
 

 

 

 

Hydromagnetic Flow over an Inclined Non-Linear Stretching 

Sheet with Variable Viscosity in the Presence of Thermal 

Radiation and Chemical Reaction 

G. C. Shit
1†

 and S. Majee
2
 

1Department of Mathematics Jadavpur University, Kolkata – 700032, India 
2Department of Applied Mathematics Indian School of Mines, Dhanbad, India  

†Corresponding Author Email: gcs@math.jdvu.ac.in 

(Received October 3, 2012; accepted July 9, 2013) 

ABSTRACT 

An analysis has been made to investigate the effects of thermal radiation on the magnetohydrodynamic (MHD) flow 

and heat transfer over an inclined non-linear stretching sheet. The surface velocity of the stretching sheet and the 

transverse magnetic field are assumed to vary as a power function of the distance from the origin. The effect of 

internal heat generation/absorption is taken into account. The fluid viscosity is assumed to vary as an inverse linear 

function of temperature. A generalized similarity transformation is used to reduce the governing partial differential 

equations to a system of non-linear coupled ordinary differential equations, and is solved numerically by using a 

finite difference scheme. The numerical results concerned with the velocity, temperature and concentration 

distributions as well as the skin-friction coefficient and the Nusselt number for various values of the dimensionless 

parameters of interest are obtained. Some important findings reported in this paper reveal that the effect of thermal 

radiation and heat generation/absorption have significant role in controlling the rate of heat transfer in the boundary 

layer region. 
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NOMENCLATURE 

,a Tr  constants Re _ x   local Reynolds number 

0B  constant magnetic field strength Sc  Schmidt number 

C  dimensional concentration variable T  dimensional temperature variable 

Cw  concentration at the sheet T  free stream temperature 

Cf  skin-friction coefficient Tw  temperature at the sheet 

C p  specific heat at constant pressure Uw  surface velocity of the sheet 

D  molecular diffusivity ,u v  dimensional velocity components 

Ec      Eckert number   angle of inclination 

f  dimensionless stream function   nonlinear stretching parameter 

Grt  Grashof number t  thermal expansion coefficient 

Grc  Modified Grashof number c  concentration expansion coefficient 

0g  acceleration due to gravity   heat generation/ absorption parameter 

K  mean absorption coefficient *      Stefan-Boltzmann constant 

k  thermal conductivity   electrical conductivity 

0k  reaction rate constant   dimensional stream function 

M  magnetic parameter   non-dimensional distance 

Nr  thermal radiation parameter   dimensionless temperature 

Nu  Nusselt number   dimensionless concentration 

n  power index   coefficient of viscosity 

Pr  Prandtl number   density of the free stream 

Q  heat source/sink r  viscosity parameter 
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qr  heat flux   chemical reaction parameter 

    
1. INTRODUCTION 

The boundary layer flow over a nonlinear stretching 

sheet has been the recent topic of researchers and 

engineers, because of its many engineering and 

industrial applications. The investigation of the 

boundary-layer flows and heat transfer of an 

incompressible fluid over an inclined stretching surface 

has also many important applications such as the 

extrusion of plastic sheets from a die, the boundary 

layer along a liquid film condensation process, gas 

turbines, MHD power generators, the cooling process of 

metallic plate in a cooling bath, in the glass and 

polymer industries, flight magnetohydrodynamics as 

well as in the field of planetary magnetosphere, 

aeronautics and chemical engineering. The rate of heat 

transfer at the stretching sheet plays a vital role to 

obtain better quality of the final product. If the 

temperature of the surrounding fluid becomes high, 

then the thermal radiation effect has a significant 

impact in the case of space technology. The effects of 

mass transfer with chemical reaction on the boundary 

layer flow has enormous applications in chemical 

engineering processes such as to enhanced oil recovery, 

packed-bed catalytic reactors, solidification of binary 

alloy as well as catalytic surface reactions in 

hydrodynamic flows. 

 

Sakiadis (1961) initiated the study of boundary layer 

flow on a continuous moving surface. Later on Crane 

(1970) extended this problem to a stretching sheet 

whose surface velocity varies linearly with the distance 

x from the fixed point. Consequently Gupta and Gupta 

(1977) examined the heat and mass transfer over a 

linear stretching sheet subjected to suction/blowing. 

