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ABSTRACT 

A linear analysis of Rayleigh-Taylor instability in the presence of tangential electric field has been carried out using 

viscous potential flow theory. In viscous potential flow theory, viscosity is not zero but viscous term in the Navier-

Stokes equation is zero as vorticity is zero. Viscosity enters through normal stress balance and tangential stresses are 

not considered in viscous flow theory. A dispersion relation has been obtained and stability criterion has been given 

in the terms of critical value of electric field. It has been observed that tangential electric field influences stability of 

the system. A comparison between the results obtained by viscous potential analysis and inviscid potential flow has 

been made and found that viscosity reduces the growth of instability. 
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1. INTRODUCTION 

The instability of a dense fluid above a lower density 

fluid in a gravitational field is known as Rayleigh-

Taylor instability (Chandrasekhar, 1981 and Drazin, 

1981). Rayleigh-Taylor instability is first described 

mathematically by Rayleigh (1990) and Taylor (1950), 

who demonstrated that the instability can also occur in 

accelerated fluids. The Rayleigh-Taylor instability 

plays a crucial role in many natural processes ranging 

from coastal upwelling, which helps to renew the 

nutrients near the surface of the sea (Lewis, 1950). 

The presence of electric field may change the fluid 

behavior and its flow characteristics. The study of such 

an effect on electric field is called 

electohydrodynamics. The impact of electric field on 

the stability of two fluid systems is one of the important 

problems in electohydrodynamics. The discontinuity of 

the electric properties of the fluid across the interface 

affects the force balance at the fluid-fluid interface, 

which may either stabilize or destabilize the interface. 

Eladabe (1989) studied the effect of tangential electric 

field on the Rayleigh-Taylor instability and inviscid 

fluids and observed that the tangential electric field has 

stabilizing effect on the stability criterion.  Nonlinear 

electrohydrodynamic Rayleigh-Taylor instability with 

perpendicular electric field in the absence of surface 

charge has been studied by Mohamed and Elshehawey 

(1983). They conclude that the electric field plays a 

dual role in the nonlinear stability analysis while 

dielectric constant plays a distinctive role. 

Viscous potential theory has played an important role in 

studying various stability problems. Potential flow 

u =  is the solution of Navier-Stokes equation for 

incompressible fluids for which the vorticity is 

identically zero. The viscous term 
2 2( )     u vanishes, but viscous contribution to 

the stress in an incompressible fluid is not zero in 

viscous potential flow theory. Potential flows will not 

generally satisfy boundary conditions which require 

that the tangential component of velocity and the shear 

stress should be continuous across the interface 

separating the fluid from solid or another fluid. Joseph 

et al. (1999) have studied the Rayleigh-Taylor 

instability of two viscous fluids using viscous potential 

flow analysis. Joseph (2002) extended the problem of 

Rayleigh-Taylor instability of viscoelastic fluids by 

potential flow and observed that the viscoelastic 

potential theory gives the critical wave length and 

growth rate within less than 10 percent of the exact 

theory. 

Asthana et al. (2012) have used viscous potential flow 

theory to analyze Rayleigh-Taylor instability of 

cylindrical interface and observed that the viscous 

potential flow does not change the cut off wave number 

predicted by inviscid potential flow. Awasthi and 

Agrawal (2012) have studied the viscous potential flow 
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analysis of Kelvin-Helmholtz instability of cylindrical 

interface. The effect of heat and mass transfer on the 

viscous potential flow analysis of Rayleigh-Taylor 

instability in plane geometry has been studied by 

Awasthi and Agrawal (2010). Effects of couple stress 

on the growth rate of Rayleigh- Taylor instability at the 

interface in a finite thickness couple stress fluid was 

studied by Rudraiah and Chandrashekara (2010). 

Kumar (2012) studied the thermosolutal magneto-

rotatory convection in couple-stress fluid through 

porous medium. The instability problem in nanofluids 

was studied by Dhananjay et al. (2011) and Yadav et al.  

(2011, 2012a, b, 2013a,b,c).  

In the present paper, the viscous potential theory is 

applied to study the Rayleigh-Taylor instability of two 

viscous and dielectric fluids in the presence of electric 

field which acts in the tangential direction of the 

interface. We have taken both fluids as incompressible, 

viscous and dielectric with different kinematic 

viscosities and different dielectric constants. A 

dispersion relation has been obtained and stability 

criterion has been given in the terms of critical value of 

wave number as well critical value of electric field. In 

addition, a comparison has been made between the 

results of present study with the results obtained by 

Eladabe (1989). 

