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ABSTRACT 

 In the present work, for the first time, the application of a Multi-Relaxation-Time Lattice Boltzmann (MRT-LB) model 

for large-eddy simulation (LES) of turbulent thermally driven flows on non-uniform grids is considered. A Taylor series 

expansion and Least square based Lattice Boltzamnn method (TLLBM) has been implemented in order to use a non-

uniform mesh. It permits to reduce the required mesh size and consequently the computational cost to simulate the 

turbulent buoyant flow fields. The implementation is discussed in the context of a MRT-LB model in conjunction with 

both Smagorinsky and mixed scale viscosity sub-grid models. At first, to validate the code, a multi-relaxation–time lattice 

Boltmann method on non-uniform grid is utilized to simulate a lid-driven cavity flow .Then large eddy simulation of this 

model is applied to simulate a turbulent Rayleigh-Bénard convection at different Rayleigh numbers in ranging 104 to 1015 

for Prantdl number of 0.71. The simulation results show that lattice Boltzmann method is capable to simulate turbulent 

convection flow problems at high Rayleigh numbers. 
 

Keywords: Lattice Boltzmann method, MRT-LBM, LES, TLLBM. 

NOMENCLATURE 

b  total number of lattice streaming vectors   discrete velocity space 

c magnitude of lattice streaming vectors u flow velocity vector 

sc  speed of sound  Ŝ  relaxation matrix 

SC   Smagorinsky constant S  filtered mean momentum flux 

 D  dimension of system ijS  strain rate tensor 

e  lattice streaming vector in α direction t time 

e kinetic energy T temperature 

f  density distribution function x, y  Cartesian coordinate system 

eqf  equilibrium density distribution function Greek  symbols 

 g acceleration due to gravity  thermal expansion coefficient 

 Ly height or vertical length r  lattice spacing 

 Lx horizontal length t  time step 

 moment space   square of kinetic energy 

M transformation matrix    fluid thermal diffusivity  
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m moment t   turbulent heat diffusivity 

p pressure   local density 

ijp  second-order moments of the distribution 

function 

0  molecular relaxation time 

Pr  , Prandtl number t  the relaxation time corresponding to the 

turbulence or eddy viscosity t  

q heat flux vector total  effective relaxation time 

ijQ  momentum fluxes 0  molecular kinematic viscosity 

Q  the characteristic filtered rate of  strain t   turbulence or eddy viscosity 

r  position vector 
total   effective kinematic viscosity 

Ra 

3
yg TL

, Rayleigh number 
Subscripts and superscripts 

U  top lid velocity  eq equilibrium  state 

,u v  x, and  y components of the flow  velocity vector  lattice streaming vector direction 

  

1. INTRODUCTION 

Thermally driven convection flow in enclosures which 

are heated from below (Rayleigh–Bénard convection) is 

an important problem that has been investigated for 

several decades (Siggia, 1994; Kadanoff, 2001; Kerr, 

1996; Sreenivasan and Donnelly, 2001). The kinetic-

based lattice Boltzmann method is a powerful tool for 

simulating fluid flows and modeling the physics in 

fluids (Chen and Doolen, 1998a; Rahmati and 

Ashrafizaadeh, 2010). However, the application of LB 

model to thermal problems has not attained great 

success for the thermal models due to the severe 

numerical instability caused by breaking the isothermal 

condition (Lallemand and Luo, 2003). The existing 

approaches for creating thermal LB models can be 

categorized into three categories, i.e., the multi-speed 

lattice Boltzmann scheme(Teixeira et al., 2000), the 

double-density-distribution-function lattice Boltzmann 

(DDDFLB) approach (Chen and Doolen, 1998b), and 

the hybrid thermal lattice Boltzmann (HTLB) technique 

(Lallemand and Luo , 2003). The multi-speed scheme is 

a straightforward extension of the isothermal LB 

models, in which only the density distribution function 

is used; the DDDFLB approach uses two different 

density distribution functions, one for the velocity field 

and the other for the internal energy field; the HTLB 

technique is similar to the DDDFLB approach except 

that the internal energy equation is solved by finite-

difference methods, rather than by solving the lattice 

Boltzmann method.  