The influence of uniform magnetic field on the flow of 

an electrically conducting fluid past a stretching sheet 

have been investigated by Pavlov (1974), Andersson 

(1992), Watanabe and Pop (1993, 1995), Shit (2009), 

Prasad et al. (2010) and Shit and Haldar (2012a). Afify 

(2004) investigated the chemical reaction on free 

convective flow and mass transfer of a viscous, 

incompressible and electrically conducting fluid over a 

stretching sheet in the presence of a uniform transverse 

magnetic field. Misra and Shit (2008) extensively 

studied on electrically conducting fluid flow and heat 

transfer in a parallel plate channel with stretching walls 

in the presence of a magnetic field applied externally. 

Two-dimensional unsteady MHD flow of a viscous 

fluid between two moving parallel plates has been 

investigated by Sweet et al. (2011). Jafar et al. (2012) 

carried out the steady magnetohydrodynamic (MHD) 

laminar boundary layer flow of a viscous and 

incompressible electrically conducting fluid near the 

stagnation point on a horizontal stretching or shrinking 

surface, with variable surface temperature and a 

constant magnetic field applied normal to the surface of 

the sheet. 

Recently, a new idea is added to the study of boundary 

layer fluid flow and heat transfer is the consideration of 

the effect of thermal radiation and temperature 

dependent viscosity. Many processes in engineering 

applications occur at high temperature and the radiated 

heat transfer becomes very important for the design of 

the pertinent equipment. Motivated by these 

assumptions, Shit and Haldar (2011a, 2012b) examined 

the combined effects of thermal radiation and hall 

current on momentum, heat and mass transfer in the 

laminar boundary layer fluid flow over an inclined 

permeable stretching sheet with variable viscosity. Tak 

et al. (2010) investigated the interaction of radiation 

with free convection in Darcian porous media by taking 

into account the Soret and Dufour’s effects. Nonlinear 

hydromagnetic flow over a stretching surface with 

prescribed heat and mass flux embedded in a porous 

medium have analyzed analytically by Anjalidevi and 

Kayalvizhi (2013). Mukhopadhaya et al. (2005) 

investigated the problem of MHD boundary layer flow 

over a heated stretching sheet with variable viscosity. 

But, Salem (2007) investigated the effect of variable 

viscosity on MHD viscoelastic fluid flow and heat 

transfer over a stretching sheet without considering the 

effect of thermal radiation. Moreover, an analytical 

solution was obtained by Fang and Zhang (2010) for 

the flow and heat transfer over a linear shrinking sheet 

with mass transfer, wherein the effects of thermal 

radiation and variable thermal conductivity have been 

neglected. However, all the above studies are restricted 

in a linear stretching sheet. 

Vajravelu and Cannon (2006) numerically examined 

the effects of nonlinearly stretching sheet on the flow 

characteristics of viscous incompressible fluid. Prasad 

et al. (2013) have investigated  the  effects  of  internal  

heat  generation/absorption,  thermal  radiation,  

magnetic  field and  temperature-dependent  thermal  

conductivity  on  the  flow  and  heat  transfer  

characteristics  of  a  Non-Newtonian fluid over  a  

stretching  sheet.  To characterize the non-Newtonian 

fluid behavior they have used upper convected Maxwell 

(UCM) fluid model.  The numerical results for the 

physical variables have been obtained by using finite 

difference scheme along with the Keller-Box method. 

Mostafa et al. (2011) carried out the 

magnetohydrodynamic boundary layer flow and heat 

transfer of an electrically conducting micropolar fluid 

over a nonlinear stretching surface with variable wall 

heat flux in the presence of heat generation/absorption. 

Shit and Haldar (2011b) numerically investigated the 

effects of thermal radiation and variable fluid properties 

on the MHD fluid flow over a nonlinear porous 

shrinking sheet. 

In this paper, we study the effects of thermal radiation 

and chemical reaction on the MHD fluid flow over a 

non-linear inclined stretching sheet with variable 

viscosity in the presence of heat generation /absorption. 

The viscous dissipation and buoyancy effects are taken 

into account in a situation when there is a temperature 

dependent viscosity. The present problem pertains to a 

situation in which the chemical reaction takes place. 

Since the governing differential equations are highly 

non-linear, Newton’s linearization method is used 

followed by the finite difference scheme to obtain 

numerical solutions. The numerical results of the flow 

characteristics are presented graphically. 
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2. MATHEMATICAL FORMULATION AND 

FLOW ANALYSIS 

Let us consider the steady two-dimensional MHD flow 

and heat transfer along with the chemical reaction 

phenomenon of an incompressible, viscous and 

electrically conducting fluid past over an inclined non-

linear stretching sheet. 

