a wind pipe) formed by 

accumulation of tiny aerosols and so on, The study of it, 

in a chiral incompressible Boussinesq fluid, 

incorporating chirality in electromagnetic constitutive 

equations in the presence of a transverse magnetic field, 

is the objective of this paper. 

To achieve the above objective of this paper, the 

required basic equations supplemented with the 

Maxwell field equations, continuity of charges and the 

constitutive equations for chirality are given in section 

2. Analytical solutions of coupled nonlinear momentum 

and energy equations are obtained in section 3 using the 

regular perturbation technique. To know the validity of 

an analytical solution, numerical solutions are also 

obtained in section 4 using the finite difference scheme. 

The skin friction, heat transfer and the mass flow rate 

are obtained in section 5 and the important conclusions 

are drawn in the final section. 

2. MATHEMATICAL FORMULATION 

 
Fig. 1. Physical configuration 

 

The physical configuration, considered in this paper, 

consists of an infinite vertical channel bounded on both 

sides by rigid permeable isothermal boundaries of 

width b, kept at different temperatures as shown in Fig. 

1. The temperatures of the hotter and cooler plates 

respectively are T1 and T2. A transverse magnetic field 

of uniform strength B0 is applied in the z- direction. For 

mathematical formulation, we consider the two –

dimensional motion with the x-axis along the vertical 

direction and the y-axis normal to it. Then the required 

basic equations for an Oberbeck-Boussinesq chiral fluid 

in the absence of displacement current and induced 

magnetic field because of negligible electrical 

conductivity are: 

z 

x 

 T=T1    T=T0 

y 

0v  
0v  

y = 0 
y = b 

B0 

Chiral 
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Fig. 2. Velocity profile for various values of Wemt when 

N=0.01, Re=5, Pe=7 

 

The conservation of Mass for an incompressible fluid 

q = 0                                                        (1) 

 Equation of state for a Boussinesq fluid 

  0 01 ,T T T                                            (2)  

 

Conservation of Momentum 

 

2

0 f

Dq
p g q J B

Dt
            (3)    

                                                                                 

Conservation of Energy 

 

2

0 p

DT
c K T

Dt
                               (4) 

  

where  .
D

q
Dt t


  


, q  is the velocity with 

components (u,v), p  the pressure, J qe , the 

convective current density, f the viscosity of chiral 

fluid, T the temperature, K the thermal conductivity, Cp 

the specific heat at constant pressure, 0 the density of 

fluid at room temperature T0, βT the volumetric 

expansion coefficient and  
2

f
q    is the viscous 

dissipation. We assume an uniform suction or injection 

velocity, v0, at the boundaries. These equations have to 

be supplemented with the conservation of charges, 

e for an incompressible fluid with convective current 

density given by  

 

 . 0e

e
q

t


  




                            (5) 

 

and the Maxwell’s field  equations 

 

Gauss Law: D e         (6) 

Faraday’s Law: 
B

E
t


  


       (7) 

Amperes Law: 
eqH J           (8) 

The solenoidal property of magnetic field 

  

0B                                           (9) 

 

A physical reason for considering only the convective 

current is that the chiral fluids like sugar cane solution, 

turpentine and so on have low relaxation frequencies 

where the convective current q  dominates over the 

displacement current /D t  .The constitutive equations 

for chiral fluid, following Rudraiah et al. (2000), Nader 

Engheta et al. (1989) and Lakhtakia et al. (1988), are 

 

D E i B                         (10) 

 

B H i E                          (11) 

 

where, γ is the chirality coefficient,  the magnetic 

permeability,   the dielectric constant,  e  the density 

of distribution of charges. 

 

In this paper we assume a fully developed and 

unidirectional flow in the x-direction, so that the 

velocity u and temperature T are independent of x and t 

and are function of y only. In this case, the Lorentz 

force, J B , in the conservation of momentum 

with
0( , )q u v , is 

 

0 0 0
ˆ ˆ[ ]eJ B v B i uB j                       (12) 

 

Then the ‘x’ and ‘y’ components of the momentum Eq. 