As mentioned above, the main difficulty of the 

thermal lattice Boltzmann models is their numerical 

instability. In the present work, for the first time, the 

important issues on the stability of lattice Boltzmann 

models have been studied and a stable combination 

model has been proposed and applied to simulate 

turbulent convective flows (Rahmati and 

Ashrafizaadeh, 2010).Using various thermal LB 

models, different numerical simulations have been 

performed to study 2D Rayleigh–Bénard convection 

(Shan, 1997; Nwatchok et al., 2010; Kao and Yang, 

2007). Although the results provided by these studies 

for low Rayleigh number are in good agreement with 

the CFD existing data, however, investigation about this 

flow at high Rayleigh numbers was not conducted. The 

present study employs, for the first time, HTLB model, 

which is based on the multi-relaxation-time lattice 

Boltzmann method proposed by Du et al. (2006), with 

the Boussinesq approximation to simulate turbulent 

Rayleigh–Bénard convection on a non-uniform mesh 

using Taylor series expansion–and least square–based 

Lattice Boltzamnn method (Niu et al., 2003).  

2. GOVERNING EQUATION 

2.1 Multi-Relaxation-Time Lattice Boltzmann 

Method for Large Eddy simulation 

The lattice Boltzmann method utilizes a particle 

distribution function to describe the collective behavior 

of fluid molecules. In LB methods, particles are 

assumed to move synchronously along the bonds of a 

regular lattice, and satisfy the discrete form of the 

lattice Boltzmann equation. Perhaps, the simplest and 

consequently the most popular form of the lattice 

Boltzmann method is the Single-Relaxation-Time 

(SRT) lattice Boltzmann method (Chen and Doolen, 

1998a). However, this simplicity comes at the expense 

of some deficiencies (e.g. numerical instability and 

inaccuracy in implementing boundary conditions). To 

overcome some of the SRT-LBM deficiencies, the 

multi-relaxation-time lattice Boltzmann method 

(Rahmati and Ashrafizaadeh, 2010) has been 

developed. 

The multi-relaxation-time lattice Boltzmann equation 

can be written as (Chen and Doolen, 1998a; Du et al., 

2006): 

   

     1

, ,

, , ,

n n

eq
n n

f t t t f t

M S m t m t

 



   

  
  

r e r

r r

 (1) 
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where elements of the diagonal matrix Ŝ  are relaxation 

rates 1,2,..., ( 1)s b    ,  eq
m  is the 

equilibrium-moment vector and its components are the 

equilibria of the moments,  , nf tr  is the 

distribution function vector and M  is transformation 

matrix. 

For D2Q9 model  (Fig. 1), the lattice velocities are 

defined as: 

0, 0,

cos[( 1) ],sin[( 1) ] , 1, 2,3, 4 ,
2 2

9 9
cos[( ) ],sin[( ) ] , 5,6,7,8.

2 2 2 2

c

c





 
  

 
  





 

    
 
 
    
 

e

 

(2) 

where c  is the particle velocity and is given by 3 mRT  

where R is the gas constant and mT is average value of 

temperature.  

 
Fig. 1.  Nine- particle velocity e in the 2D square 

lattice 

 

The transformation matrix M  for D2Q9 model is given 

by: 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

.0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

M

 
 
     
    
 

   
    
 

   
 

  
 
  
 

  

 (3) 

The relaxation matrix Ŝ  is diagonal in the moment 

space : 

 

 1 2 4 6 7 8
ˆ 1 1 1 .S diag s s s s s s

 

(4) 

 

The nine moments for D2Q9 model are: 

 

 0 ,
T

x x y y xx xym e u q u q p p 

 

(5) 

where 0  the mass density, e  the energy,   square of 

the energy,  x yu uu  the momentum density, and 

 x yq qq is the heat flux. Also, ,xxp and xyp are the 

stresses. 

The equilibria of the moments,
 eq

m , are the functions 

of the invariant moments, which are the mass density 

0  and the velocity vector u  for athermal fluids. 