2. PROBLEM FORMULATION 

Consider a system of two incompressible, viscous and 

dielectric fluid layers of finite thickness whose 

undisturbed interface is at  0y   as demonstrated in 

Fig. 1. After disturbance the interface is given by   

 

( , , ) ( , ) 0F x y t y x t    (1) 

          

The unit outward normal to the first order term is given 

by  

= ( + )x y
x





n e e  (2) 

                       

 
Fig. 1. The equilibrium configuration of the fluid system 

In the undisturbed state, lower fluid of density (1) , 

viscosity 
(1)  and dielectric constant (1) occupies the 

region  1 0h y    and upper fluid of density
(2) , 

viscosity 
(2)  and dielectric constant (2)   occupies the 

region 20 y h  . The bounding surfaces  1y h   and 

2y h  are considered to be rigid. The fluids are 

subjected to an external electric field 0E which acts in 

the tangential direction of the interface. 

Velocity is given by potential i.e.        

 u   (3) 

   

Electric field is given by the potential 

0E xE = e  (4) 

The Kinematic conditions are given by 

(1)

       
t y

  


 
 (5) 

(2)

       
t y

  


 
 (6) 

In each fluid layer velocity potential and electrostatic 

potential satisfy the Laplace equation. 

2 ( ) 0            ( 1,2)j j    (7) 

2 ( ) 0            ( 1,2)j j    (8) 

Conditions on the walls are given by 

(1)

10  at       y = h
y


 


 (9) 

(2)

20  at       y = h
y





 (10) 

(1)

10      at       y = h    
y


 


 (11) 

(2)

20     at       y = h       
y





 (12) 
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The interfacial condition which expresses the 

conservation of mass across the interface is given by the 

equation 

( . ) 0   or

( ) 0
t

F
F

t

y x x

 

   



  



   
  

   

 (19) 

where 
(2) (1)x x x   in which superscripts refers to 

upper and lower fluid respectively. 

 The tangential component of the electric field must be 

continuous across the interface i.e. 

  0   or   0
x x y

    
   

  
n E  (14) 

The normal electric displacement must be continuous 

across the interface i.e. 

0

0   or  

E 0
x x x y



   
 

 

   
  

   

n E

 (15) 

The interfacial condition for conservation of 

momentum at the interface is given by 

(2) (2)

2 1

(1) (1)

2 2

2

   2

1
   ( ) 0

2
n t

P P

E E

 

 

 

   

 

     

n n

+ n n

n

 
(16) 

3. LINEARIZED EQUATIONS 

The linear form of Eq. (13) to Eq. (16) is given by, 

( ) 0
ty

 


 
 

 
 (17) 

0
x





 (18) 

0E 0
x y

 


 
 

 
 (19) 

2 2

02 2
( ) 2g E

t y x x

   
    
   

    
   

 (20) 

4. DISPERSION RELATION 

Solving Eq. (7) and Eq. (8) using normal mode 

technique, we get 

(1)

1 2( cosh sinh )exp( ) . .B ky B ky ikx i t c c      

(21) 

(2)

3 4( cosh sinh )exp( ) . .B ky B ky ikx i t c c      

(22) 

(1)

5 6( cosh sinh )exp( ) . .B ky B ky ikx i t c c      

(23) 

(2)

7 8( cosh sinh )exp( ) . .B ky B ky ikx i t c c      

(24) 

Using Eq. (9) and Eq. (10) along with Eq. (21) and Eq. 

(22), we get 

 
(2)

2 2cosh[ ( )]exp( ) . .A k y h ikx i t c c      (25) 

(1)

1 1cosh[ ( )]exp( ) . .A k y h ikx i t c c      (26) 

Let the interface elevation is given by  

exp( ) .A ikx i t c c     (27) 

where 0A , 1A  and 2A  denotes complex amplitudes and 

. .c c stands for the complex conjugate of the preceding 

expression,   is the complex growth rate and 

0k  denotes the wave number. 

Equations (25) and (26) with kinematic conditions Eq. 

(5) and Eq. (6) we get: 

 

(1) 1

1

cosh[ ( )]
exp( ) . .

sinh

i k y h
A ikx i t c c

k kh


 


     

(28) 

(2) 2

2

cosh[ ( )]
exp( ) . .

sinh

i k y h
A ikx i t c c

k kh


 


    

(29) 

 

Equations (23) and (24) with the Eq. (11), Eq. (12), Eq. 

(18) and Eq. (19) we get: 
(2) (1)

(1) 0

(2) (1)

2 1

1

1

( )

( tanh( ) tanh( ))

cosh[ ( )]
          exp( ) . .

cosh

iE
A

kh kh

k y h
ikx i t c c

kh

 


 









  

 (30) 

(2) (1)
(2) 0

(2) (1)

2 1

2

2

( )

( tanh( ) tanh( ))

cosh[ ( )]
          exp( ) . .

cosh

iE
A

kh kh

k y h
ikx i t c c

kh

 


 









  

 (31) 

Substituting the values of 
(1) (2) (1) (2),  , , ,      in Eq. 