(3) using the hydrostatic balance,
0/ 0  P y g , 

steady and fully developed flow, take the form 

 
2

0 0 0 02
( )

 
   

 

e

T

u u
g T T B

y y
v


  


     (13) 

 

0
0

e

p
B u

y



  


                      (14) 

 

The energy equation in the presence of a viscous 

dissipation is  

 
22

0 2

p

T T u
v

y y C y

  
 

  

 
 
 


                      (15) 

 

Making these equations dimensionless, using the scales 

b for length, 2
/V b for charge density

e , 

 2
1 0 /g b T T   for velocity, 

0( ) /T T T    for 

temperature, 1 0T T T   , 0T  the source temperature, 1T  

the boundary temperature, ν the kinematic viscosity and 

after simplification we get 

 
2

2
R 0e

emt

u u
W

y y


 
   

 
                     (16) 

 
22

2
0

u
P N

y y y
e

   
  

  

 
 
 

                     (17) 
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where Wemt=ρeε0VB0ν0/ρ0gβb2(T1-T0) is the 

electromagnetic thermal number, N=ρ0g
2β2(T1-T0)b

4/Kν 

the buoyancy parameter, Re=v0b/ν suction Reynolds 

number, and Pe=v0b/κ Peclet Number. We solve the 

above equations both analytically and numerically   

using the no-slip conditions on velocity and isothermal 

conditions on temperature. In dimensionless form these 

boundary conditions are: 

 

0 1, 1 1, 1 1u at y at y at y         

                                      (18) 

3. ANALYTICAL SOLUTIONS 

Equations (16) and (17) are the coupled non-linear 

momentum and energy equations. Analytical solutions 

of which are obtained using Regular Perturbation 

technique with buoyancy parameter N (<<1) as 

perturbation parameter. In this technique, we compute u 

and  in the series form given by. 

 
2

0 1 2 ...............u u Nu N u          (19) 

 
2

0 1 2 ..............N N             (20) 

 

Substituting Eq. (19) and Eq. (20) into Eq. (16) and Eq. 

(17) and equating the coefficients of like powers of N to 

zero restricting  the terms only up to the order unity 

because N<<1, we get the following boundary value 

problems  

 

Zeroth order equations: 
2

0 0

0
Re

2
0

emt

d u du
W

dydy
          (21) 

0 0

2

2
0Pe

d d

dydy

 
          (22) 

 

The corresponding boundary conditions obtained from 

Eq. ( 18) using Eq. (19) and Eq. (20) are: 

 

0 0 0
0 1, 1 1, 1 1u at y at y at y           

        (23) 

 

Then, the solutions of Eq. (21) and Eq. (22) satisfying 

the boundary conditions Eq. (23) are: 

Re

0 4 3 6 5

Pey yu A e A y A A e          (24) 

0 1 2

PeyA A e           (25) 

The first order equations are: 

2
1 1Re 012

d u du
Wemtdydy

          (26) 

 

22
01 1 0

2 e
dud d

P
dy dydy

   
   

 
      (27) 

 

and the corresponding boundary conditions obtained 

from Eq. (18) are: 

 

1 1 1
0 1, 0 1, 0 1u at y at y at y              (28) 

 

The solutions of Eq. (27) and Eq. (28) satisfying the 

boundary conditions Eq. (28), are: 

 

   

 

 

 

2 Re 2 2 2 e

3 1 14 12 4 2 3

Re ( Re) Re(1 )

7 11 12 8 4 14 5

2 Re Re

9 12 12 10 15 12 11 12 13

Re e Re

11 11 12 3 4 16 6 7

( / ) 2 ( / )
1

( / Re)( ( ) ) ( / )

( / Re )( ) ( / )

( / Re) ( / )

y P y

y Pe y y

y

P y y

u A a a e a y y A a e a

A e y a a A a e a e a

A e a a y A a a a e a a

A y a e a A A a ye a e a

 

      

     

     

     8a

        (29) 

 

4

2 Re 2 2

3 3 4 7

( Re) 2 Re

8 9 10 13 11

( / ) 2 ( / 2)
1

( / )

    

   

PeY Y PeY

Pe Y Y PeY

A Pe Y A A Ye A e A e

A e A e A a e A



  

        (30) 

 

where the coefficients Ai (i=1…..11) are given in the 

appendix to this paper. 

