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ABSTRACT 

A hybrid solution methodology has been developed to solve chemically reacting laminar hypersonic flow in chemical 

Non-equilibrium and thermal equilibrium, by a Cartesian mesh based hybrid solution methodology, which uses an 

unstructured prism layer solution near the wall and a Cartesian mesh solution away from the wall. The unstructured 

prism layer for near wall solution is obtained from the normal projection of wall panels of the Cartesian mesh and are 

stitched with the outer Cartesian mesh. The solver, developed based on this approach when compared with other 
chemically reacting CFD codes and limited experimental results show good comparison. This procedure has a good 

potential to handle near-wall resolution for chemically reacting flows with a Cartesian mesh for complex geometries 

as well. 
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NOMENCLATURE 

a      speed of sound   

pC      specific heat at constant pressure 

iD         diffusion coefficient of species i  

ie         internal energy of species i  
Fc    vector of convective flux 

Fv    vector of viscous flux 

H          total enthalpy 

h           static enthalpy 

k          coefficient of thermal conductivity 

l        distance between centroids of  

      cell i and cell j  

M            third body in chemical reactions        

rN          number of reactions 

, ,x y zn n n   components of unit normal in x,y  

  and z direction 

cp
               cell center pressure of the wall cell 

Pr              Prandtl number 

R               universal gas constant. 

xS      projected area in x direction of each face 

yS
          projected area in y direction of each face 

zS
           projected area in z direction of each face 

ijt         unit vector of line connecting cell        

  centroids i and j 

U       vector of conserved variables 

iU∇       cell centre gradient at cell i 

jU∇    cell centre gradient at cell j 

V    contravariant velocity at the face of the  

  cell  

idiffV _    contravariant diffusion velocity of ith          

  species at the face of the cell time step 

iW      molecular weight of species i 

iX   mole fraction of species i 

iZ          mass fraction of species ‘i' 

srα       stochiometric coefficient of reactant  

 species       s in reaction r 

srβ       stochiometric coefficient of product 

 species s in reaction r 
cellΩ

      volume of cell i 

σ       CFL number 

u,v,w    velocities in x,y and z directions 

ρ        density 

γ        ratio of specific heats 

xyτ        shear stress in x plane in y direction 

S∆       projection of control volume 

µ    coefficient of viscosity 
x

cΛ    convective spectral radius in x direction 

Journal of Applied Fluid Mechanics, Vol. 7, No. 2, pp. 217-226, 2014. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

DOI: 10.36884/jafm.7.02.19363  



V. Ashok et al. / JAFM, Vol. 7, No. 2, pp. 217-226, 2014.  

 

218 

 

T           temperature x

vΛ     viscous spectral radius in x  direction  
 

 

1. INTRODUCTION 

Cartesian grids have a principal advantage of automated 

grid generation for complex geometries, which makes it 

very attractive for use in aerospace industry. However, 

it has a serious limitation to handle the viscous 

boundary layer near the wall.  There has been a 

considerable effort in the last decade to overcome this 

limitation through various approaches like hybrid 

meshes and immersed boundary methods and even pure 

Cartesian mesh with very large number of cells by Katz 

et al. (2009), Chen et al. (2009), Tullio et al. (2007), 

Mittal et al. (2005), Kang et al. (2008), Kidion et al. 

(2010). However these methods are mainly confined to 

perfect gas calculations and that too for speeds less than 

hypersonic regime, and very little work is done to 

extend this to chemically reacting hypersonic flows so 

as to obtain near wall resolution. In the area of 

computation of non-equilibrium chemically reacting 

hypersonic flows there is good amount of work carried 

out with structured mesh by Candler G. V. (1989, 

1991), Alavilli et al. (1997), Gnoffo P. A. (1989), 

Tchuen et al. (2008). However, the computation of non-

equilibrium chemically reacting hypersonic flow with 

Cartesian mesh is not very much reported in literature. 

