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ABSTRACT 

A two-dimensional mathematical model is presented for the laminar heat and mass transfer of an electrically-

conducting, viscous and Joule (Ohmic) heating fluid over an inclined radiate isothermal permeable surface in the 

presence of the variable thermal conductivity, thermophoresis and heat generation. The Talbot- Cheng-Scheffer-

Willis formulation (1980) is used to introduce a thermophoretic coefficient into the concentration boundary layer 

equation. The governing partial differential equations are non-dimensionalized and transformed into a system of 

nonlinear ordinary differential similarity equations, in a single independent variable . The resulting coupled 

nonlinear equations are solved under appropriate transformed boundary conditions using the Runge-Kutta fourth 

order along with shooting method. Comparisons with previously published work are performed and the results are 

found to be in very good agreement. Computations are performed for a wide range of the governing flow parameters, 

viz., magnetic field parameter, thermophoretic coefficient (a function of Knudsen number), Eckert number (viscous 

heating effect), angle of inclination, thermal conductivity parameter, heat generation parameter and Schmidt number. 

The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on 

hydronautical blades, semiconductor wafer design, thermo-electronics and magnetohydrodynamic energy generators. 
  

Keywords: Thermophoresis, Magnetohydrodynamics, Heat and mass transfer, Thermal radiation, Viscous 

dissipation, Joule heating, Heat generation, Inclined plate 

NOMENCLATURE 

0B          magnetic induction  

 C         species concentration in the boundary   

layer  

pc
        specific heat due to constant  pressure  

, ,m s tC C C
  constants in Eq. (10) 

1 2 3, ,C C C
 constants in Eq. (10) 

C         species concentration of the ambient  

                  fluid  

D         chemical molecular diffusivity 
Ec         Eckert number 

 

wf    dimensionless wall suction 
g   acceleration due to gravity  

k          thermophoretic coefficient  

M         magnetic field parameter 

Pr         Prandtl number 

0Q         heat generation constant 

Q          heat generation parameter 

          fluid density 

R         conduction-radiation parameter 
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Re x
  local Reynolds number 

Sc   Schmidt number 

T  temperature of the fluid in the   

boundary layer  

T
  temperature of the ambient fluid  

wT   temperature at the surface  

U  
free stream velocity  

,u v        
velocity components in ,x y   

directions 

 mv x   transpiration velocity  

TV   thermophoretic velocity  

,x y   axis in direction along and normal to 

the  plate  

   angle of inclination to vertical 

  
volumetric coefficient of thermal 

expansion 

 

  
local buoyancy parameter 

   electrical conductivity  

1  
Stefan–Boltzmann constant 

  
stream function  

  
similarity variable 

  kinematic viscosity  

   fluid viscosity  

w   wall shear stress  

  dimensionless temperature 

  
dimensionless concentration 

g  
thermal conductivity of fluid  

p   thermal conductivity of diffused  

   thermophoretic parameter 

  
mean absorption coefficient 

 differentiation with respect to   

 

1. INTRODUCTION 

Thermophoresis is the migration of aerosol and other 

particles in the direction of a decreasing temperature 

gradient. Such a phenomenon has received considerable 

attention in the engineering analysis community owing 

to major applications in optical fiber production, heat 

exchanger fouling, aerosol reactors etc. In optical fiber 

synthesis, thermophoresis has been identified as the 

principal mechanism of mass transfer as used in the 

technique of modified chemical vapour deposition 

(MCVD) Kremer et al. (2003). In this procedure a 

gaseous mixture of reactive precursors is directed over 

a heated substrate where solid film deposits are located. 

