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ABSTRACT 

The effects of joule heating on MHD natural convection flow from a horizontal circular cylinder along the outer 

surface from the lower stagnation point to the upper stagnation point in presence of pressure stress work and viscous 

dissipation is investigated. The results have been obtained by transforming the governing boundary layer equations 

into a system of non-dimensional equations and by applying implicit finite difference method together with Newton’s 

linearization approximation. Numerical results for different values of the magnetic parameter, joule heating parameter 

and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction co-efficient and 

the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters. Results are 

compared with previous investigation.  
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NOMENCLATURE 

xCf

 

local skin friction coefficient ,x y
 

dimensionless Cartesian coordinates 

pc  specific heat at constant pressure ,x y

 

dimensional Cartesian coordinates 

f  dimensionless stream function   kinematics viscosity 

Gr  local Grashof number     viscosity of the fluid 

g  acceleration due to gravity    θ  dimensionless temperature function 

J  joule heating parameter λ  viscous dissipation parameter 

M  magnetic parameter ε  pressure stress work parameter 

xNu

 

local Nusselt number coefficient β  co-efficient of thermal expansion 

Pr  Prandtl number 0β  magnetic field strength 

wT  temperature at the surface of the cylinder   stream function 

T  temperature of the ambient fluid   density of the fluid 

T  temperature of the fluid in the boundary   electric conduction 
,u v  the dimensionless x and y component   of the 

velocity 

  

u ,v

 

the dimensional x and y component of the 

velocity 
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1. INTRODUCTION 

The influence and importance of viscous dissipation 

effects in free convection flows have been examined by 

Gebhar (1962). Zakerullah (1972) has been investigated 

the viscous dissipation and pressure work effects in 

axisymmetric natural convection flows. Ackroyd (1974) 

studied the stress work effects in laminar flat plate 

natural convection flow. Takhar and Soundalgekar 

(1980) have studied the effects of viscous and joule 

heating on the problem posed by Sparrow and Cess 

(1961), using the series expansion method of Gebhart.  

But they investigated generally not in a particular case 

of study. Natural convection flow from a horizontal 

cylinder due to thermal buoyancy was analyzed by a 

number of researchers Merkin et al. (1988), Kuehn et 

al. (1980) and Wang et al. (1990). Joshi and Gebhart 

(1981) have shown the effect of pressure stress work 

and viscous dissipation in some natural convection 

flows. Effects of pressure stress work and viscous 

dissipation in natural convection flow along a vertical 

flat plate with heat conduction have been investigated 

by Alam et al. (2006). Recently, Hye et al. (2007) have 

considered the effects of heat and mass transfer on 

natural convection flows across an isothermal 

horizontal circular cylinder with chemical reaction. 

MHD flow and heat transfer process are now an 

important research area due to its potential application 

in engineering and industrial fields. A considerable 

amount of research has been done in this field. Wilks et 

al. (1976) studied MHD free convection about a semi-

infinite vertical plate in a strong cross field. Takhar and 

Soundalgekar (1980) investigated dissipation effects on 

MHD free convection flow past a semi-infinite vertical 

plate. Hossain (1992) studied viscous and Joule heating 

effects on MHD free convection flow with variable 

plate temperature. Aldoss et al. (1996) analyzed MHD 

mixed convection from a horizontal circular cylinder. 

El-Amin (2003) found out the combined effect of 

viscous dissipation and Joule heating on MHD forced 

convection over a non-isothermal horizontal circular 

cylinder embedded in a fluid saturated porous medium. 

He observed that both the velocity profiles and 

temperature profiles shifted down for increasing value 

of magnetic parameter and that are rise up for 

increasing value of joule heating parameter. Recently, 

Molla et al. (2012) studied the effect of temperature 

dependent viscosity on MHD natural convection flow 

from an isothermal sphere. 

However, the joule heating effects on MHD natural 

convection flow in presence of pressure stress work and 

viscous dissipation has received little attention. Hence, 

the present study is attempted.  

2. MATHEMATICAL ANALYSIS  

Let us consider a steady natural convection flow of a 

viscous incompressible fluid from an isothermal 

horizontal circular cylinder of radius a placed in a fluid 

of uniform temperature. A uniform magnetic field 

having strength 0B is acting normal to the cylinder 

surface. The effects of pressure stress work, viscous 

dissipation and joule heating in the flow region and 

conduction from surface considered in the present 

study. The flow configuration and the coordinates 

system are shown in Fig.1. Under the balance laws of 

mass, momentum and energy and with the help of 

Boussinesq approximation for the body force term in 

the momentum equation, the equations governing this 

boundary-layer natural convection flow can be written 

as:  
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Fig. 1. The geometry of the problem 

 

The physical situation of the system suggests the 

following boundary conditions 
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The governing equations and the boundary conditions 

Eqs. (1)-(4) can be made non-dimensional, using the 
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Where  is the dimensionless temperature. The non 

dimensional forms of the Eqs. (1)-(3) are as follows: 
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(8) 

Where 2 2 1/2
0( ) / ( )M a B Gr   is the magnetic 

parameter,  2 1/2
0( ) /{ }p wJ B Gr c T T     is the joule 

heating parameter and /pPr c   is the Prandtl 

number.  