Jin Wook et al. (2010) performed Non-equilibrium 

chemically reacting hypersonic flow computations 

using adaptive Cartesian mesh in a parallel mode. 

However the work reported in by Jin Wook et al. 

(2010) is mainly confined to computation of inviscid 

flows. The present approach is to obtain non-

equilibrium chemically reacting viscous hypersonic 

flow solution starting with a Cartesian mesh and then 

obtain the solution by growing prism layer near the 

wall.  

The methodology described in the present study is a 

hybrid mesh solver methodology used to estimate non-

equilibrium chemically reacting laminar hypersonic 

flow wherein the solution is obtained on a hybrid 

Cartesian mesh with near wall prism layers and away 

from the wall, the conventional Cartesian mesh. The 

near wall prism layers are built in an automated fashion 

by extruding the Cartesian surface panels normal to the 

wall to a certain distance specified by the user, which is 

usually good enough to capture the near wall gradients. 

In this approach the near wall prism layer is joined to 

the adjacent Cartesian mesh so that the solution can be 

carried out in an integrated fashion covering both the 

prism layer and the outer Cartesian mesh. This 

approach of obtaining the viscous solution from the 

Cartesian mesh for a reacting flow in an automated 

fashion enables one to achieve accurate viscous 

solutions with reduced effort in grid generation as 

compared to other approaches. 

2. SOLUTION METHODOLOGY 

The Navier Stokes equation for the solution of finite 

rate chemically reacting flow of air using standard 

notations is as given below in Eq. 1. 
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Internal energy 
ie  of each species is calculated from 

the curve fit polynomial expression for enthalpy of each 

species given in Hoffman et al. (1996). 

The coefficient of viscosity for individual species are 

estimated using the expression given in Hoffman 

(1996). 

( ln )C A T B
i e Tµ +=  (7) 

The various constants A, B and C in the calculation of 

coefficient of viscosity of Eq. 7 are taken from Park. C 

(1990) and given in Table 1. 

Table 1 Constants for calculation of species viscosity 

Species A B C 

N2 0.0268142 0.3177836 -11.3155513 

O2 0.0440290 -0.0826158 -9.2019475 

NO 0.0436378 -0.0335511 -9.5767430 

N 0.0203144 -0.0826158 -11.6031403 

O 0.1155720 0.3177836 -12.4327495 

NO+ 0.3030141 -3.5039791 -3.7355157 
 

 

The mixture viscosity and conductivity is estimated as   
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For mono-atomic gases, the thermal conductivity is 

given by Park. C (1990) is as below. 
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The mixture thermal conductivity is given by  
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The coefficients A1 to A6 is given in Table 2. 

The production rate of species shown in the source 

vector W  is obtained from the standard expression as 

given by Park. C. (1990). 
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The forward and backward reaction rates frK and brK  

are given by modified Arrhenius law. 

T

C

C eTCK
3

2

1

−
=  

(16) 

The constants 1C , 2C  and 3C  are obtained for each 

reaction from the respective finite rate chemistry 
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models and T is the temperature. The finite rate air 

chemistry model available for the present solver are 21 

reaction Park-87 model as given in Table 3 and 20 

reaction model of Kang-Dunn (Park. C.1990). In the 

case of Kang-Dunn model the forward and backward 

reaction rates are separately evaluated using the 

corresponding constants of Arrhenius expression of Eq. 

7. For Park-87 model as given in Table 4, the backward 

reaction rate is calculated from forward reaction rate 

and equilibrium reaction rate coefficient ,( )eq
c rK  which 

is given as a separate polynomial curve fit form stated 

by Park. C. (1990) as given below 

eq

rcfrbr KKK ,/=
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where Z=10000/T. 