In particular the mathematical modeling of the 

deposition of silicon thin films using MCVD methods 

has been accelerated by the quality control measures 

enforced by the micro-electronics industry. Such topics 

involve a variety of complex fluid dynamical processes 

including thermophoretic transport of particlauet 

deposits, heterogenous/homogenous chemical reactions, 

homogenous particulate nucleation and coupled heat 

and energy transfer. Boundary layer theory has proven 

to be instrumental in simplifying the flow regimes to 

facilitate numerical solutions via CFD and also user-

specified numerical codes. Thermophoresis is also a 

key mechanism of study in semi-conductor technology, 

especially controlled high-quality wafer production as 

well as in radioactive particle deposition in nuclear 

reactor safety simulations and MHD energy generation 

system operations. A number of analytical and 

experimental papers in thermophoretic heat and mass 

transfer have been communicated. Brock (1962) 

provided an early analysis of aerosol thermophoretic 

dynamics. Batchleor and Shen (1985) later analyzed the 

thermophoretic migration of particles in a gaseous flow. 

Goren (1977) considered the thermophoretic deposition 

of particles in flat plate boundary layers. Talbot et al. 

(1980) presented a seminal study, considering boundary 

layer flow with thermophoretic effects, which has 

become a benchmark for subsequent studies (this model 

is extended in the present paper). The thermophoretic 

flow of larger diameter particles was investigated by 

Kanki et al. (1985). Lin and Ahn (1987) studied 

thermophoretic flows in semi-conductor materials. Shen 

(1988) discussed thermophoresis in two-dimensional 

and axisymmetric flow near cooled bodies. Sasse et al. 

(1992) considered laminar thermophoretic flows in 

various flat surface and concentric geometries. 

The study of magnetohydrodynamic viscous radiate 

flows has important industrial, technological and 

geothermal applications such as high-temperature 

plasmas, cooling of nuclear reactors, liquid metal fluids, 

MHD accelerators, and power generation systems. 

Hossain and Takhar (1996) analyzed the effect of 

radiation using the Rosseland diffusion approximation 

which leads to non-similar solutions for the forced and 

free convection flow of an optically dense fluid from 

vertical surfaces with constant free stream velocity and 

surface temperature. Hossain et al. (1999) studied the 

effect of radiation on free convection heat transfer from 

a porous vertical plate. Duwairi and Damseh (2004) 

studied the radiation–conduction interaction in free and 

mixed convection fluid flow for a vertical flat plate in 

the presence of a magnetic field effect. Mbeledogu and 

Ogulu (2007) studied the heat and mass transfer of an 

unsteady MHD natural convection flow of a rotating 

fluid past a vertical porous flat plate in the presence of 

radiative heat transfer. Rahman and Sattar (2007) 

studied the transient convective heat transfer flow of 

micropolar fluid past a vertical porous plate in the 

presence of thermal radiation. Alam et al. (2008) 

studied the effects of variable suction and 

thermophoresis on steady MHD combined free-forced 

convective heat and mass transfer flow over a semi-

infinite permeable inclined plate in the presence of 

thermal radiation.  Gnaneswara Reddy and Bhaskar 

Reddy (2010) studied the radiation and mass transfer 

effects on unsteady MHD free convection flow past a 

vertical porous plate with viscous dissipation by using 

finite element method. Recently, Gnaneswara Reddy 

and Bhaskar Reddy (2011) investigated mass transfer 

and heat generation effects on MHD free convection 

flow past an inclined vertical surface in a porous 

medium. Lie group analysis of heat and mass transfer 
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effects on steady MHD free convection flow past an 

inclined surface with viscous dissipation investigated 

by Gnaneswara Reddy (2013).  Gnaneswara Reddy 

(2012) analyzed lie group analysis of heat and mass 

transfer effects on steady MHD free convection 

dissipative fluid flow past an inclined porous surface 

with heat generation.  

 

The viscous and joule heating of ionized gases on 

forced convection heat transfer in the presence of 

magneto and thermal radiation effect was investigated 

by Duwairi (2005).  Recently, Osalusi et al. (2007) 

studied the effectiveness of viscous dissipation and 

Joule heating on steady MHD flow and heat transfer of 

a Bingham fluid over a porous rotating disk in the 

presence of Hall and ion-slip currents. 

The objective of the present paper is to study the 

combined effects of viscous dissipation and Joule 

heating on steady magnetohydrodynamic free 

convective heat and mass transfer flow of a viscous 

incompressible fluid past a semi-infinite inclined 

radiate isothermal permeable moving surface in the 

presence of thermophoresis and heat generation with 

variable thermal conductivity. 