However, in the current method the pressure p  has 

been used instead of the mass density 0 ,  i.e., 

   ,
eq

nm t r  
      , , ,
eq

n nm p t u tr r . For the D2Q9 

model, the equilibria for the non-invariant moments are 

given by: 

   6 3 . . ,
eq

x x y ye p u u u u  

   9 3 . . ,
eq

x x y yp u u u u      

 
,

eq
x xq u   

 
,

eq
y yq u   

   2 21
,

3

eq
xx x yp u u   

  1
,

3

eq
xy x yp u u  

(6) 

The kinematic viscosity   of the model is given by: 

8 7

1 1 1 1 1 1
,

3 2 3 2s s


   
         

   
  

 2

1 1

2 3 1 1 1 1 1
.

6 2 6 2

sc

s s


    
      

   
 

(7) 

 

2.2 Multi-Relaxation-Time Lattice Boltzmann 

Method for Large Eddy simulation 

Large eddy simulation of multi-relaxation –time lattice 

Boltzmann method results in the filtered form of the 

MRT-LB method (Krafczyk et al., 2003; Van Treeck et 

al., 2006) and it is given bellow: 

   

     1

, ,

, , ,

n n

eq
total n n

f t t t f t

M S m t m t

 



   

 
   

r e r

r r
 

(8) 

 

where  , nf tr ,  , nm tr ,
   , ,
eq

nm tr  and 

totalS  represent the distribution function vector , the 

moment vector, the equilibrium moment vector of the 

resolved scales and effective relaxation time matrix, 

respectively.  

We note that the second-order moments of the 

distribution function, 
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21
2 ,ij i j ij i j S ij

xx

P e e f p u u c S
s

  



       (9) 

 

where ie  denotes the i-th Cartesian component of a 

discrete velocity e , are in fact related to the second-

order moments xxp and xyp . In above formula, xxs  is 

the relaxation rate for these second-order moments and 

sc  is the sound speed. (In the setting of SRT-LB 

model, 1xxs  ) Therefore, 

2 2
.

2 2

xx xx
ij ij i j ij ij

s s

s s
S p u u P Q

c c
          (10) 

The second-order monomials   , ,i je e i j x y   can 

be projected to the orthogonal basis 

vectors 0,1,..., ,N    that is, the dual 

eigenvectors of M : 

 

2
1 0 7

1
4 3 ,

6
xe   

     
 

2 2
7 ,y xe e  
   

8 .x ye e  
    

(11) 

 

Thus in this case the components of tensor Q  can be 

explicitly given in terms of the moments: 

 

 ,xx xx x xQ P p u u    

 ,yy yy y yQ P p u u    

,xy xy x yQ P u u   

,xy xyQ Q  

 
1

4 3 ,
6

xx xxP e p p    

,yy xx xxP p P    

.xy xyP p  

(12) 

 

The effect of the unresolved scales is modeled through 

an effective relaxation time scale t . Thus in Eq. (1) 

the total LES effective relaxation time should be 

0total t     where 0  and t  are the relaxation 

times corresponding to the molecular viscosity 0  and 

the turbulence or eddy viscosity t , respectively. 

Accordingly total  is given by (Krafczyk et al., 2003; 

Van Treeck et al., 2006): 

 

0

2 2
0

1 1 1 1
,

3 2 3 2

total t

total tc t c t

  

    

  

   
      

   

21
,

3
t t c t    

(13) 

 

where t  depends on the sub-grid model used in the 

simulation. We use the Smagorinsky model and the 

mixed scale viscosity model for sub-grid closure. 

In the Smagorinsky model, the eddy viscosity t  is 

calculated from the filtered strain rate tensor, and a 

filter length scale, ,  as: 

 
2

2
0

. . ,

, 2
2

t S

l l

s total

C S

Q
S Q Q Q

c
 



 

 

 

 (14) 

 

where S  and Q  are the characteristic filtered rate of 

strain and the filtered mean momentum flux, 

respectively, and sC  is the Smagorinsky constant. 

The mixed scale viscosity model stems from a 

Smagorinsky model in which the local adaptation is 

achieved by taking into account the kinetic energy at 

the cut-off, cq , explicitly. The sub-grid viscosity is 

then measured as (Sergent et al., 2006): 

 

 
31 1
22 40.07t cS q    

(15) 

 

where cq  stands for the kinetic energy at the cut-off, 

1
.