4. NUMERICAL SOLUTIONS 

The analytical solutions Eq. (29) and Eq. (30) obtained 

in section 3, using a regular perturbation technique with 

N as the perturbation parameter is valid only for small 

values of the parameter N. To know the validity of 

these solutions we solve them numerically in this 

section using a finite difference technique. The finite 

difference form of Eq. (16) and Eq. (17) using the 

central difference scheme with 21 mesh points with step 

(h) size 0.1 are: 

 

 j j j j j j emtL u [u u ( u ]Reh) / u h W h1
2 22   


      




         (31) 

 

   j j j j j j j

N
L [ u u ](Peh) /

2

2 2     


           

 

                                                              (32) 
 

where the step length h = 0.1 and the suffix j represent 

the mesh point which varies from 1 to20. Eq. (31) and 

Eq. (32) give two implicit equations in ju  and jθ  

represented by L1 and L2 respectively. They generate, 

separately, the system of algebraic equations 

for j-1 j, j+1u ,u u  and j-1 j, j+1θ ,θ θ resulting in tri-

diagonal coefficient matrices. These equations are 

solved using the method of successive over relaxation 

(SOR) technique. In this technique we choose the initial 

values of ju  and jθ  to be zero. This automatically 

corrects in the iteration procedure. In this relaxation 

method the scheme for kth iteration at jth mesh point is 

 
k k k k k k
j j j j j j

L L
u ( )u and ( )u 1 1

2
1 1

 



               
   

        (33) 

where ‘  ’ is the relaxation parameter. This translates 

Eq. (31) and Eq. (32) respectively to  
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 k k k
j j j j j j emt

k k
j j

L

w
u u u (Reh) / u u h W xh

w u ( w)u

2 2

1

2
2

1

   





      

 

  
 

 
 

  

        (34) 

 

   k k k
j j j j j j j

k k
j j

L

w
(Peh) / (N / ) u u

w ( w)

2

1

2 4

1

     





           


   

 
  

 
 

        (35) 

 

 where j 0y =y +jh with the initial guess yj=0.  

The boundary conditions for u given by Eq. (18) are 

incorporated as u0=0 and u20=0. Similarly we use Eq. 

(18) to obtain as Y=1θ =1  and Y=-1θ =-1 that is 

0θ =1 and 20θ =-1 . Then Eq. (34) and Eq. (35) are solved 

simultaneously from k=0 at each mesh j-point till the 

required order of accuracy k k
j juu 1 510  

 of iterative 

difference is achieved after comparison with the 

modified solution. The analytical and numerical results 

obtained are plotted graphically in Fig. 2 and Fig.3 and 

the results are discussed in section 6. 
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   Fig. 3. Temperature profile for various values of Wemt 

when N=0.01,Re=5, Pe=7 

5. SKIN FRICTION, RATE OF HEAT 

TRANSFER AND MASS FLOW RATE 

In many practical applications, involving separation of 

flow, it is advantages to know the skin friction, the rate 

of heat transfer and mass flow rate at the boundaries. 

The skin friction can be calculated from the shear stress 

‘τ’ at the walls, defined by 

 

 /
y b

u y 


                         (36) 

 

Making this dimensionless using, the scales ρgβbΔT for 

’τ’, gβb2 (T1-T0)/ν for ‘u’ and ‘b’ for ‘y’, we get the 

dimensionless skin friction 

 

 
1

/
y

du dy


                       (37) 

 

This, using Eq. (36), takes the form 

 

   / /
0 1 11

du dy N du dy
yy

  
  

                     (38) 

Similarly, the rate of heat transfer between the fluid and 

the plate is given by heat flux 

 /q k T y
y b

   
 

                     (39)

  

where ‘q’ is the heat flux. Making Eq. (39) 

dimensionless using the scale, θ= (T-T0)/ΔT and 

Nu=qb/k, we express the heat flux in terms of the 

Nusselt number Nu as 

 

