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ABSTRACT 

Creeping flow through a swarm of spherical particles, where each particle consists of a solid core covered by a liquid shell 

coated with monomolecular layer of surfactant layer, is studied using the cell model technique. The analytical solution of the 

problem for four models: Happel’s, Kuwabara’s, Kvashin’s and Cunningham’s (usually referred to as Mehta-Morse’s) is 

derived. The drag force acting on each particle in the cell is evaluated for the four models. In limiting cases the drag force 

reduces to earlier analytical results. Results are discussed and presented in graphical forms. 

Keywords: Drag force, Interface, Surface shear viscosity, Surface dilatational viscosity. 

1- INTRODUCTION 

The presence of surfactant, at gas/liquid, liquid/liquid and 

air/liquid interface, has a profound effect on the stress 

balance at the interface associated to the bulk fluid. When 

surfactants concentrate in an adsorbed monolayer at a 

surface or interface, the property of the interface needs a 

modification. Forces, now acting on the interface, are 

surface tension gradients and the viscous resistance to 

shear and dilatation. While in the bulk liquids, the 

dilatational viscosity of fluids can typically be neglected 

and only a Newtonian shear viscosity needs to be 

considered, two fundamental deformations take place at the 

interface and a viscosity can be associated with each of  

them. When the surfactant monomolecular layer of fluid is 

present at the interface, the boundary conditions at the free 

surface or at an interface get altered due to the presence of 

surface layer parameters  (surface dilatational viscosity), 

 (surface shear viscosity) and   (surface tension). The 

surfactants are insoluble in both bulk phases, and the 

interface obeys a linear rheological model given by 

Boussinesq (1913) and generalized by Scriven (1960) 

constitutive law. Surfactants have a remarkable ability to 

influence the properties of interfaces, and thereby have an 

impact on industrial  

processes and products; this has led to ubiquitous 

development of surfactant science resulting in a lot of 

published literature on this growing subject.  

The motion of liquid drops and gas bubbles in the presence 

of surfactants is of major importance because of its 

significance in a variety of applications, such as nuclear 

physics, meteorology, biotechnology, medical science and 

chemical engineering. The earliest investigations of the 

motion of a liquid drop in another immiscible liquid were 

carried out by Rybezynski (1911) and independently by 

Hadmard (1911). Later on the dynamics of fluid interfaces 

were investigated by Lamb (1932), Reid (1960), Miller and 

Scriven (1968), Ramabhadran et al., (1976) and Prosperetti 

(1977, 1980).  The motion of a spherical bubble rising 

steadily in dilute surfactant solutions has been investigated 

by Harper (1974, 1982 and 1988). Levan (1981) extended 

the study of Levan and Newman (1976) of droplet motion 

in the presence of surfactants to treat a droplet with a 

Newtonian interface. Sadhal and Johnson (1983) derived 

an exact solution for creeping flow past a bubble or drop 

with a stagnant cap of surfactant film at the rear. The effect 

of surfactants on drop deformation and breakup was 

examined by Stone and Leal (1990).  Further, Stone (1994) 

studied the dynamics of drop deformation and breakup in 

viscous fluid. Warszynski, et al. (1996) demonstrated the 

non-equilibrium distribution of surfactant over the surface 

of a bubble after it had risen different distances. Numerical 

methods have been developed by Ryskin and Leal (1983, 

1984a, 1984b), McLaughlin (1996) to solve for fluid flow 

around a rising bubble. The effects of insoluble surfactants 

and the drop deformation on the hydrodynamic interactions 

and on the rheology of dilute emulsions are the subjects of 

investigation by Li and Pozrikidis (1997), Blawzdziewicz 

et al. (1999), and Blawzdziewicz et al. (2000).  Recently, 
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Li and Mao (2001) have investigated numerically the effect 

of surfactant on the motion of the drop at intermediate 

Reynolds number.  Danov (2001) have studied a liquid 

droplet in a shear flow in the presence of surfactant and 

had taken out the analytical solution of the problem.  Datta 

and Pandya (2002) extended the study of Taylor and 

Acrivos (1964); to investigate the deformation of the 

spherical drop, where an absorbed monomolecular 

surfactant film of fluid is present on the surface of the drop. 

Gupta and Deo (2013) have studied the axisymmetric flow 

of  a micropolar fluid over a sphere coated with a thin fluid 

film.  