2
c l lq u u  Following Bardina’s similarity 

hypothesis, the velocity field at the cut-off, lu , can be 

estimated by filtering the resolved velocity field with a 

test filter coarser than the implicit one, , and so 

u u u   . 

The subgrid-scale dependency of this model ensures 

that it will adapt to the local state of the flow, and 

vanish in fully resolved regions of the flow and near the 

walls. 

 

2.3 Accomplishment on Non-Uniform Grid 

In standard lattice Boltzmann method, the grid is 

described as a regular lattice with identical spaces. But 

for high Rayleigh number flows, the thermal boundary 

layer is very thin. Hence it needs sizeable number of 

nodes which waste computational time and memory 

size. The Taylor series expansion and least square based 

lattice Boltzmann method (Niu et al., 2003) is based on 

the reality that density distribution function is a 

continuous function in the physical space and can be 

well defined in any mesh system. It is obtained from the 

standard LBM by using Taylor series expansion and 

optimized by the least squares technique. This method 

updates the density distribution functions at mesh points 

by an algebraic formulation and the pertinent 

coefficients are pre-calculated from the coordinates of 
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mesh points. TLLB method allows mesh refinement 

near the walls.  

Let us to consider a particle is initially at the grid 

point  , ,x y t . Along the i-direction, this particle will 

propagate to the position  , ,x yx e t y e t t t      . 

For a uniform lattice, xx e t  , yy e t  . So, 

 ,x yx e t y e t     is on the grid point. In other 

words Eq. (1) can be used to update the density 

distribution functions exactly at the grid points. 

However, for a non-uniform grid, 

 ,x yx e t y e t     is usually not at the grid 

point  ,x x y y   . In the numerical simulation, 

only the density distribution function at the mesh points 

for all the time levels are needed, so that the 

macroscopic properties such as the density, flow 

velocity and temperature can be evaluated at every 

mesh point. To get the density distribution function at 

the grid point  ,x x y y    and the time level 

t t , the Taylor series expansion in the spatial 

direction is applied.  

 
Fig. 2. Configuration of particle movement along the α-

direction. 

 

As shown in Fig. 2, for simplicity, the point A 

represents the grid point  , ,A Ax y t , point A  

represents the position  , ,A x A yx e t y e t t t      , 

and point P  represents the position  , ,P Px y t t  

with p Ax x x  , .P Ay y y   So Eq. (1) gives 

 

   
   , ,

, , .

eqf A t f A t
f A t t f A t

 
 




     

(16) 

 

For the general case, A  may not coincide with the 

mesh point P . We truncate the Taylor series expansion 

to the second order derivative terms. So  ,f A t t    

can be approximated by the corresponding function and 

its derivatives at the mesh point P  as 

 

   

   

 
 

 
 

 
 

   

2 2
2 2

2 2

2
3 3

, ,

, ,

, ,1 1

2 2

,
,

A A

A A

A A A A

f A t t f P t t

f A t t f A t t
x y

x y

f A t t f A t t
x y

x y

f A t t
x y O x y

x y

 

 

 



 

 

 



    

   
   

 

   
   

 

       
   

 

(17) 

where ,A A x Px x e t x      .A A y Py y e t y      

For the two-dimensional case, this expansion involves 

six unknowns, that is, one density distribution function 

at the time level t t  , two first-order derivatives, and 

three second-order derivatives. To solve for these 

unknowns, six equations are needed to close the system. 

This can be done by applying the second-order Taylor 

series expansion at six points: ,P ,A ,B ,C ,D .E  The 

following equation system can be obtained:  

 

   
6

'

1

, , , , , , ,
T

k k kl l

i

f s W s W k P A B C D E



  

 

(18) 

where 

 
   

 

    
 

 

'

2 2

2 2 2 2 2

, , , ,
, , ,

1, , , / 2, / 2, ,

, , , , , .

k

eq

T
k

k k k k k k

T

f

f x y t f x y t
f x y t

s

x y x y x y

W

f f x f y f x f y f x y

 


     










     



          

 

(19) 

Our aim is to find its first element  1 ,W f P t t   . 