(20), we get Dispersion relation:      

2

0 1 2( , ) 0D k a ia a       (32) 

                              

where        
(1) (2)

0 1 2coth( ) coth( )a kh kh    

                              
2 (1) (2)

1 1 22 ( coth( ) coth( ))a k kh kh    

                              
2 2 (2) (1) 2

(2) (1) 3 0
2 (2) (1)

2 1

( )
( )

( tanh( ) tanh( ))

k E
a gk k

kh kh

 
  

 


   


 

Let the two fluids are semi infinite i.e. 

1 2 1

2

  and   so cothk 1 

          and  cothk 1

h h h

h

  


 

So, Eq. (32) becomes: 

(1) (2) 2 2 (1) (2)

2 2 (2) (1) 2
(2) (1) 3 0

(2) (1)

2 ( )

( )
( ) 0

( )

ik

k E
gk k

     

 
  

 

        


    



 (33) 
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In Eq. (33) replacing  by i   and putting 0 0E   we 

get the dispersion relation as obtained by Joseph et al. 

(1999). If we put (1) (2) 0   in Eq. (33), we get the 

dispersion as obtained by Eladabe (1989). The 

dispersion relation of Taylor (1950) is also obtained 

from Eq. (33) by putting (1) (2)

0 0E      . 

Let R Ii     , and equating the real and imaginary 

parts, Eq. (32) will reduce to 

2 2

0 1 2( ) 0R I Ia a a       (34) 

 

and 

 

0 12 0R I Ra a     (35) 

So   0R  . 

Putting this value in Eq. (33), we obtained a quartic 

equation in I  as 

2

0 1 2 0I Ia a a     (36) 

 

From Eq. (36) we can get the value of maximum 

growth rate m and corresponding wave number 

mk .To get the neutral curves we put ( ) 0I k  . So, 

Eq. (36) reduces to 2 0a   i.e.         

  
(2) (1) 2

2 (2) (1) 2

0

(2) (1)

2 1

( )

( )
0

( tanh( ) tanh( ))

c

c

c c

g k

k E

k h k h

  

 

 

 


 



 (37) 

 

In Eq. (37) putting 0 0E   we get the classical wave 

number  

1/2
(2) (1)( )

c

g
k

 



 
  
 

. 

5. DIMENSIONLESS FORM OF THE 

DISPERSION RELATION 

2 1
2 1 2

(1)

(1) (1) 2

(2) (2)

(1) (1)

(1) (2)

(1) (1)

ˆ ˆ ˆ ˆ,  = ,  =1- , 

ˆ ˆ   = ,    

ˆ ˆˆ= ,  = , , 

ˆ ,  =

h h
k kH h h h

H H

E E
gH gH

H

Q

HQ



 


 

  
  

 

 
 

 

  







 

where  
1/2

ˆ ˆ(( 1) ) /Q gH   . 

The dimensionless form of Eq. (32) is given by 

 

2 2

1 2 1 2

2 2 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆcoth coth 2 (coth coth )

ˆ ˆ ˆ ˆˆ ( 1)ˆˆ 1 0
ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) ˆ(tanh( ) tanh( ))

kh kh ik kh kh

k kE
k

kh kh

    

 


  

     
   

  
     

    

                                      

(38) 

The Eq. (37) in dimensionless form may be written as 

2 2 2

1 2

ˆ ˆ ˆ ˆˆ ( 1)
1 0

ˆˆ ˆ ˆˆ ˆ(1 ) (1 ) ˆ(tanh( ) tanh( ))

k kE

kh kh

 

  


  

  
 

(39) 

6. RESULTS AND DISCUSSION 

Rayleigh-Taylor instability occurs when a heavy fluid 

(high density fluid) is pushing the low density fluid. For 

numerical computation we consider the following 

parametric values Mohamed et al. (1993). 

(1) 3 (2) 3

(1) (2)

(1) (2)

 0.0003652 gm/cm , 0.0597 gm/cm ,

0.01poise , 0.00018poise, 

1.007F/cm,   1.7F/cm, 

980 cm/s,   0.06 /             g dyne cm

 

 

 



 

 

 

 

 

The neutral curves of wave number divide the plane 

into a stable region above the plane and an unstable 

region below the plane while the neutral curves of 

electric field divide the plane into a stable region below 

the curve and an unstable region above the curves. The 

effect of various physical parameters on the onset of 

instability is interpreted from the following figures. 

In Fig. 2, the neutral curves for electric field have been 

drawn for various value of upper fluid fraction. As 

upper fluid fraction increases, the stable region also 

increases for same values of other parameters. It is 

concluded that the upper fluid fraction has stabilizing 

effect on the stability of the system and this implies that 

the lower fluid fraction destabilizes the system. 