 
Fig. 1. A physical sketch of the problem 

A uniform strong magnetic field of strength B0 is 

imposed along the perpendicular to the sheet (Fig.1). 

The x-axis is assumed to be the direction of the flow 

and y-axis is normal to it. The temperature and the 

species concentration are maintained at a prescribed 

constant value Tw and Cw at the sheet and T∞ and C∞ are 

the fixed values far away from the sheet. 

The continuous stretching surface is assumed to have a 

Power-law velocity u=Uw=bxn, where b > 0 is a 

constant, x denotes the distance from the slit, n is the 

power index and Uw represents the surface velocity of 

the sheet. We consider that electrically conducting fluid 

is influenced by the applied magnetic field B(x) normal 

to the stretching sheet. The strength of the magnetic 

field B(x) is taken as  
1

2
0

n

B x B x



 in  which  B0  

represents  the  constant  magnetic  field  strength  

perpendicular  to  the  sheet.   We assume that the 

induced magnetic field produced by the motion of an 

electrically conducting fluid is negligible, since there is 

no electric field because of the negligible polarization 

of charges. The effect of induced magnetic field can 

also be neglected because of the low electrical 

conductivity of the fluid which in turn produces low 

magnetic Reynolds number.  

According to the research conducted by Lai and 

Kulacki (1990), the fluid viscosity is assumed to vary as 

a reciprocal of a linear function of the temperature 

given by 

0

1 1
[1 ( )T T

 




        i.e.      1
( )ra T T


   (1) 

where 0a




  , 
0

1
rT T


   

In Eq. (1), both a and Tr are constants and their values 

depend on the thermal property of the fluid, i.e., γ0. In 

general a > 0 represents for liquid, whereas a < 0 

represents gas. 

By assuming Rosseland approximation for radiation, 

the radiative heat flux qr  is given by 

* 44

3
r

T
q

K y

 
 


 (2) 

where σ* is defined as the Stefan-Boltzman constant and 

K is the mean absorption coefficient. The temperature 

differences within the flow are so small under the 

consideration that 4T may be expressed as linear 

function of the temperature. Expanding 4T in a Taylor 

series about 
T and neglecting the higher order terms, 

we obtain 

4 3 44 3T T T T    (3)   

Substituting Eq. (4) in Eq. (3) yields 

* 3 2

* 2

16

3

rq T T

y K y

  
 

 

 
(4) 

Owing to the above mentioned assumptions, the 

boundary layer flow over a non-linear stretching sheet 

is governed by the following system of equations 

0
u v

x y

 
 

 

 
(5) 

    2
0 cos ( )t c

u u u
u v

x y y y

g T T c c B x u

 

    



  

      
    

      

      

 (6) 

2
2 2( )

2

2

( )

T T T
C u v k B x up

x y y

u qrQ T T
y y

 



   
   

   

  
     

    

(7) 

2
( )02

C C C
u v D K C C

x y y

  
    

  

 

(8) 

where u and v are the velocity components along the x 

and y directions respectively, µ is the coefficient of 

viscosity, g0 the acceleration due to gravity, βt the 

coefficient of thermal expansion, βc the coefficient of 

expansion with concentration, α the angle of inclination 

of the stretching sheet with the horizontal line. T and C 

are the temperature and concentration variable 

respectively, D the thermal molecular diffusivity, k0 is 

the reaction rate constant, Cp is the specific heat at 

constant pressure, k is the thermal conductivity, T∞ and 

ρ∞ are the free stream temperature and density. The 

term Q (T -T∞) on the right hand side of Eq. (7) 

represents the amount of heat generated or absorbed per 

unit volume. The source term represents the heat source 

when Q < 0 and heat sink when Q > 0. 

The boundary conditions for the present problem can be 

written as 

u =Uw=bxn,   v = 0,   T = Tw,   C =Cw   at  y = 0       (9) 

u → 0,   T → T∞ ,  C → C∞   as  y →   (10) 

Let us introduce the following similarity 

transformations as 
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,
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
 




 
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

 

 



















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

   
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  














 

(11) 

where and f  represent the dimensional and non-

dimensional stream function respectively,

 









the 

kinematic viscosity,  is a similarity space variable in 

non-dimensional form,  and  are the dimensionless 

temperature and concentration.  