Eq. (18) can be put into the following matrix form 

 

    ' .S W f  (20) 

 

In practical applications, it was found that the matrix 

 S  might be singular or ill-conditioned. To overcome 

this difficulty and make the method be more general, 

the least squares approach was introduced to optimize 

the approximation by Eq. (20). As a result, the equation 

system for  W  becomes 

             
1

' ' .
T T

W S S S f A f


   
(21) 

 

From Eq. (21), we can have 

 

 
1 '

0 0 1 1, 11
, , ,

M

k kk
f x y t t W a f 




     

  1 '
1, 11

, ,
M

p k kk
f t t a f




 r

     ' 1, , , .eq
k k n k n k nf f t M S m t m t  

  
  

r r r  

(22) 
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where 1,ka ’s are the elements of the first row of the 

matrix A, which are defined by the coordinates of mesh 

points, the particle velocity and time step. They are not 

varied throughout the calculation. We can calculate 

once and store in advance, so little computational effort 

is introduced as compared with the standard LB 

method. On the other hand, Eq. (22) is nothing to do 

with the mesh structure. It needs only the information 

of coordinates of the mesh points. Thus, we can say that 

Eq. (22) can be consistently used for any kind of mesh 

structure.  

2.4 HTLB Scheme with a Sub-grid Model 

In the HTLB method (Van Treeck et al., 2006), the 

flow field is solved by the isothermal lattice Boltzmann 

equation while the advection-diffusion equation for 

temperature is solved separately by a finite difference 

scheme. The equation is used for solving the flow field 

is given by Eq. (8). The equation used for solving the 

temperature field is given by: 

 

 
2 2

2 2
,t

T T T T T
u v

t x y x y

     
       

      

   (23) 

where   is the fluid thermal diffusivity and t  is 

turbulent heat diffusivity. The energy equation is solved 

by a finite difference discritization on the non- uniform 

mesh. Both velocity components, u and v  are obtained 

from Eq. (8). The relation between turbulent 

viscosity t  and the turbulent heat diffusivity t  is 

given by the turbulent Prandtl number, i.e. Prt t t  

which is assumed to be constant and equal to its 

theoretical value, i.e. 0.87 (Van Treeck et al., 2006). 

3. RESULTS AND DISCUSSION 

In the present study, an incompressible LBM solver is 

developed. At first a cavity driven flow is simulated to 

validate the code for simulation of isothermal 

incompressible flows on non-uniform grid. Then a 

Rayleigh–Bénard convective flow has been simulated at 

different Rayleigh numbers with Prantdl number of 

0.71. 

 

3.1 Lid-driven cavity flow 

Using the presented 2D TLLBM, numerical simulation 

of lid-driven flows in a cavity are considered for 

Re=1000, where Re /yU L   is the Reynolds number, 

based on the lid velocity and the height of the cavity. 

The configuration of the problem is shown in Fig. 3. 

This problem has been widely used for validation and 

comparison purposes. Non-uniform mesh of 101×101 

for Re=1000 is used. A typical non-uniform mesh in a 

square cavity for a 101×101 grid with stretch ratio of 

2.54, which is defined as the ratio of the maximum 

mesh spacing over the minimum mesh spacing, is 

shown in Fig. 4. The employment of non-uniform mesh 

is popular, particularly for simulation of the flow field 

at higher Reynolds numbers. This is because the 

boundary layer near the solid boundaries is thin. Hence, 

the mesh spacing near the wall should be very small to 

capture the thin boundary layer. The mesh spacing apart 

from the solid wall can be use relatively large. In this 

method, we can capture the thin boundary layer, and in 

the meantime, we can save the computational effort. 

Furthermore, the fluctuations which are created in the 

pressure domain at high Reynolds numbers can be 

reduced due to a decrease in the time step used for the 

simulation. 

 

 
Fig. 3. 2D cavity flow. 

 

 

 
Fig. 4. The solution grid (a 101×101 non-uniform grid 

with stretch ratio of 2.54)  

 

Initially, a constant pressure, p = 1/3, is prescribed in 

the whole field, and the velocities in the interior of the 

cavity are set to zero. On the top, the x component of 

the velocity is U , which is set to 0.19, and the y 

component of the velocity is zero. At the end of each 

time step, the density distribution function f  on the 

moving wall is obtained by non-equilibrium boundary 

condition. The node wall bounce back boundary 

conditions are used on the other three stationary walls. 
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All results which are putted on show in the current 

work are steady state solutions. In order to reach the 

steady state, a number of iterations are carried out. The 

criterion to steady sate is  

1 2 1 2 10

1

1
( ) ( ) 10 ,

N
n n n n

i

u u v v
N

  



     
(24) 

where N  is the total number of nodes in the solution 

domain;
1( , )n nu u 

 and 
1( , )n nv v 

are x- and y- 

component of the velocity for the old and new time 

levels, respectively. 