The boundary condition Eq. (4) can be written as in the 

following dimensionless form: 

,0,0
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To solve Eqs. (6)-(8), subject to the boundary condition 

Eq. (9), we assume following transformations 

 yxfx , , ),( yx   (10) 

Where   is the stream function usually defined as 

yu  / , xv  /  (11) 

Substituting Eq. (11) into the Eqs. (6)-(9), the new 

forms of the dimensionless Eq. (7) and Eq. (8) are 
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In the above equations primes denote differentiation 

with respect to y. The corresponding boundary 

conditions take the following form:  
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3. METHOD OF SOLUTION  

Equations (12) and (13) are solved numerically based 

on the boundary conditions as described in Eq. (14) 

using one of the most efficient and accurate methods 

known as implicit finite difference method with Keller 

box scheme. 

4. RESULT AND DISCUSSION  

Joule heating effects on magneto-hydrodynamic natural 

convection flow in presence of pressure stress work and 

viscous dissipation from a horizontal circular cylinder 

has been investigated. The velocity profiles, 

temperature distributions, local skin-friction and the 

local rate of heat transfer obtained by the finite 

difference method for various values of the governing 

parameters. The aims of the figures are to display how 

the profiles vary with the scaled stream wise coordinate. 

From Fig. 2(a), it is observed that the velocity increases 

as the values of the joule heating parameter J increase. 

The velocity increases significantly along y and 

becomes maximum and then decreases slowly and 

finally approaches to zero, the asymptotic value. The 

maximum values of the velocity are 0.32931258, 

0.33958319, 0.35539332 and 0.36033431 for J = 0.1, 

0.3, 0.5 and 0.9 respectively which occur at y= 1.80 for 

first, second maximum values, at y = 1.45 for third and 

fourth maximum values. Here it is observed that the 

velocity increase by 15.23% as J increases from 0.1 to 

0.9. From Fig. 2(b), it is seen that when the values of 

joule heating parameter J increase, the temperature also 

increases. 
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Fig. 2(a). Variation of velocity profile against y for 

varying of J with M = 0.1, 0.5  , 0.5   and Pr 

=1.0. 
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Fig. 2(b). Variation of temperature against y for 

varying of J with M = 0.1, 0.5  , 0.5   and 

Pr=1.0. 

 

Fig. 3(a) and Fig. 3(b) display results for the velocity 

and temperature profiles for different values of 

magnetic parameter M (M = 0.1, 0.3, 0.5, 0.9) having 

Prandtl number Pr = 1.0, J = 0.1 0.5  , 0.5  . It is 

observed that, as the magnetic parameter M increases, 

the velocity profile decreases between 0 5y  and 

then increases with very small difference and finally 

approaches to zero along y direction. The temperature 
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profile increases with increasing magnetic parameter M. 

The maximum values of the velocity are recorded as 

0.36033401, 0.32258730, 0.29037867 and 0.263928080 

for M = 0.1, 0.3, 0.5 and 0.9 respectively which occur at 

y = 1.43 for 1st, 2nd, 3rd and 4th maximum values. It is 

found that the velocity decreases by 26.75% as the 

magnetic parameter M increases from 0.1 to 0.9. 
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Fig. 3(a). Variation of velocity profile against y for 

varying of M with J = 0.1, 0.5  , 0.5   and 

Pr=1.0. 
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Fig. 3(b). Variation of temperature against y for varying 

of M with J = 0.1, 0.5  , 0.5   and Pr=1.0. 

 

Figures 4(a) and 4(b) indicate the effects of the Prandtl 

number Pr with M = 0.1, 0.5   J = 0.1 and 0.5  on 

the velocity profiles and the temperature profiles. From 

Fig. 4(a) it is observed that the increasing values of 

Prandtl number Pr leads to the decrease in the velocity 

profiles. The maximum values of the velocity are 

0.34181852, 0.31031986, 0.27675142 and 0.26104378 

for Pr = 0.72, 1.0, 1.44 and 1.74 respectively which 

occur at y = 1.43, y = 1.36, y = 1.30 and y = 1.26 for the 

first, second, third and fourth maximum value. Here it is 

depicted that the velocity decreases by 23.63% as Pr 

increases from 0.72 to 1.74. From Fig. 4(b) it is 

observed that the temperature profiles decreases with 

the increasing values of Prandtl number Pr. 