Table 2 Constants to estimate Enthalpy for various species [13] 

Species A1 A2 A3 A4 A5 A6 

N2 3.21 0.9609e-03 -0.2676e-06 0.3349e-10 -0.9999e+03 -0.9999e+03 

O2 3.22 0.1313e-02 -0.4665e-06 0.7096e-10 -0.1014e+04 -0.1014e+04 

NO 3.20 0.1177e-02 -0.3878e-06 0.5573e-10 0.9865e+04 0.9865e+04 

O 2.68 -0.2436e-03 0.9646e-07 -0.1327e-10 0.2918e+05 0.2918e+05 

N 2.48 0.8290e-04 -0.7607e-07 0.2246e-10 0.5613e+05 0.5613e+05 

NO+ 3.21 0.9546e-03 -0.2631e-06 0.3266e-10 0.1181e+06 0.1181e+06 

e- 2.50 0.0000e+00 0.0000e+00 0.0000e+00 -0.7454e+03 -0.7454e+03 
 

Table 3 Test suite for CFD validation 

Test case Geometry details αM  αP  αT  Validation Criteria 

 

1)10 Wedge 

 

 

3.5m length 25.3 20.3 Pa 253K 

Comparison with other CFD codes-

Temperature profile and species mass 

fraction profiles. 

2)Lobb sphere 13.75mm dia 15.3 664 Pa 293K 

Comparison with other CFD codes. 

Temperature profile, Experimental 

shock position. 

 

The inviscid fluxes are obtained from AUSM (Liou et 
al. 1993) solver. The linear reconstruction of the 

primitive variables is done to get the interface values 

that are used in the solution of AUSM solver. The 

Venkatakrishnan limiter as stated by Venkatakrishnan 

(1995) is used to limit the gradients during 

reconstruction. The cell centre gradients are evaluated 

by the standard Green-Gauss procedure and the 

interface gradients, which are used for estimation of 

viscous fluxes, are estimated using the following 

expression given by Weiss et al. (1999). 
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where  
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jiij UUU ∇+∇=∇
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(21) 

The scheme is fully explicit with local time stepping for 

convergence acceleration. The Diagonal Point Implicit 

scheme, stated by Eberhardt et al. (1992) is used to 

solve the species conservation equation alone to 

overcome the stiffness of the species conservation 

equations. The wall boundary conditions are applied by 

invoking the characteristic based boundary conditions 

as done by E. F. Toro (2009). 

)( zyxcwall wnvnunapp ρρρ ++−=
 

(22) 

From the Cartesian mesh, prism layer is generated 

consisting of required layers up to a certain height, 

which are specified by the user. Normally the number 
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of prism layers is such that the sharp gradients near the 

wall are captured and the height of the prism layer is of 

the order of boundary layer thickness, which can be 

estimated by approximate empirical formulae.  

The Cartesian mesh that is generated for any arbitrary 

three-dimensional body will have surface panels of 3 

sides to 6 sides as shown in Fig. 1. In order to generate 

the prism layer for each panel, the normal at each nodal 

point of the body panel is obtained by average of all the 

normals of the panel that share the particular node. This 

extrusion follows an exponential stretching function for 

which the user specifies the stretching factor. Normally 

Table 4 Park-87 chemistry model  (Park-1990) 

 

Sl no 

 

 

REACTION 

 

,Cf r  

 

,nf r  

 

/,E kf r  

 

1
rB  

 

2
r

B  

 

3
rB  

 

4
rB  

 

5
rB  

1 
O2+M`2O+M 

(M=N,O) 2.900E+23 -2.00 5.975E+04 2.855 0.988 -6.181 -0.023 -0.001 

2 
O2+M 2O+M 

(M=N2,O2,NO 

ions) 