Figures 5 and 6 present the U and V velocities along 

their respective centerline of the cavity flow at Re = 

1000, respectively. As shown in those figures, the 

agreement between the Ghia’s results (Ghia et al., 

1982) and the present numerical results is very good. 

 

 
Fig. 5. The x-component velocity along vertical 

centerline cavity driven flow for Re=1000. 

 

 
Fig. 6. The y-component velocity along horizontal 

centerline cavity driven flow for Re=1000. 

 

 

3.2. Rayleigh-Bénard convection flow 

3.2.1. Description of the problem 

Rayleigh-Bénard convection occurs in a wide variety of 

engineering applications. The flows are driven by the 

buoyancy effect due to the presence of gravity and 

density variations from low layer to another. When 

difference of temperature is lower, the flow is 

stationary. As difference of temperature is increased, 

the flow motion is regular and steady. As Ra is 

increased beyond the second critical Rayleigh number, 

fluctuation and instability of flows can be observed. In 

this natural convection problem, the initially static flow 

is heated from the bottom boundary, and a lower 

temperature is maintained at the upper wall. 

Additionally, a vertical gravitational force is applied to 

the y-direction of the computational domain. As the 

temperature difference between upper and bottom 

boundaries is increased, the stationary conduction state 

becomes unstable by any small disturbance.  

According to linear stability theory, the critical wave 

number for Rayleigh–Bénard convection is 3.117ca . 

So that, the convective cells would be developed readily 

with an aspect ratio of 2 2.016ca . An appropriate 

value of aspect ratio, / 2x yAR L L , for simulations 

can be determined. 

The temperature difference between the hot and cold 

walls introduces a temperature gradient in a fluid, and 

the consequent density difference induces a fluid 

motion, that is, convection. In the simulation, the 

Boussinesq approximation is applied to the buoyancy 

force term. 

 

,mg T TG j   (25) 

 

where β is the thermal expansion coefficient, g is the 

acceleration due to gravity, Tm is the average 

temperature and j  is the vertical direction opposite to 

that of gravity.  

The dynamical similarity depends on two dimensionless 

parameters: the Prandtl number Pr and the Rayleigh 

number Ra defined as: 

 
3

Pr , ,
yg T L

Ra  (26) 

 

where Ly is the channel height, and ΔT is the applied 

temperature difference between the bottom and top 

walls. 

 

3.2.2. Numerical Results 

3.2.2.1. Laminar flow simulation 

Using the HT-LB model, we simulate Rayleigh-Bénard 

convection between two horizontal stationary walls for 

Ra=104 with a Pr = 0.71 on different size of lattice (Fig. 

7). To capture the thin boundary layer, a non-uniform 

mesh distribution is used (Fig. 8). Non-slip boundary 
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conditions are implemented at the bottom and top 

boundaries by reversing the flow velocities in the ghost 

cell next to the simulation domain. The temperature 

along two opposite horizontal walls is maintained at 

constant temperatures 0 and 1, respectively. Periodic 

boundary conditions are assigned for both the flow and 

the temperature fields along the side boundaries of the 

channel, see Fig. 7. A small perturbation in the form of 

a cosine wave with amplitude of 1 × 10-3 is used to the 

pressure population. A linear distribution applied to the 

temperature field. Hence, at initial condition 

temperature is given by:   

 

 .cold hot cold

y ly
T T T T

ly


    (27) 

 

 
Fig. 7. Schematic of 2D enclosure Rayleigh- Bénard 

convection cell and boundary condition. 

 

 
Fig. 8. The solution grid (a 101×51 non-uniform grid 

with stretch ratio of 3.15). 