2. GOVERNING EQUATIONS 

Consider a two-dimensional steady magneto-

hydrodynamic laminar free convective heat and mass 

transfer flow of a viscous incompressible and 

electrically conducting fluid past a continuously 

moving semi-infinite inclined porous flat plate with an 

acute angle a to the vertical with surface temperature 

wT , surface concentration wC , both constant and 

thermal conductivity, fk , which obeys a linear 

temperature law according to 

   0 01 1fk k T T k         where 0k  

denotes thermal conductivity in the free stream of the 

flow,  is a thermophysical constant dependent on the 

fluid ( 0  for lubrication oils, hydromagnetic 

working fluids and 0  for air or water) and 

 wT T    is the thermal conductivity variation 

parameter. The x -axis measured along the plate, a 

magnetic field of uniform strength 0B is applied in the 

y -direction that is normal to the flow direction. Fluid 

suction or injection is imposed at the plate surface. The 

temperature of the surface is held uniform at wT which 

is higher than the ambient temperatureT . The species 

concentration at the surface is maintained uniform 

at wC , which is taken to be zero and that of the ambient 

fluid is assumed to beC . The effect of thermophoresis 

and variable thermal conductivity is being taken into 

account to help in the understanding of the mass 

deposition variation on the surface. We further assume 

that   (i) the mass flux of particles is sufficiently small 

so that the main stream velocity and temperature fields 

are not affected by the thermophysical processes 

experienced by the relatively small number of particles, 

(ii) due to the boundary layer behavior the temperature 

gradient in the y -direction is much larger than that in 

the x -direction and hence only the thermophoretic 

velocity component which is normal to the surface is of 

importance, (iii) the fluid has constant kinematic 

viscosity and thermal diffusivity, and that the 

Boussinesq approximation may be adopted for steady 

laminar flow, (iv) the particle diffusivity is assumed to 

be constant, and the concentration of particles is 

sufficiently dilute to assume that particle coagulation in 

the boundary layer is negligible, (v) the magnetic 

Reynolds number is assumed to be small so that the 

induced magnetic field is negligible in comparison to 

the applied magnetic field and (vi) the fluid is 

considered to be gray; absorbing–emitting radiation but 

non-scattering medium and the Rosseland 

approximation is used to describe the radioactive heat 

flux in the x direction is considered negligible in 

comparison to the y -direction. 

Under the above assumptions, the governing equations 

for this problem can be written as 

Continuity equation 

0
u v

x y

 
 

 
                                 (1) 

Momentum equation 

 
22
0

2
cos

Bu u u
u v g T T u

x y y


  




  
    

  

                 

 

(2) 

Energy equation 

 

2

2

2 2
20

0

1

1

f
p

r

p p p

p

T T T T
u v k

x y c y y y

Bu q
u

c y c y c

Q
T T

c





  




     
   

     

  
   

  

 

      

(3) 

Species equation 

 
2

2 T

C C C
u v D V C

x y yy

   
  

  
          (4)  

where u  andv  are the velocity components in the x , 

y  directions, respectively,  is the kinematic 

viscosity,  is the fluid viscosity, g  is the acceleration 

due to gravity,  is the density of the fluid,   is the 

volumetric coefficient of thermal expansion, T , 

wT and T  are the temperature of the fluid inside the 

thermal boundary layer, the plate temperature and the 

fluid temperature in the free stream, respectively, while 

C , wC and C  are the corresponding concentrations, 

0B is the magnetic induction,  is the electrical 

conductivity, fk is the thermal conductivity of fluid, 

pc is the specific heat at constant pressure, rq is the 

radiative heat flux in the y -direction,
 0Q  is heat 

generation constant, D  is the molecular diffusivity of 

the species concentration and TV is the thermophoretic 

velocity. 
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The appropriate boundary conditions for the above 

model are as follows: 

 

0, , 0w w wu U v v T T C C at y     
 

0, ,u T T C C as y      
(5) 

where 0U  is the uniform plate velocity and 

 wv x represents the permeability of the porous 

surface. Here, we confine our attention to the 

suction/injection of fluid through the porous surface 

and for these we also consider that the transpiration 

function variable  wv x is of the order of 1 2x  . 