Clearly, the continuity Eq. (5) is satisfied by u and v 

defined in Eq. (11). Substitution of Eq. (11) in Eq. (6) 

to Eq. (8) yields   

 

''' 2 ''( ')

' '' 2 coscos

' 0

r rf f ff
r r

rf Gr Grt c
r r

rM f
r

   


 

  
   

  

 



 
  


     



 
  

 

 

(12) 

  '' ' 23 4 3 3 ( ')

23 3 ( '') 0

N N P f E N P M fr r r c r r

rN P N P E fr r r r c
r

 


 

 

   

 
    

 
(13) 

0)'("   fSc

 

(14) 

 

and the transformed boundary conditions are given by 

 

,1)(' f ,0)( f ,1)(  ,1)(   at η=0     (15) 

 

,0)(' f ,0)(  0)(     when       (16) 

 

where  primes denote differentiation with respect to η 

only. 

The dimensionless parameter appeared in Eq. (12) to 

Eq. (14) are defined as 1

( )0

T Tr
r

T T T Tw w




         

 the 

viscosity parameter, 
22 0

( 1)

B
M

b n








the magnetic 

parameter,  Pr
C p

k

 
  the Prandtl number, 

2 0 ( )
1( 1)

k
C Cwnb n x

   
 

the non-dimensional chemical 

reaction parameter, 
( )0

2 2 1

g T Tt wGrt nb x

  


 the local 

Grashof number, ( )0
2 2 1

g C Cc wGrc nb x

  


 the local modified 

Grashof number,  
3 *4

kK
Nr

T 




the thermal radiation 

parameter, 
2

( )

UwEc
C T Tp w


 

the Eckert number, 

2

1( 1)

Q

nb n C xp





 

 the heat generation or absorption 

parameter, Sc
D








 the Schmidt number and 

2

1

n

n
 


 

the non-linear stretching parameter. 

It is worthwhile to mention here that 
r  is negative for 

liquids and positive for gases. The elimination of 
0  

between the Eq. (1) and the definition of  
r  gives rise 

1
r









 
 

 

to.  

From this relation it is obvious that when 

 r then   i.e. the viscosity variation in 

the boundary layer is negligible. However, the viscosity 

variation is more significant as 0 r when 

1,0  M  and ,0 ct GrGr  the present problem 

reduces to hydrodynamic boundary layer flow past a 

stretching sheet whose analytical solutions put 

forwarded by Crane [2] as follows 

  ef 1)(  i.e.   ef )('  (17) 

With an aim to test the accuracy of our numerical result 

for axial velocity )(' f , we have compared our result 

with this analytical solution. 

The important characteristics of the present study are 

the local-skin-friction coefficient 
fC  and the local 

Nusselt number 
uN defined by  

1
Re_ x "(0),

1 2

rC ff
r



 

 
     

 

(18) 
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
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y
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where Re _ x
Ux


  is defined as the local Reynolds 

number. 

3. RESULTS AND DISCUSSION 

The system of coupled and non-linear ordinary 

differential Eq. (12) to Eq. (14) along with the boundary 

conditions Eq. (15) and Eq. (16) have been solved 

numerically by employing a finite difference scheme. 

We used Newton’s linearization method (Cebeci and 

Cousteix (1999), Misra and Shit (2009a, 2009b) to 

linearize the discretized equations. The essential 

features of this technique are that it is based on a finite 

difference scheme, which has better stability, simple, 

accurate and more efficient. Finite difference technique 

leads to a system which is tridiagonal and therefore 

speedy convergence as well as economical memory 

space to store the coefficients. The computational work 

has been carried out by taking δη = 0.0125 and further 

reduction in δη does not bring about any significant 

change. For the purpose of numerical computation it is 

necessary to assign some valid numerical values to the 

physical parameters involved in the problem. In this 

connection, the following data have been used 

(Naduvinamani and Santosh 2011; Watanabe and Pop 

1993, 1995; Afify 2004 and Salem 2007): 

0,6 ; 1, 2, 5, 10; 1, 0.5,0.5,1;M r           

 

0, , , ;Pr 0.71,1,5,7; 0.5,1,5,7;
6 4 3

Nr
  

   

 

0.5, 0.3,0,0.5,1,2; 0.5,1,1.5; 0.5,1,1.5Sc       

The use of non-Newtonian fluid as lubricants is of 

growing interest for the motion of fluids that contain 

coarse structures and fibers such as colloidal fluids and 

liquid crystals. In view of this an attempt has been made 

to study the micropolar fluids by treating it as 

lubricants. The quality of lubricating oils and lubricants 

is attained through purification and manufacturing 

processes in addition of certain chemical agents. The 

major consideration in selecting oil for a particular 

application is viscosity and its variation depends on 

temperature. However, we used wide range of the 

values of physical parameters stated above for an 

illustrative example in order to apply to a greater 

extend. 