Fluid flow through an assemblage of particles arises in 

many multiphase systems common in chemical and 

engineering processes and has been generating scientific 

interest for more than fifty years. However, the 

mathematical formulation of such problems is a 

cumbersome task as one has to analyze the complex 

interaction between numerous particles in order to get 

information about the flow field. The cell model technique 

Happel and Brenner (1983) involves the concept that 

random assemblage of particles can be divided into a 

number of identical cells; one particle enveloped by each 

cell was used to overcome this problem. Thus the problem 

is reduced to consideration of a single particle and its 

bounding envelope and the interaction effect is accounted 

by the application of suitably chosen boundary conditions 

at the envelope of the cell. 

Uchida (1949) proposed a cell model to study the creeping 

flow in an infinite cubic assemblage. He singled out a 

particle from the swarm and assumed it to be confined 

within a cubic cell acting as a fluid envelope. The 

advantage of the model is that a cubic envelope is space 

filling however, a major drawback of the model is that of 

difference in outer and inner geometry. Later on Happel 

(1958, 59) remodeled Uchida’s model by taking both the 

outer and inner surfaces as spheres/cylinders. Happel 

assumed vanishing of shearing stress on the cell signifying 

no friction between the particles of swarms due to 

interaction. On the other hand Kuwabara (1959) assumed 

nil vorticity on the cell surface i.e. the flow is of potential 

kind. Both the formulations give almost same results but in 

Kuwabara’s case there is slight exchange of mechanical 

energy between cell and environment. The mechanical 

power given by the sphere to the fluid is not all consumed 

by viscous dissipation in the fluid layer instead a small part 

is given to the environment.  On the contrary no such 

exchange takes place in Happel’s case.  

Mehta-Morse (1975)/Cunningham (1910) acknowledged 

the importance of unknown velocity as a boundary 

condition on the cell surface. Thus, they used the uniform 

velocity condition on hypothetical cell to investigate flow 

through charged membranes. This assumption signifies the 

homogeneity of flow at the cell. Kvashnin (1979) used the 

symmetry condition for velocity by assuming that 

tangential component of velocity approaches extreme value 

on the cell surface along radial direction.  

This paper concerns a brief review of the four boundary 

conditions on the cell surface, having monomolecular layer 

of surfactant at the interface and to find an expression for 

drag taking into account all the effects due to the presence 

of surfactants. Stokes equation is used to study the flow 

inside the spherical particle and outside it. We have used 

the cell model technique to study the flow. The importance 

of cell model technique is that we can put a suitable 

boundary condition on the cell surface which takes into 

account the perturbation effect of other particles of the 

assemblage on the particle concerned.  As boundary 

conditions, continuity of tangential velocity and 

discontinuity of normal velocity and tangential stress at the 

spherical shell and vanishing of velocity on the solid 

spherical core are employed. On the hypothetical surface, 

continuity of radial component of velocity and the 

boundary conditions of all the four different cell models 

(Happel, Kuwabara, Kvashin and Mehta - Morse) are used. 

The drag force experienced by shell enclosed in a cell is 

evaluated. In limiting cases, earlier results reported by 

Happel, Kuwabara, Kvashin and Mehta Morse, have been 

deduced. Variation of drag for different parameters is 

presented in graphical form and is compared for different 

models.  

 

   2. MATHEMATICAL FORMULATION OF 

THE PROBLEM 

Here, we consider a concentrated system of identical 

particles each of  radius a , consisting of a solid core of 

radius R  covered by a liquid shell of thickness   coated 

with a surfactant layer r a  with surface shear viscosity 

  and surface dilatational viscosity  . The system is 

placed in a uniform flow with ambient velocity U ze  along 

the z-axis. The problem will be investigated using the cell 

method; thus, it is assumed that each particle is located 

inside a concentric spherical cell of radius b as shown in 

Fig.1. The radius b of the cell is chosen in such a way that  

  
                       

34 1

3
b

n
   

 
Fig. 1.  Spherical cell of radius b  with a solid particle of 

radius R covered by a liquid shell of thickness   coated 

with a monomolecular surfactant layer r a . 