The radiative heat flux rq  under Rosseland 

approximation has the form 

 

44

3

s
r

e

T
q

k y

 
 


       

                    (6) 

where s  is the Stefan-Boltzmann constant and ek - 

the mean absorption coefficient. It should be noted that 

by using the Rosseland approximation, the present 

analysis is limited to optically thick fluids. If the 

temperature differences within the flow are sufficiently 

small, then Eq. (6) can be linearized by expanding 4T  

into the Taylor series aboutT , which after neglecting 

higher order terms takes the form  

4 3 44 3T T T T           (7) 

Using Eqs. (6) and (7) in Eq. (3) we have 

 

 

2

2

2 2* 3 2
20

2

0

1

16

3

f
p

p p e p

p

T T T T
u v k

x y c y y y

Bu T T
u

c y c k cy

Q
T T

c



 

  







     
   

     

  
   

  

 

 (8)

 

 

The second, third, fourth and fifth terms on the RHS of 

Eq. (8) denote the viscous, thermal radiation, magnetic 

heating and heat generation terms, respectively. 

Now the thermophoretic velocity TV , which appears in 

Eq. (4), can be written as (see Talbot et al. (1980)): 

 

T
r r

T k T
V k

T T y



 

   


 (9) 
 

where rT is some reference temperature and k  is the 

thermophoretic coefficient which ranges in value from 

0.2 to 1.2 as indicated by Batchelor and Shen (1985)  

and is defined from the theory of Talbot et al. (1980) by 

 

 

3 /
1 22 1 (

1 3 1 2 2

C Knf
s t

p

f
m t

p

k
C C Kn Kn C C e

k
k

C Kn C Kn





       
 

   
 

(10)

 

where 1C , 2C , 3C , mC , sC , tC  are constants, fk and 

p are the thermal conductivities of the fluid and 

diffused particles, respectively, and Kn is the Knudsen 

number. 

A thermophoretic parameter  can be defined (see Mills 

et al.; 1984 and Tsai; 1999) as follows: 

 

 w

r

k T T

T



   (11)

 

 

Typical values of   are 0.01, 0.05 and 0.1 

corresponding to approximate values of  wk T T   

equal to 3, 15 and 30 K  for a reference temperature 

of 300rT K . 

The Eqs. (1), (2), (8) and (4) are strongly coupled, 

parabolic and nonlinear partial differential equations. 

An analytical solution cannot be obtained and therefore 

we seek numerical solutions. Numerical computations 

are greatly facilitated by non-dimensionalization of the 

equations.  Proceeding with the analysis, we introduce 

the following similarity transformations and 

dimensionless variables which will convert the partial 

differential equations from two independent variables 

 ,x y  to a system of coupled, non-linear ordinary 

differential equations in a single variable   i.e. 

coordinate normal to the plate. In order to write the 

governing equations and the boundary conditions in 

dimensionless form, the following non-dimensional 

quantities are introduced (Chamkha and Issa; 2000). 

 

 

   

0
0, ,

2

,
w

U
y xU f

x

T T C

T T C

   


   

 

 


 



     (12) 

 

where  f  is the dimensionless stream function and  

  is the dimensional stream function defined by 

u
y





 

and v
x


 


                                (13) 

Then, introducing the Eq. (12) into Eq. (1), we obtain 

 0u U f   and   0

2

U
v f f

x


  

                  

(14) 

 

Here, prime denotes ordinary differentiation with 

respect to the similarity variable . Substituting Eqs. 