Figure 2 shows that our numerical results are in 

complete agreement with the analytical results of Crane 

(1970). Figures 3-7 give the variation of axial 

component of velocity f′(η) along with the 

perpendicular distance η from the sheet for different 

values of the physical parameters of interest. We 

observe from Fig. 3 that the axial velocity in the 

boundary layer region decreases gradually with the 

increase of the magnetic field strength. This may 

attribute to the Lorentz force that arises due to the 

application of an external magnetic field in an 

electrically conducting fluid. This force has a tendency 

to slow down the motion of the fluid and thereby 

decreases momentum boundary layer thickness. It is 

interesting to note from Fig. 4 that the axial velocity 

also decreases with the increase of the stretching 

parameter β.   

 
Fig.  2. Comparison of axial velocity with the analytical 

results of Crane (1970) without applying any external 

body force 

 

 
Fig. 3. Variation of f′(η) with η for different values 

of M  (with θr= -2, β = -1, α =/4 , Pr = 1, Nr = 1, λ = 1, 

γ = 0.5) 

 

 
Fig. 4. Variation of f′(η) with η for different values of β  

(with M = 2, θr= -2, α = /4 , Pr = 1, Nr = 1, λ = 1, γ = 

0.5) 

Therefore, non-linearity of the stretching sheet has a 

reducing effect on the momentum boundary layer 

thickness. In the present study β = 1 corresponds to the 

problem of linear stretching sheet as studied earlier by 

Shit and Haldar (2011b). Figure 5 depicts the variation 

of axial velocity for different angle of inclination. It 

shows that the axial velocity decreases with the increase 

of the inclination angle α of stretching sheet. It is 

interesting to note from Fig. 6 that the axial velocity in 

the boundary layer region decreases with the increasing 

values of the heat generation/ absorption parameter λ. 
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However, the viscosity parameter θr has increasing 

effect on the momentum boundary layer thickness as 

shown in Fig. 7. 

 

 
Fig. 5.    Variation of f′(η) with η for different values 

of α(with M = 2, θr= -2, β = -1, Pr = 1, Nr = 1, λ = 1, γ 

= 0.5) 

 

 
Fig. 6.    Variation of f′(η) with η for different values of 

λ(with M = 2, θr= -2, β = -1, α = /4 , Pr = 1, Nr = 1, γ 

= 0.5 ) 

Figures 8-10 illustrate the distribution of dimensionless 

temperature θ(η) along the height from the stretching 

sheet for different values of λ, Nr and Pr. We observe 

from Fig. 8 that the temperature at the sheet gradually 

decreases with the increase of the heat absorption 

parameter λ >0, whereas, the temperature increases 

initially up to a certain height above the sheet and 

beyond which it decreases monotonically for heat 

generation parameter (λ < 0). It is also observed that the 

heat generation/absorption parameter has dual 

characteristics in the region of thermal boundary layer. 

Fig. 9 shows that the temperature decreases with the 

increase of the thermal radiation parameter Nr. It is 

interesting to note from this figure that the temperature 

decreases significantly up to a certain value i.e., Nr = 5, 

beyond which no change is observed. The effect of 

Prandtl Pr on the heat transfer is shown in Fig. 10. It 

reveals that the temperature is also significantly 

decreases with the increase of the Prandtl number Pr. 

The distribution of concentration species for different 

values of the chemical reaction parameter and the 

Schmidt  number  Sc  are  shown  in  Fig. 11 and Fig. 

12  respectively. The concentration of species in the 

boundary layer decreases for increasing values of both 

the parameters γ and Sc. Thus these two parameters are 

responsible for the reducing of concentration boundary 

layer thickness. 