 

 

The Nusselt number can be calculated by the following 

equation: 

 

1 ,
/ y

vT
Nu

T L
 


 (28) 

 

where Ly is the vertical height of the channel, T  is 

fixed and denotes the temperature difference between 

the upper and bottom boundaries, v is the flow velocity 

in the y-direction and .  denotes the average over the 

whole flow domain. Table 1 presents the calculated 

Nusselt numbers using HT-LB model at Ra= 104, as 

well as the values obtained by the empirical formula 

(Chen and Doolen, 1998b; Shan, 1997), 
0.2961.56( / )cNu Ra Ra  where cRa  is the critical 

Rayleigh number and is equal to 1707.76cRa . From 

the presented results in Table 1, it can be seen that as 

the size of the grid is increased from 35×17 to 141×71, 

the discrepancy between the computed quantities is 

reduced from 14.0% to 0.65% for Nusselt number. This 

indicates that the employment of 101×51 grid can give 

accurate numerical results for Ra=104.  

 

Table 1 Grid dependence study for the Rayliegh-

Bénard convection at Ra=104.  

Ra 

no. 

Size of 

mesh 

Present 

work 0.2961.56( / )c

Nu

Ra Ra

 

104 35×17 2.264 2.632 

104 71×35 2.423 2.632 

104 101×51 2.609 2.632 

104 141×71 2.615 2.632 
 

 

3.2.2.2. Turbulent flow simulation 

In this study, the hybrid thermal lattice Boltzmann 

scheme is used along with the large-eddy approach to 

simulate turbulent convective flows. For the mass and 

momentum equations, a multi-relaxation-time LB 

technique is used while the heat equation is solved by a 

finite difference scheme. Furthermore, we applied the 

hybrid model by two subgrid scale models for both the 

fluid flow and the heat flux. Using HTLB-LES model, 

we simulate turbulent Rayleigh-Bénard convection 

between two horizontal stationary walls for Ra=104-

1015 with Pr = 0.71 (Fig. 7). To capture the thin 

boundary layer, a non-uniform mesh distribution is 

used. As shown in Fig. 8, non-uniform meshes of 

101×51 for Ra=104, 201×101 for Ra=105, 301×151 for 

Ra=106, 361×181 for Ra=107, and 401×201 for Ra=108 

- 1015, respectively. The stretch ratio is 3.15 for all 

cases. No-slip boundary conditions are performed at the 

bottom and top walls by using the mid-wall bounce-

back scheme in LB simulation. The temperatures along 

two opposite horizontal walls are maintained constant, 0 

and 1. Periodic boundary conditions are assigned for 

both the flow and the temperature fields at the inlet and 

outlet of the channel, see Fig. 7, Figs. 9 and 10 show 

streamlines and temperature contours at different Ra 

numbers. As shown in Figs. 9 and 10, the hot fluid near 

the bottom wall moves upward and intensifies the 

temperature in the central part of the flow domain, 

while the cold fluid close to the top wall streams 

downward and reduces the temperature near the side 

boundaries. When the Rayleigh number increases, two 

tendencies were perceived for the temperature contour 

distributions: 1) an increase in the temperature gradients 

close to the top and bottom boundaries and 2) 

intensified mixing of the hot and cold fluids. Both 

inclinations enhance the heat transfer in the flow 

domain.  
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(a) Ra=104  

(b) Ra=105 
 

(c) Ra=106 
 

(d) Ra=107  

(e) Ra=108 
 

(f) Ra=109 
 

(g) Ra=1010 
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(h) Ra=1015  
Fig. 9. Streamlines (left side) and temperature contours (right side) obtained by Smagorinsky model for Rayleigh- 

Bénard convection at the 8000000-th time step for different Rayleigh numbers. 

(a) Ra=104 
 

(b) Ra=105 
 

(c) Ra=106 
 

(d) Ra=107 
 

(e) Ra=108 
 

(f) Ra=109 
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(g) Ra=1010 
 

(h) Ra=1015 
 

Fig. 10. Streamlines (left side) and temperature contours (right side) obtained by mixed scale model for Rayleigh- 

Bénard convection at the 8000000-th time step for different Rayleigh numbers. 
 