(12) and (14) in Eqs. (2), (8) and (4), we obtain the 

following non-linear differential equations 

 

cos 0f ff Mf        (15) 

 

   

2

2 2

3 Pr
(1 ) (

3 4

) 0

R
f

R

Ec f EcM f Q

   



 
      

 

    
 (16) 
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  0Sc f Sc         
 

(17) 

 

The non-dimensional parameters that appeared in the 

above equations are defined as follows:  

 

  

 

3

2 2

2 2
0 0 0

0

0
3

2
, ,Pr ,

Re

2 2
,Re , ,
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4
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x
p w

f e

p os

cg T T xGr
Gr

k

B x U x U
M Ec

U c T T

k k Q
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c U DT
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





 












  

  


 

  

 

The corresponding boundary conditions are 

 

 , 1, 1, 0 0wf f f at        

 

0, 0, 1f as       

where  
0

2
w w

x
f v x

U
  is the permeability of the 

porous surface which is positive for suction and 

negative for injection. The parameters  , M , Pr , Ec , 

R ,Q , , Sc  are the local buoyancy parameter, 

magnetic field parameter, Prandtl number, Eckert 

number, Radiation parameter, heat generation 

parameter,  thermophoretic parameter and Schmidt 

number respectively.

 
3. METHOD OF SOLUTION 

Equations (15)-(17) constitute highly non-linear 

coupled boundary value problem of third and second-

order. These systems of non-linear ordinary differential 

Equations with the relevant boundary conditions Eq. 

(18) are solved numerically for the velocity, 

temperature and concentration distributions, by using 

the Runge-Kutta fourth order along with Shooting 

method.  First of all, higher order non-linear differential 

Eqs. (15)-(17) are converted into simultaneous linear 

differential equations of first order and they are further 

transformed into initial value problem by applying the 

shooting technique (Jain et al.; 1985). The resultant 

initial value problem is solved by employing Runge-

Kutta fourth order technique. The step size 0.01  is 

used to obtain the numerical solution with five decimal 

place accuracy as the criterion of convergence. 

4. RESULTS AND DISCUSSION 

In order to get a physical insight into the problem, a 

parametric study is carried out. Throughout the 

numerical calculations the Prandtl number Pr  is chosen 

as 0.71 which corresponds air at 293 K and 1 

atmosphere of pressure. For numerical computations, 

the default values of the other parameters considered 

are 2.0, 0.5,M   0.5, 1.0,R   0.01,Ec 

0.1, 1.0,Q   0.6, 0.5wSc f   unless otherwise 

specified.  

In order to assess the accuracy of our computed results, 

the present result has been compared with Alam et al. 

(2009)  for different values of M on the velocity field 

is shown Fig. 1 with 0.0Q   . It is observed that the 

agreements with the solution of velocity profiles are 

excellent. 

  

Present result

Alam et al. 29

M 0.5

M 1.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

 

Fig. 1. Comparison of temperature profiles 

 

Figures 2-4, respectively, show the dimensionless 

velocity, temperature and concentration profiles for 

different values of magnetic field parameter M  for 

both suction  0wf   as well as injection 

 0wf  cases. From Fig. 2 we observe that increasing 

the magnetic field parameter decreases the velocity 

inside the boundary layer as a result of the increased 

retarding force. On the other hand, from Fig. 3 we see 

that the magnetic field increases the temperature of the 

fluid inside the boundary layer because of excess 

heating and consequently decreases the heat flux. 

Increasing the magnetic field parameter is found to 

decrease the velocity boundary layer thickness and 

increase the thermal boundary layer thickness in the 

case of fluid withdrawing as well as for fluid injecting. 

Therefore, magnetic field can be used to control the 

flow and heat transfer characteristics. From Fig. 4 we 

see that the concentration profile decreases with the 

increase of the magnetic field parameter. 

 

M 0, 1, 2

suction

injection

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

f

 
Fig. 2. Velocity profiles for different values of M
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M 0, 1, 2

suction

injection
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Fig. 3. Temperature profiles for different values of M  
 

 

M 0, 1, 2

suction

injection

0 1 2 3 4 5
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Fig. 4. Concentration profiles for different values of 

M  
 

The effect of buoyancy parameter  on the velocity, 

temperature and concentration profiles are shown in 

Figs. 5-7, respectively. It is obvious that an increase in 

the buoyancy parameter results in increasing velocity 

and concentration within the boundary layer. As 

buoyancy parameter increases the temperature 

decreases. 