9.680E+22 -2.00 5.975E+04 2.855 0.988 -6.181 -0.023 -0.001 

3 N2+N 2N+N 1.600E+22 -1.60 1.132E+05 1.858 -1.325 -9.856 -0.174 0.008 

4 N2+O 2N+O 4.980E+22 -1.60 1.132E+05 1.858 -1.325 -9.856 -0.174 0.008 

5 
N2+M 2N+M 

(M=N2, O2) 
3.700E+21 -1.60 1.132E+05 1.858 -1.325 -9.856 -0.174 0.008 

6 
N2+NO 2N+

NO 
4.980E+21 -1.60 1.132E+05 1.858 -1.325 -9.856 -0174 0.008 

7 
N2+ions 2N+

ions 
8.300E+24 -1.60 1.132E+05 1.858 -1.325 -9.856 -0174 0.008 

8 
NO+M N+O

+M 

(M≠electrons) 

7.950E+23 -2.00 7.550E+04 0.792 -0.492 -6.761 -0.091 0.004 

9 
NO+O  

O2+N 
8.370E+12 0 1.945E+04 -2.063 -1.480 -0.580 -0.114 0.005 

10 N2+O NO+N 6.440E+17 -1.00 3.837E+04 1.066 -0.833 -3.095 -0.084 0.004 

11 
O2

+
+O  

O2+O
+ 6.850E+13 -0.52 1.860E+04 -0.276 0.888 -2.180 0.055 -0.003 

12 
N2+N

+
N2

+
+

O 
9.850E+12 -0.18 1.210E+04 0.307 -1.706 -0.878 -0.004 -0.001 

13 

N 

O
+
+O NO+ 

O
+
 

2.750E+13 0.01 5.100E+04 0.148 -1.011 -4.121 -0.132 0.006 

14 
N2+O

+
N2

+
+

O 
6.330E+13 -0.21 2.220E+04 2.979 0.382 -3.237 0.168 -0.009 

15 
N O

+
+  

O2 NO+  O2
+
 

1.030E+16 -0.17 3.240E+04 0.424 -1.098 -1.941 -0.187 0.009 

16 
N O

+
+N  

N2
+
+O 

1.700E+13 0.40 3.550E+04 2.061 0.204 -4.263 0.119 -0.006 

17 
N+O  N 

O
+
+e

- 1.530E+09 0.37 3.200E+04 -7.053 -0.532 -4.429 0.150 -0.007 

18 
O+O  O2

+
 

+e
-
 

3.850E+09 0.49 8.060E+04 -8.692 -3.110 -6.950 -0.151 0.007 

19 N+N  N2
+
+ e

-
 1.790E+09 0.77 6.750E+04 -4.992 -0.328 -8.693 0.269 -0.013 

20 
O+ e

-
 O

+
+ e

-

+ e
-
 

3.900E+33 -3.78 1.585E+05 -6.113 -2.035 -15.311 -0.073 0.004 

21 
N+ e

-
 N

+
+ e

-

+ e
-
 

2.500E+33 -3.82 1.686E+05 -3.441 -0.577 -17.671 0.099 -0.005 
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this stretching factor varies from 1.02 to 1.2. In the case 

of axi-symmetric computations the panels would have 

always have 4 sides. Once the prism layers are 

extruded, the last hybrid cell is joined to the nearby 

Cartesian mesh. Figure 2 shows the near wall prism 

layer joined with the Cartesian mesh in the outer region 

for a hemisphere at zero angle of attack. The Cartesian 

mesh thus formed will have two types of cells sharing 

the neighbor with the unstructured prism layer cell. Cell 

A which is a full Cartesian cell sharing the neighbour 

with hybrid prism layer whereas the Cell B is 

diagonally cut Cartesian cell sharing its neighbour with 

the hybrid prism layer. Also there could be cases 

wherein the hybrid cell will have two or even more 

Cartesian cells as its neighbours. This is suitably taken 

care while evaluating the fluxes so that the conservation 

laws are satisfied.  