Let us introduce a spherical co-ordinate system ( r , , ) 

with the origin located at the particle center and the line  
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0  as the axis of symmetry, in the direction of the 

free stream velocity U  approaching the system. Due to 

axis-symmetry all the physical qua quantities are 

independent of  . Thus we have /  0   .The flows 

inside the shell ( R r a  ) and outside the shell (

a r b  ) are governed by radial and transverse 

components of Stokes equation and the equation of 

continuity 
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where i = 1 refers to the physical quantities in the interior 

of the shell ( R r a  ) , i = 2 refers to the physical 

quantities in the exterior of the shell ( a r b  ); also iu  

and iv are components of velocities in the direction of r  

and  . Further ip  and i  are respectively the pressure 

and fluid viscosity.  

 

The following boundary conditions are used to analyze the 

flow in the two regions.

 

No-slip and no penetration 

conditions are imposed on the surface of solid sphere 

 

  1 0v     and     1 0u             at    r R                    (4) 

 

On the interface r a , we assume no-penetration and 

continuity of tangential velocity                        
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0
              

iu
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             at    r a                     (5)         

 

Next boundary conditions at the interface as derived from 

the work of Scriven (1960) are discontinuity of tangential 

stress and normal stress. The discontinuity of normal stress 

determines the deformation of the surfactant layer 

boundary shape but since this is being neglected, only the 

discontinuity of tangential stress is taken into account here. 

Taking the surface tension as constant, Scriven’s (1960) 

boundary condition at r a  reduces to 
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Boundary conditions on the hypothetical cell r b reduce 

a complex problem to a simpler one. There are four 

frequently used boundary conditions, viz. Happel‘s, 

Kuvabara, Kvashnin and Mehta-Morse (Cunningham). All 

four models assume continuity of the radial component of 

the liquid on the hypothetical cell surface r b  
 

              2 cosu U                                                (7) 

 

An additional condition is used in each of the above 

mentioned models. Happel’s (1958) model assumes 

vanishing of the shear stress at hypothetical cell surface, 

r b   

  

         2 2 21
0

u v v

r r r

 
  

 
                                   (8)   

 

Kuwabara’s (1959) model assumes vanishing of vorticity 

at hypothetical cell surface, r b  

      

         2 2 21
0

u v v

r r r

 
   

 
                                (9) 

 

Kvashin’s (1979) model assumes symmetry condition at 

hypothetical cell surface, r b      

                 
2   0

v

r





                                           (10) 

 

Mehta-Morse’s (1975) model assumes homogeneity at 

hypothetical cell surface, r b      

     2   sinv U                                                (11)                    

which one of the four models is the most appropriate 

remains to be answered. In the present paper we investigate 

all the four models and compare the results.  

 

It will be convenient to render the problem in non-

dimensional form by using the following dimensionless 

variables:  
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                                                                  (12) 

  being the thickness of the shell and 

3
3 a

b


 
  
 

 , being 

the volume fraction of the particles. 

 

As the flow is axis-symmetric we introduce the Stokes 

stream function ( , )i r   satisfying the equation of 

continuity (3) on taking  
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               (13)  

                                                           

where 1 ( , )r  and 2 ( , )r   correspond respectively to 

regions inside the shell ( 1R r  ) and outside the shell (

1 1/R   ). Eliminating pressure ip  between Eq. (1) 

and Eq. (2) and making use of Eq. (12) and Eq. (13), we 

get 

            
4 0iE                                                        (14) 

Where 
2E  denotes the Stokes stream function operator 

given by  
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                     (15) 

 cos
 

 
   3.  SOLUTION OF THE PROBLEM 

In the case of axi-symmetric incompressible creeping flow 

the required regular solutions of the Stokes Eq. (14) is 

expressible as 

2
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The boundary conditions, in non-dimensional form given 

by Eqs. (4)- (11), reduce to: 
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Happel condition: 
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Kuwabara condition:
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Kvashnin condition: 

 

2
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Mehta –Morse condition: 

 

22  = sin  
 

r
r


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 at 1/r 
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Using the above boundary conditions given by Eqs. (17) - 

(20) in Eq. (16) we get the values of the respective eight 

constants 1 2 1 2 1 2 1, , , , , ,A A B B C C D
 
and 2D  for the four 

different models. Since these values are long, we refrain 

from presenting the values here.                                                                     
     

 

   4. EVALUATION OF DRAG FORCE 

Evaluation of drag force is important in the applications of 

the flow problem we are investigating. Drag on the sphere 
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is the force exerted on it by the moving fluid. It is 

evaluated by summing up the contributions of normal and 

tangential stress components to the force along the flow 

direction.  Let rr  and r   be the normal and tangential 

stress components on the surface of the particle, a sphere of 

unit radius a . Now hydrodynamic drag is given by 
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r  
2 [ cos sin ] sin  rr r a
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D a d
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(21) 

 

where in the present case, we have  relevant stress 
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Using Eq. (1) and Eq. (2) we calculate the value of 

pressure distribution 2p
 
and the value of  2u and 2v  can 

be calculated with the help of Eq. (13) and Eq. (16). 