 

2.0 , 4.0 , 6.0

suction

injection

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

f

  

Fig. 5. Velocity profiles for different values of 
 

 

 

 

2.0 , 4.0 , 6.0
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Fig. 6. Temperature profiles for different values of 
 

 

2.0 , 4.0 , 6.0

suction

injection

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

  

Fig. 7. Concentration profiles for different values of 
 

 

Figures 8, 9 and 10 show the effects of thermal 

conductivity parameter   on dimensionless velocity, 

temperature and concentration functions versus 

transverse coordinate . Figure 6 shows that the 

dimensionless velocity u increase as the thermal 

conductivity parameter   increases. This is because as 

  increases the thermal conductivity of the fluid 

increases. A rise in   from zero (constant thermal 

conductivity of fluid) through 0.5  to1, induces a 

significant increase in the temperature in the flow 

domain (Fig. 9). All profiles decay smoothly to zero 

from maximum values at the wall to zero in the free 

stream (edge of the boundary layer). Fluid temperature 

is therefore maximized with larger values of  . A 

similar but less marked trend is seen for the distribution 

of concentration function with   (Fig. 10), where again 

  values are seen to rise with an increase in  , in 

particular nearer to the wall. All profiles ascend from 

zero at the wall to unity in the free stream. 
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Fig. 8. Velocity profiles for different values of 
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Fig. 9. Temperature profiles for different values of    
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Fig. 10. Concentration profiles for different values of 


 

 

Figures 11–13, respectively, show the dimensionless 

velocity, temperature and concentration profiles for 

different values of conduction–radiation parameter R . 

From Fig. 11 we see that increasing the values of R  

decreases the velocity of the fluid inside the 

hydrodynamic boundary layer for both case of constant 

fluid suction or injection. From Fig. 12 it is found that 

the increasing of conduction–radiation parameter 

increases the temperature gradients near the porous wall 

for both case of constant fluid suction or injection, 

which increases heat transfer rates, this is due to the fact 

that radiation effect increases temperatures of the fluids 

and the absence of radiation defines small temperatures. 

Therefore, radiation intensifies the buoyancy force. Fig. 

12 also reveals that for sufficiently strong radiation 

effect 3R  (not precisely determined) in connection 

with the effect of injection overshoot the temperature 

profile near the surface of the plate. Fig. 13 shows that 

decreasing effect of radiation on the concentration 

profile for fluid suction is less compared to that of fluid 

injection. 
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Fig. 11. Velocity profiles for different values of R  
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Fig. 12. Temperature profiles for different values of R  
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Fig. 13. Concentration profiles for different values 

of R  
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The effect of viscous dissipation parameter or Eckert 

number Ec on the velocity, temperature and 

concentration profiles are shown in Figs. 14 -16, 

respectively. These figures reveal that increasing the 

Eckert number broadens the velocity, temperature as 

well as concentration distributions inside the velocity, 

thermal and concentration boundary layers. Increasing 

effect of Ec on the concentration profiles for the case 

of suction is less pronounceable. But for the case of 

injection this effect is quite significant. 
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Fig. 14. Velocity profiles for different values of Ec  
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Fig. 15. Temperature profiles for different values of 

Ec  
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Fig. 16. Concentration profiles for different values 

of Ec  
 

 

Figures 17, 18 and 19 to illustrate the influence of heat 

generation parameter Q on the dimensionless velocity 

temperature and concentration fields through the 

boundary-layer.  It is seen from Fig. 17 that the velocity 

profile is influenced considerably and increases when 

the value of heat generation parameter increases. As 

expected a rise in positive value of Q from 0 to 0.5and 

1 induces a clear increase in temperature function 

 throughout the flow domain normal to the plate. 