 

 

Fig. 1. Panels obtained from Cartesian mesh intersecting body (nose cone portion) & hybrid mesh for select panels 

 

Fig. 2.  Hybrid prism layer joined to the Cartesian mesh for a spherical body and wedge 

The solution of the Navier-Stokes equation is first done 

for all the prism layer of cells of a particular panel 

before moving on to the next panel. The panel 

corresponds to the partial cell of the Cartesian mesh and 

when the hybrid solver program encounters the partial 

cell, the solver branches from the Cartesian mesh 

solution to the unstructured mesh solution and it does 

the solution for all hybrid cells of the corresponding 

Cartesian mesh panel which can be a prism layer 

consisting of cells which can have 3 to 6 faces for a 

three dimensional geometry. This method of solution 

also facilitates ease of parallelization.  Although in the 

present methodology, the Cartesian mesh solution and 

prism layer solution are done independently, this 

particular feature of branching to the prism layer 

solution for each partial cell would facilitate in 

retaining the existing Cartesian mesh code and all its 

associated parallelization features. Before performing 

the solution for the prism layer corresponding to a 

panel, the connectivity of all the cells are established 

which means that each cell face neighbors are found out 

and stored in the cell data structure. Thus all the 

neighbors of each hybrid cell is available in the cell 

data structure. The time step calculation is done using 

the expression given below  
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where σ  is less than 0.5 for a stable solution since the 

scheme is fully explicit . , ,x y z
c c cΛ Λ Λ  are given as  

 x

x

c Sau ∆+=Λ )|(|
,  

y

y

c Sav ∆+=Λ )|(|
       (24) 

z

z

c Saw ∆+=Λ )|(|
   

The viscous spectral radii for the x direction is 

expressed as 
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cellΩ  is the volume of the cell and , ,x y zS S S∆ ∆ ∆  

are the projections of the control volume on y-z,x-z and 

x-y plane. These are given by the formulae 
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The inviscid fluxes are first calculated on each of the 

face of the hybrid cell and in the next step the viscous 

fluxes are calculated. The data is updated on each cell 

by means of first order accurate scheme in time since 

only steady state results are needed.  

The hybrid solver program is written in C–language 

with an appropriate data structure for panel and hybrid 

cell. Each panel corresponds to the partial cell of the 

Cartesian mesh. The panel data structure contains the 

information on normal, number of sides of panel, area 

and node numbers and their coordinates and 

information about its neighboring panels. It also has the 

pointer to the hybrid cell array above the panel. 

Similarly for each hybrid cell, the data structure has all 

the information about its faces, neighbor of each face, 

cell center coordinates, volume and conserved variable 

vector.  

2.1 Boundary Conditions  

The wall boundary conditions are the no-slip boundary 

conditions for velocities and isothermal wall conditions 

for energy equation. For species conservation equations 

the wall is treated as either non-catalytic which means 

the gradient of the species would be zero or fully 

catalytic which represents the equilibrium concentration 

of species for that particular wall temperature. At the 

symmetry planes, appropriate symmetry boundary 

conditions are applied. 

3. RESULTS AND DISCUSSION 

To validate, the hybrid solution methodology for Non-

equilibrium chemically reacting flows, flow over 10 

deg. Wedge at Mach number 25.3 and flow over a 

sphere of 12.7 mm diameter at Mach number 15.3 is 

carried out.  The computational test conditions are 

tabulated in Table 3.  

Case 1: 10° wedge– Initially 70X40 pure Cartesian 

mesh is generated. The prism layer is extruded from the 

Cartesian mesh panels with initially 10 layers of prism 

cells up to a height of 20 cm from the Cartesian mesh 

wall panels. Figure 3 shows the prism layer joined to 

the outer Cartesian mesh. The free stream mass fraction 

of Nitrogen considered is 0.79 and Oxygen is 0.21 and 

computations are carried out for non-catalytic wall with 

a constant wall temperature of 1200K.  Park-87 

chemistry model (Park 1990) with 7 species is used.. A 

small extension is given upstream of the wedge for the 

application of boundary condition. Free stream 

condition is imposed on the left boundary and 

supersonic outflow at the right and top boundaries.  