 /
1uN y

y
   

 
                       (40) 

 

This, using Eq. (20), can be written as 

 

0 1 1 1( / ) ( / )u y yN d dy N d dy          (41) 

 

Here (du0/dy), (du1/dy), and (dθ0dy) and (dθ1 /dy) are 

obtained using the analytical solutions given in section 

3 and also computed numerically using Newton 

quadratic interpolation formula for differentiation. The 

results obtained are depicted graphically in Fig. 4 and 

Fig. 5 for skin friction and rate of heat transfer 

respectively and the conclusions are drawn in the final 

section 6. 
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  Fig. 4. Skin friction against Wemt with Re=0.5, Pe=0.7 

and for N = 0.01 and 0.1 

 

If ‘mf’ denotes the dimensionless mass flow rate per 

unit channel width in the presence of dissipation, then 

1

1

fm u dy


                                        (42) 

It is of practical Importance to compute the mass flow 

rate given by Eq. (42) using both analytical and 

numerical techniques. The analytical solution is 

obtained using those given in section 3. Similarly the 

numerical solution is obtained using Simpson’s one-

third rule for integration. The values obtained from 

computing the skin friction ‘τ’ given by Eq. (38), the 

Nusselt number Nu given by Eq. (41)  and mass flow 

rate ‘mf’ given by Eq. (42) are depicted graphically in 

Figs. 4-6 respectively and the conclusions are drawn in 

the final section 6. 
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Fig. 5.  Rate of heat transfer against Wemt when 

Re=0.5,Pe=0.7 and for N=0.01 to 0.15 
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Fig. 6. Mass flow rate against Wemt with Re=0.5, 

Pe=0.7 and for N=0.01 to0.15 

 

6. RESULTS AND DISCUSSION 

The analytical solutions obtained in section 3 for 

velocity and temperature distributions are computed for 

a symmetric heating and the results for velocity are 

depicted graphically in Fig. 2 against y for various 

values of Wemt with fixed values of N = 0.01, Re= 5, and 

Pe=7. From this, we found that the effect of increase in 

the value of Wemt is to increase the velocity distribution. 

This implies that the magnetic field augments 

convection in chiral fluid. Physically this is attributed to 

the fact that the magnetic field and suction velocity 

introduce the small scale turbulence in a chiral fluid. 

The temperature distribution for various values of Wemt 

with N = 0.01, Re= 5, and Pe= 7 are drawn in Fig 3. 

From this figure it is clear that the temperature 

distribution also increases with an increase in Wemt and 

sets up meandering of thermal lines near the hotter plate 

at y=1 implying the thermal boundary layer. Therefore, 

this increase in the thermal distribution at y=1 for 

different values of Wemtis due to the existence of 

thermal boundary layer effect at hotter plate y=1. 

 

To know the effect of the other parameters namely N, 

Re, and Pe, the velocity and temperature are also 

computed both analytically and numerically for 

different values of the Wemt and we found analogous 

results as given above and hence omitted here. We also 

observe that the results obtained from the analytical and 

numerical solutions agree well. 

The skin friction 'τ' at the cooler plate given by Eq. (38) 

is computed for various values of Wemt with Re=5, Pe 

=7, N=0.01 to 0.1 and the values obtained are depicted 

graphically in Fig. 4. From this, it is clear that the skin 

friction decreases with an increase in Wemt but increases 

with an increase in N. Similarly, the rate of heat transfer 

given by Eq. (41) is computed for various values of 

Wemt, when Re =5, Pe = 7, N=0.01, 0.05, 0.1 and 0.15 

and the results are depicted graphically in Fig. 5.  From 

this figure, we found that   Nu remains uniform for 

values of Wemt up to 15 and N up to 0.15 and then 

decreases with an increase in Wemt but increases with N. 

The analytical and numerical solutions obtained for 

mass flow rate given by Eq. (47) are computed for 

different values of Wemt and for Re =0.5, Pe=0.7, 

N=0.01, 0.05, 0.1 and 0.15 and the results are depicted 

graphically in Fig. 6. From this figure it is clear that the 

mass flow rate increases with an increase in Wemt and 

N. 
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