 
Fig. 7. Variation of f′(η) for different values of 

viscosity parameter θr(with M = 2, β = -1, α = /4 , Pr = 

1, Nr = 1, λ = 1, γ = 0.5 ) 

 

 
Fig. 8.  Distribution of dimensionless temperature θ(η) 

for different values of λ(with M = 2, θr= -2, β = -1, α 

=/4 , Pr = 1, Nr = 1, γ = 0.5 ) 

 

 
Fig. 9.  Distribution of dimensionless temperature θ(η) 

for different values of thermal radiation parameter 

Nr(with M = 2, θr= -2, β = -1, α =/4 , Pr = 1, λ = 1,γ = 

0.5) 
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Fig. 10.   Distribution of dimensionless temperature 

θ(η) for different values of Pr(with M = 2, θr= -2, β = -

1, α = /4 , Nr= 1, λ = 1, γ = 0.5 ) 

 

 
Fig. 11. Concentration profiles for different values of 

chemical reaction parameter γ(with M = 2, θr= -2, β = -

1, α =/4 , Pr = 1, Nr = 1, λ = 1 ) 

 

 
 

Fig. 12. Concentration profiles for different values of 

Schmidt number Sc (with M = 2, θr= -2, β = -1, α =/4, 

Pr = 1, Nr= 1, λ = 1, γ = 0.5) 

 
Fig. 13.   Variation of skin-friction with the function of 

M for different values of α (with θr= -2, β = -1, Pr = 1, 

Nr = 1, λ = 1, γ = 0.5) 

 

 
Fig. 14.   Variation of Nusselt number with the function 

of λ for different values of Nr (with M = 2, θr= -2, β = -

1, α = /4, Pr = 1 

 

Figure 13 illustrates the variation of skin-friction 

ReCf x  as the function of Magnetic parameter M for 

different angle of inclination of the sheet. It reveals that 

the skin-friction decreases monotonically with 

increasing magnetic field strength. The skin-friction 

also decreases with the increase of the inclination angle 

of the sheet, but the change observed is minimal. For 

the sake of brevity, it has been observed that the skin-

friction coefficient has no change in the absence of 

thermal radiation. Figure 14 represents the variation of 

Nusselt number 
Re

Nux

x

 that is the rate of heat transfer at 

the sheet as a function of heat generation/ absorption 

parameter λ for different thermal radiation parameter 

Nr. It is found that the rate of heat transfer gradually 

increases in the flow opposing region (λ > 0). However, 

an anomalous behavior of the Nusselt number is 

observed in the case of flow assisting region (λ < 0) in 

the presence of thermal radiation. It may be pointed out 

that there exists a critical value (λc) of λ < 0, where a 

rapid change of the rate of heat transfer takes place. 

Beyond this critical value of λ, the rate of heat transfer 

decreases as the heat generation parameter (negative 

values of λ) increases. It is interesting to note from this 

figure that the critical value λc is different for different 
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values of the thermal radiation parameter Nr. But, no 

critical value exists in the absence of thermal radiation. 

4. CONCLUDING REMARKS 

The effect of thermal radiation and 

magnetohydrodynamic interaction of flow and heat 

transfer over an inclined non-linear stretching sheet 

have been the main concern of this investigation. The 

temperature dependent variable viscosity has also been 

the consideration of the present problem. The effect of 

various key parameters including the angle of 

inclination (α), magnetic parameter (M), thermal 

radiation parameter (Nr), heat generation/absorption 

parameter λ, non-linearity of the stretching sheet (i.e., 

the parameter β) as well as the chemical reaction 

parameter γ are examined.  The main findings of the 

present study may be concluded as follows: 

 

 The axial velocity decreases in the boundary layer 

region for the increasing values of the angle of 

inclination, magnetic parameter, nonlinearity of 

the stretching sheet as well as the heat generation 

or absorption parameter λ.  

 

 The increasing values of the thermal radiation 

parameter leads to the decreasing of thermal 

boundary layer thickness. Thus it may be used to 

increase the rate of cooling of the sheet. 

 

 The interaction of concentration boundary layer 

decreases with the increase of the chemical 

reaction parameter γ.  

 

 The skin-friction coefficient decreases with the 

increase of the magnetic parameter M as well as 

the angle of inclination of the sheet. 

 

There exists a critical value of λ at which the dual 

characteristics of the rate of heat transfer is observed in 

the presence of thermal radiation. Therefore, the effect 

of thermal radiation plays an important role in 

controlling heat transfer at the sheet. 
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