Substituting these values we get:  
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Inserting the values of (2)rr  and (2)r in Eq. (21) and 

integrating, we get    

                          

     2 24    D a UB                                                (22) 

 

Inserting the value of 2B
 
we get, on non-dimensionalizing 

with 2a U , the nondimensional drag force, D  for the 

four cases as follows.                                                     
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Kvashin’s  model: 
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                                                                             (23c) 

Mehta Morse’s  model: 
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    

       

         

       

       

       

        

 

                                                                             (23d) 

 

Fig. 2. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1),  Kvashin(2), Kuwabara(3) and Mehta 

Morse (4) at 1m  , 0.5   and 0.   
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Fig. 3. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1), Kvashin (2), Kuwabara (3) and Mehta 

Morse (4) at 1m  , 0.5   and 1.   

 

 
 
Fig. 4. Variation of drag force with   (surface dilatational 

viscosity) for different models Happel (1), Kvashin (2), 

Kuwabara (3) and Mehta Morse (4) at 0.8  , 0.5   

and 1.m   
 
Figure 2 shows that as 

 
increases drag force increases 

and the rate of increment is greater at higher values of  . 

The drag force coincides for the three models (Happel, 

Kuwabara, and Kvashin). However, Mehta-Morse model 

shows a deviation from the above three models. This model 

reports a greater drag force at higher volume fraction when 

compared with the other three models. Figure 3 shows the 

variation of drag force with   for all four models with 

1,  1m  and 0.5   and is of same pattern as Fig 2. 

Figure 3 along with Fig. 2 shows that surface dilatational 

viscosity   increases the drag force. Figure 4 supports this 

fact as we see that the drag force increases with surface 

dilatational viscosity .   

 

 
 
Fig. 5. Variation of drag force with m for different models 

Happel (1), Kvashin (2), Kuwabara (3) and Mehta Morse 

(4) at 0.8  , 0.5   and 1.   

 

 

 
Fig. 6. Variation of drag force with   (shell thickness) for 

different models Happel (1), Kvashin (2), Kuwabara (3) 

and Mehta Morse (4) at 0.8  , 1   and 1.m   

 
Figure 5 shows that as the inner viscosity increases thereby 

increasing m, the drag force increases; this increase is sharp 

in the beginning and then tends to a constant value for 

large inner viscosity as then the flow inside the shell 

practically vanishes.  

Figure 6 shows that as the shell thickness   
(characterizing the thickness of the shell) increases drag 

force decreases for all four models. This decrease is 

greatest for Mehta-Morse model.    

 

4.1 Limiting cases and some known results 

 
1.  When m     (i.e., solid particle), the expression 

 

Happel’s  model: 
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5

5 6

4 (3 2 )
, 

 (2 3 3 2 )
D

 

  




  
                       

 the well known result of Happel and Brenner  (1983) 

Kuwabara’s  model: 

 
3 6

30
  

 (5 9 5 )
D



  


  
 

the well known result of  Kuwabara (1959) 

 

Kvashin’s  model:  

 

5

3 2 3

24 (4 )

 (1- ) (16 21 15 8 )
D

 

   




  
 

the well known result of Kvashin (1979) 

 

Mehta Morse’s  model:                   
2 3 4

3 2

24 (1 )
   

 (1- ) (4 7 4 )
D

    

  

   


 
 

the well known result of Mehta Morse (1975). 

 

Figure7 shows the variation of drag force, D with volume 

fraction of particles,   
3   for the above four  

models 

 

 
Fig. 7. Variation of drag force with 

1/3(    )volume fraction of particle  for different models 

Happel (1), Kvashin (2), Kuwabara (3) and Mehta Morse 

(4). 