Figure 3 shows the variation of growth rate curves I  

for various values of electric field. It has been observed 

that the growth rate curves decreases as electric field 

intensity increases and this concludes that the electric 

field has stabilizing effect on the stability of the system. 

The concept of polarization can elucidate the physical 

mechanism of this phenomenon. The polarization forces 

due to differences in permittivity’s and perturbed 

velocity have the effect of pushing the disturbance and 

hence electric field has stabilizing effect. 

The variation of growth rate curves for different values 

of dielectric constant ratio of two fluids has been drawn 

in Fig. 4. It is observed that as the permittivity ratio of 

two fluids increases, growth of disturbance first 

increases and then decreases. This concludes that 

permittivity ratio has dual effect on the stability of the 

system. 

It has been observed from Eq. (39), the critical wave 

number predicted by IPF analysis and VPF analysis is 

same. Therefore, to study the effect of irrotational 

normal stresses, the maximum growth rate curves 

obtained from IPF analysis and VPF analysis have been 

compared in the Fig. 5 when there is no electric field 

i.e. 0 0 volt/cmE  . The maximum growth in case of 

VPF is lower in comparison with the IPF solution. This 

concludes that the VPF solution is more stable in 

comparison with the IPF solution. It is because, due to 

viscosity, viscous forces are present in the system and 

will stabilize the system. In Fig. 6, the growth rate 

curves obtained for VPF solution have compared with 

those obtained for IPF solution when 0 10 volt/cmE  . 
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If electric field applied to the system in the tangential 

direction, fluids polarize in the direction of electric field 

and another electric force induces in the opposite 

direction of the applied electric field. In this situation 

electric field dominates not viscosity and so VPF 

solution and IPF solution gives almost same results but 

VPF solution still more stable due to viscous forces. 

We have computed the maximum growth rate for 

different values of electric field making other 

parameters constant in the Table 1. It is observed that as 

electric field increases growth rate decreases i.e. electric 

field stabilizes the system. Table 2 compares the growth 

rates obtained for inviscid potential flow solution with 

the growth rates obtained in viscous potential flow 

solution. Growth rate for VPF solution is lower in 

comparison of IPF in the absence as well as in the 

presence of electric field as observed from the Table 2. 

So it is concluded that VPF solution is more stable in 

comparison with IPF solution. 

 

 
Fig. 2. Neutral curves for Electric field when ˆ ˆˆ163.4721, .018, 1.6882      for different values of upper fluid 

fraction 

 
Fig. 3. Growth rate for VPF solution when ˆˆ 0.018,  163.4721,  =0.5     for different values of electric field 
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Fig. 4. Growth rate for VPF solution when ˆˆ 0.018,  163.4721,  =0.5, =10E     for different values dielectric 

constant ratio 

 
Fig. 5. Growth rate when 0

ˆˆ 0.018,  163.4721,  0.5,  0 /E volt cm       for VPF and IPF solution 
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Fig. 6. Growth rate when 0
ˆˆ 0.018,  163.4721,  0.5,  10 /E volt cm       for VPF and IPF solution 

Table 1 Growth rate curves for ˆˆ 0.018,  163.4721,     and ˆ 1.6882, =0.5   for different values of electric 

field 

2ĥ  0E (volt/cm) 1

m ( )Iw s   1

m ( )k cm   

0.5 

 

 

 

 

0 

5 

10 

15 

20 

3.9931 

2.6616 

1.4951 

0.8120 

0.2302 

28.47 

13.92 

4.95 

2.57 

1.14 
 

Table 2 Comparison of growth rate curves for ˆˆ 0.018,  163.4721,     and ˆ 1.6882, =0.5   for VPF and IPF 

solution for different values of electric field 

2ĥ  0E (volt/cm) IPF solution
 

VPF solution
 

0.5 

 

 

 

 

0 

5 

10 

15 

20 

5.4992 

2.9580 

1.5281 

0.8208 

0.2320 

3.9931 

2.6616 

1.4951 

0.8120 

0.2302 
 

 

7. CONCLUSION 

Viscous potential flow analysis of Rayleigh-Taylor 

instability of two viscous, incompressible and dielectric 

fluids in the presence of tangential electric field has 

been investigated. The dispersion relation for linear 

stability analysis is quadratic in nature. Stability 

criterion has been given in terms of critical value of 

electric field as well as critical wave number. A critical 

value of electric field is obtained. It has been observed 

that upper fluid fraction and electric field both have 
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stabilizing effect on the stability of the considered 

system while dielectric constant ratio plays dual role on 

the stability of the system. It has been also been 

observed that the viscous normal stresses stabilize the 

system. 
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