It can easily be seen that the effect of the magnetic 

parameter M leads to a decrease in the local skin 

friction coefficient 
xCf and the local Nusselt number 

xNu  in Fig. 5(a) and Fig. 5(b). This phenomenon can 

easily be understood from the fact that the magnetic 

parameter M opposes the flow, therefore decreases the 

velocity gradient and hence the local skin friction 

coefficient xCf decreases. Owing to increasing values 

of M in the presence of viscous dissipation and pressure 

stress work, the fluid temperature within the boundary 

layer increases and the associate thermal boundary layer 

becomes thicker. For increasing fluid temperature, the 

temperature difference between fluid and surface 

decreases and the corresponding rate of heat transfer 

decreases. 
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Fig. 4(a). Variation of velocity profile against y for 

varying of Pr with M= 0.1, 0.5  , 0.5   and 

J=0.1. 
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Fig. 4(b). Variation of temperature profile against y for 

varying of Pr with M =0.1, 0.5  ,  0.5   and 

J=0.1. 
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Fig. 5(a). Variation of skin friction against x for varying 

of M with J = 0.1, 0.5  , 0.5   and Pr=1.0. 
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Fig. 5(b). Variation of heat transfer against x for 

varying of M with J = 0.1, 0.5  , 0.5   and  

 Pr = 1.0. 

 

The variation of the reduced local skin friction 

coefficient and the local rate of heat transfer for 

different values of the joule heating parameter J (J = 

0.1, 0.3, 0.5, 0.9) are illustrated in Fig. 6(a) and Fig. 

6(b) with M = 0.1, 5.0  and 0.5  and Prandtl 

number Pr = 1.0. From the figures it can be seen that 

the increase of the joule heating parameter J   leads to 

an increase in the local skin-friction coefficient 
xCf and 

a decrease in the local Nusselt number xNu . These are 

expected, since the joule heating mechanism in 

presence of viscous dissipation and pressure stress work 

creates a layer of hot fluid near the surface, and finally 

the resultant temperature of the fluid exceeds the 

surface temperature. For this reason the rate of heat 

transfer from the surface decreases. Owing to the 

enhanced temperature, the viscosity of the fluid 

increases and the corresponding local skin-friction 

coefficient increases. 

In order to verify the accuracy of the present work, the 

numerical values of the local Nusselt number xNu  for 

M = 0.0, J = 0.0, 0.0  , 0.0   and Pr = 1.00 in 

different position of x are compared with those reported 

by Merkin (1976),  Nazar et al. (2002) and  Hye et al. 

(2007) as presented in table 1 The results are found to 

be in excellent agreement. 

0.0 30.0 60.0 90.0 120.0 150.0 180.0
x

0.0

0.2

0.4

0.6

0.8

1.0

J = 0.1

J = 0.3

J = 0.5

J = 0.9

C
fx

 
Fig. 6(a). Variation of skin friction against x for 

varying of J with M = 0.1, 0.5  , 0.5   and  

Pr =1.0 
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Fig. 6(b). Variation of heat transfer against x for 

varying of J with M = 0.1, 0.5  , 0.5  and 

Pr=1.0. 
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Fig. 7(a). Variation of skin friction against x for 

varying of Pr with M = 0.1, 0.5  , 0.5   and J=0.1 
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Fig.7(b). Variation of heat transfer against x for varying 

of Pr with M = 0.1, 0.5  , 0.5  , and J=0.1 
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Table 1 Numerical values of 
xNu for different values of 

x while Pr=1.0, M = 0.0, J=0.0, 0.0   and 0.0   

x Merkin 

(1976) 

Nazar et al. 

(2002) 

Hye et al. 

(2007) 

Present 

0.0 0.4214 0.4214 0.4241 0.4216 

/6 0.4161 0.4161 0.4161 0.4163 

/3 0.4007 0.4005 0.4005 0.4006 

/2 0.3745 0.3741 0.3741 0.3741 

2/3 0.3364 0.3355 0.3355 0.3355 

5/6 0.2825 0.2811 0.2811 0.2811 

 0.1945 0.1916 0.1916 0.1912 

5. CONCLUSION   

We have studied the joule heating effects on magneto-

hydrodynamic (MHD) natural convection flow in 

presence of viscous dissipation and pressure stress work 

from a horizontal circular cylinder. The transformed 

non-similar boundary layer governing equations of the 

flow together with the boundary conditions were solved 

numerically using implicit finite difference method 

together with Keller box scheme. The coupled effect of 

natural convection that the temperature and the rate of 

heat transfer is continuous at the surface. From the 

present investigation, the following conclusions may be 

drawn: 

 The local skin friction coefficients and the rate of heat 

transfer along the surface of the cylinder decrease for 

the increasing value of magnetic parameter M. 

 An increase in values of M leads to decrease the 

velocity distribution but slightly increase the 

temperature distribution. 

 For increasing values of joule heating parameter J, the 

skin-friction coefficient increases but the Nusselt 

number decreases significantly within the boundary 

layer. 

 With the effect of joule heating parameter J, both the 

velocity and temperature distributions increase 

significantly the thickness of the thermal boundary 

layer. 

 An increasing value of Prandtl number Pr leads to 

decrease in the velocity and the temperature 

distributions as expected. 
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