Physically heat generation in the fluid will add thermal 

energy to the flow and therefore for positive Q  

temperatures will rise. Such a heat source phenomenon 

is possible in energy system devices or hot spots in 

industrial treatment systems. In Fig.18, the case of no 

heat source logically lies at the interface between the 

minimal values of positiveQ . The trend for all 

temperature plots, in consistency with the wall and free 

stream boundary conditions is a gradual decay from the 

plate (wall) to the edge of the boundary layer, where we 

observe all profiles converging to zero at 

approximately 5  . These effects are very similar to 

nonmagnetic studies, indicating that heat source effects 

are not influenced by the presence of a transverse 

magnetic field. A similar but less dramatic trend is 

observed for the distribution of concentration in the 

domain (Fig. 19). Again   is increased with a positive 

rise in Q i.e. increasing heat generation. 
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Fig. 17. Velocity profiles for different values of Q
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Fig. 18. Temperature profiles for different values of Q  
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Fig. 19. Concentration profiles for different values of 

Q
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Fig. 20. Velocity profiles for different values of   

 

 

Representative velocity profiles for three typical angles 

of inclination (
0 0 00 ,30 45and  ) are presented in 

Fig. 20 for both fluid suction as well as injection cases. 

It is observed from Fig. 20 that increasing the angle of 

inclination decreases the velocity inside the 

hydrodynamic boundary layer. This is because the 

angle of inclination decreases the effect of the 

buoyancy force due to thermal diffusion by a factor 

of cos . Consequently the driving force to the fluid 

decreases as a result velocity of the fluid decreases. The 

velocity of the injecting fluid amplifies the fluid 

velocity within the boundary layer. The combined 

effects of injection and the buoyancy force (which is 

maximum for 0  ) overshoots the main stream 

velocity significantly. From Figs. 21-22 we observe that 

both the thermal as well as concentration boundary 

layer thickness increases as the angle of inclination 

increases. The increasing effect of a on these boundary 

layers thickness is quite strong for the case of injection. 

The effect of thermophoretic parameter  on the 

concentration field is shown in Fig. 23. From this figure 

we observe that concentration boundary layer thickness 

increases as the thermophoretic parameter increases for 

fluid suction as well as for fluid injection. 

Figure 24 shows concentration profiles for various 

values of the Schmidt number Sc . From this figure it is 

clear that the concentration boundary layer thickness 

decreases as the Schmidt number Sc  increases that 

analogous to the effect of increasing the Prandtl number 

on the thickness of a thermal boundary layer. 
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Fig. 21. Temperature profiles for different values of   
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Fig. 22. Concentration profiles for different values of 

  
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Fig. 23. Concentration profiles for different values of 


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Fig. 24. Concentration profiles for different values of 

Sc  
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5. CONCLUSION 

In this article a mathematical model has been presented 

for the hydromagnetic boundary layer flow over an 

inclined radiate isothermal permeable surface with 

thermophoresis present and also heat generation effects 

and viscous and Joule heating with variable. Using 

transformations a set of ordinary differential equations 

has been derived for the conservation of mass, 

momentum and species diffusion in the boundary layer 

regime. These nonlinear, coupled differential equations 

have been solved under physically valid boundary 

conditions using the Runge-Kutta fourth order along 

with shooting method. . Fluid velocity and fluid 

temperature increase with the increase in 

parameter  .Magnetic field has been shown in the 

present flow scenario to infact induce acceleration of 

the flow, rather than deceleration, but to reduce 

temperatures and increase concentration of particles in 

the boundary layer. Fluid velocity decreases with the 

application of suction and increases in case of injection 

of fluid in the boundary layer. A positive increase in 

Eckert number is shown to reduce temperatures in the 

flow, as experienced via both viscous dissipation and 

Joule (Ohmic) heating. Themophoresis for the case of a 

cold wall (positive ) is shown to initially increase 

concentration of particles in the boundary layer, but a 

short distance from the wall this trend is reversed. The 

computations have important implications in aerosol 

deposition dynamics, hydronautics of blades, and also 

optical fiber manufacture under magnetic field control.  
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