Time evolution of the x and y components of the 

velocity vector, and the temperature obtained by both 

Smagorinsky model (left side) and mixed scale model 

(right side) at the mid of flow domain for Ra=1010 is 

shown in Fig. 11. Furthermore, Fig. 12 presents power 

spectral density of the kinetic energy fluctuations at the 

mid of flow domain obtained by Smagorinsky model 

(left side) and mixed scale model (right side) for 

Ra=1010. As shown in Fig. 12, slope of inertial 

subrange obtained by both Smagorinsky model  and 

mixed scale model is in a better agreement with -3 

power law compared to -5/3 power law (Frost and 

Moulden, 1977). 

An important feature is the total heat transport that is 

described in terms of the Nusselt 

number 1 yNu v T L T . Here v  is the mean 

vertical velocity, and  denotes the average over the 

whole domain. Table 2 presents the calculated Nusselt 

number at Ra= 104- 1010, as well as DNS results 

obtained by Kerr (1996). It is observed that our results 

are in good agreement with the empirical data for lower 

Rayleigh number (up to 104). As the Rayleigh number 

increases the computed Nusselt number is under 

predicted compared to the Nusselt number calculated by 

Kerr (1996). The under-prediction of the Nusselt 

number may be due to insufficient spatial resolution. 

Furthermore, it is observed that the results obtained 

using the mixed scale model, are in a better agreement 

with those reported in Ref. (Kerr, 1996), compared to 

the Smagorinsky model results. 

4. CONCLUSION 

In this work, a new LBM solver is proposed to simulate 

turbulent convection flows problems at high Rayleigh 

numbers. In order to illustrate the capability of the code 

to simulate isothermal flows, a two-dimensional cavity 

driven flow has first been simulated at Reynolds 

number of 1000. Then its capability to solve the heat 

transfer problem in the case of the Rayliegh-Bénard 

convective flow up to Ra=1015 is shown. In the code, a 

MRT-LB model in conjunction with both Smagorinsky 

and mixed scale viscosity sub-grid models is used to 

simulate a turbulent Rayleigh-Bénard convection at 

different Rayleigh numbers. The combination of the 

MRT-LB method with the subgrid model allows us to 

simulate the turbulent convection flows up to a 

Rayleigh number of 1015. In the proposed code, a space-

filtered density distribution function is defined. In 

Smagorinsky subgrid model, the energy dissipation 

caused by the interaction between resolved and 

unresolved scales is included. In current method the 

local strain intensity stress is calculated locally at each 

time step using the non-equilibrium density distribution 

functions. In order to get proper near-wall behaviour or 

to simulate flows which are not fully turbulent, the 

subgrid model should be able to adjust itself to locally 

inhomogeneous flow. The mixed scale viscosity model 

ensures that it will adapt to the local state of the flow, 

and vanish in fully resolved regions of the flow and 

near the walls. Results show that the proposed method 

produce reasonably accurate results at low Rayleigh 

numbers and stable results at high Rayleigh numbers. 

Besides, it is observed that the results obtained using 

the mixed scale model, are in a better agreement with 

existing CFD data, compared to the Smagorinsky model 

results.

 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Frost,+W&fullauthor=Frost,%20W.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Moulden,+T&fullauthor=Moulden,%20T.%20H.&charset=UTF-8&db_key=PHY
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(a)u   

(b) v  

(c) T  

Fig. 11. Time evolution of the x and y components of the velocity vector, and the temperature obtained by both 

Smagorinsky model (left side) and mixed scale model (right side) at the mid of flow domain for Ra=1010. 
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Fig. 12. Power spectral density of the kinetic energy fluctuations obtained by Smagorinsky model (left side) and mixed 

scale model (right side) at the mid of flow domain for Ra=1010. 

 

 

Table 2 Nusselt numbers computed for Rayleigh-Bénard convection for different Ra.  

Ra no. Size of mesh 

Present work 

Kerrʼs results 
Smagorinsky model Mixed scale model 

104 101×51 2.6690 2.6687 2.363 

105 201×101 4.971 4.968 4.462 

106 301×151 8.169 8.3535 8.424 

107 361×181 13.729 14.016 15.904 

108 401×201 24.252 22.611 - 

109 401×201 38.237 33.302 - 

1010 401×201 72.93 71.76 - 

- 
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