The prism layer is increased in steps of 5 after the 

energy residue drops by 2 orders of magnitude and the 

final mesh for this problem is 95. The solution is found 

to converge after 40000 iterations with a CFL of 

0.4.The Diagonal Point Implicit option is used for the 

species conservation equation to overcome the stiffness 

of the species conservation equation. The diffusion 

coefficient is calculated assuming a constant Schmidt 

number of 0.5.  

Figure 3 shows the temperature profile at the end of the 

wedge for both perfect gas and chemically reacting air. 

The present hybrid solution shows good match with that 

of the CFD solution obtained from EURANUS 

(European Aerodynamic Numerical Simulator) code 

given by Alavilli (1997), in the boundary layer portion. 

For the shock portion, the present solution has a better 

capture. However, there is an overshoot of temperature 

at shock possibly due to the shock capturing scheme 

employed and the fine grid near the shock. As expected 

the real gas temperatures are lower than the perfect gas 

temperatures because of the dissociation of Oxygen and 

Nitrogen. 

 

Fig. 3. Temperature profile at the exit section of 10° 

wedge of 3.5m length 
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Figure 4 shows the comparison of NO and O mass 

fraction at the end of the wedge which also gives fairly 

good comparison with 7 species Park-87 model in 

EURANUS code. It is to be noted that although the 

wall temperature is only 1200K there is still presence of 

NO species due to the diffusion through the boundary 

layer. Figure 5 shows the heat transfer coefficient along 

the wall of the wedge which physically is the fraction of 

the energy of the flow that is converted to heat due to 

viscous dissipation and chemical reactions. This also 

agrees well with EURANUS code. 

Case 2: Lobb Sphere:  Lobb. R. K. (1964) carried out 

ballistic range experiments at the Naval Ordnance 

Laboratory, by firing half inch diameter spheres, and 

produced shadowgraphs indicating shock shapes and 

standoff distances. The free stream condition is 

provided in Table 3. The computations were carried out 

with 65X50 mesh with prism layer near the wall up to a 

height of 2mm and stitched to the outer Cartesian mesh 

which is shown in Fig. 2. In order to demonstrate the 

grid independence nature of the solution, the 

computations were carried out with 20 cells in prism 

layer as well as 38 cells in prism layer. Computations 

were carried out for angle of attack zero degree with 7 

species and Park-87 finite rate chemistry model as 

given in Table 4. Figure 6 shows the pressure 

distribution along the wall with 19 cells in prism layer 

as well as 38 cells in prism layer and both of them 

giving almost identical results, demonstrating the grid 

independent nature of the solution. 

 
 

Fig. 4. O mass fraction profile and NO mass fraction at the wedge exit section 

 
 

Fig. 5. Heat transfer coefficient along wedge Fig.6. Grid independence of pressure on lobb sphere 
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Fig.7. Pressure field comparison (real & perfect gas) Fig. 8. Temperature along the stagnation line 

Figure 7 shows the pressure distribution in the field for 

Lobb sphere with top half showing the real gas results 

and bottom half showing the perfect gas results and Fig. 

8 shows the temperature along the stagnation line for 

perfect gas and real gas computations. As seen from 

both the figures, the shock standoff distance for real gas 

is smaller than perfect gas and is quite close to the 

experiments conducted by Lobb and other real gas CFD 

results. The Nitrogen and Oxygen molecules undergo 

dissociation due to large temperature caused by the 

shock. Since the dissociation of the Nitrogen and 

Oxygen is endothermic in nature, the temperature of the 

air comes down due to which the density goes up. Due 

to larger density, the mass flow can be pushed through 

smaller stream tube and hence the shock moves closer 

to the body for chemically reacting air. 

4. CONCLUSION 

A Hybrid Cartesian mesh solution methodology to 

solve chemically reacting two-dimensional and axi- 

symmetric flows is demonstrated. The method can 

retain the advantages of Cartesian mesh by having a 

hybrid solution with prism layer calculation near the 

wall and Cartesian mesh computation away from the 

wall and hence has the potential to be extended to 

complex geometries as well. 
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