 

2. When 1  , the shell will reduce to a fluid sphere 

covered by surfactant layer (i.e., absence of the solid core 

in the particle centre). Expressions for the drag D , for 

different models take the following form: 

Happel’s  model:            

5 5

5 6 5

6

4 { (9 6 ) 6(1 ) ( 6 4 )} /{ 6

          ( 6 9 9 6 ) 6 ( 1 ) 4

              6 (1 ) ( 6 4 )}

D m

m

    

     

   

         

       

    

                       

                                                                             (24a) 

Kuwabara’s  model:                                                                      

3

6 3 6

30 (2 3 2 ) /{3 ( 5 9 5

) 10 18 (1 ) ( 3 2 ) 5(3 2 )}

D m m   

       

      

        

         

                                                                  (24b)  

Kvashin’s  model: 

5 5

3 2 3 5

3 6

24 {3 (4 ) 8(1 ) ( 3 2 )} /{3

   ( 1 ) (16 21 15 8 ) 2( 9 ( 1 )

  10 27 (1 ) 4 ( 3 2 ) 8(3 2 ))}

D m m    

     

      

       

        

       

         

                                                

                                                                             (24c) 

Mehta Morse’s  model:    
5 5

3 2 3

2 3

24 {3 ( 1 ) 2(1 ) ( 3 2 )}

         /[( 1 ) {3 ( 4 3 3 4 ) 2( 6

       3 ( 3 ) 4 3 (3 ) ( 6 4 ))}]

D m

m

    

   

      

        

        

                

                                                                           (24d) 

 
Fig. 8. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1), Kvashin(2), Kuwabara(3) and Mehta 

Morse (4) at 1m  , 1   and 0  . 

 

 
Fig. 9. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1), Kvashin(2), Kuwabara(3) and Mehta 

Morse (4) at 1m  , 1   and 1  . 
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Figure 8 and Fig. 9 shows the variation of drag force 

with  at 1  (i.e., solid core is absent) and for 0   

and 1   respectively for four different models. 

Comparison of the ordinate values of Fig. 8 and Fig. 9 with 

Fig. 2 and Fig. 3 shows that due to the absent of solid core 

drag force reduces and all the other variations are same as 

was reported in Fig. 2 and Fig. 3.  

 

 
Fig. 10. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1), Kvashin (2), Kuwabara (3) and Mehta 

Morse (4) at 0m  , 1   and 0  . 

 

Figure 10 and Fig.11 shows the variation of drag force 

when 0m   i.e., the ideal fluid, for four different 

models. Comparison of Fig. 10 and Fig. 11 with Fig. 8 and 

Fig. 9 shows that the numerical value of drag force has 

decreased further the three models (Happel, Kuwabara and 

Kvashin) now show some difference in their values that 

was seen to be almost   absent in Fig. 2, Fig. 3, Fig. 8 and 

Fig. 9. 

 

 
Fig. 11. Variation of drag force with 

1/3(    )volume fraction of particles  for different 

models Happel (1), Kvashin (2), Kuwabara(3) and Mehta 

Morse (4) at 0m  , 1   and 1  . 

 

3. When 0  , i.e. (b large), solid core is covered by a 

liquid shell coated with a surfactant layer placed in a 

uniform flow. For all the four models we get naturally the 

indentical result for drag 

  

12 { 6 ( 2 )(5 ( 5 2 )) 2 (15

        ( 15 4 ))(1 )}/{12 ( 2 )(5 ( 5 2 ))

               (15 ( 15 4 ))( 6 4 )}

D m

m

    

     

   

         

       

                                                                                                                                                

 

                                                                                      (25) 

In the above case if 1   then,                

6 (2 3 2 )
    

(3 3 2 )

m
D

m

 



 


 
   

 

            

 

The hydrodynamic drag force exerted on a solid particle of 

radius R that moves with a velocity U  is obtained by 

putting m = 1,  = 0 in Eq. (25). In dimensional form it is 

the classical Stokes drag formula:                 

2 6  SD R U
 

 

Providing in non-dimensional form 

  6SD 
                                                                

With fluid shell coated with surfactant layer on the solid 

sphere surface, the hydrodynamic drag force 

exerted will increase. The effective increase hL
 
(Happel 

1983), of the particle radius to account for the 

corresponding increase in the hydrodynamic drag force is 

given by the relation
  

  

 26 hD R L U 
 

 

Defining    

SS

D D

DD
   (Masliyah et al., 1987; Vasin 

et al., 2008), as the ratio of the hydrodynamic drag force 

and Stokes force 26  SD R U , we have                                                                                                       
                                                            

 

 hL R 
                                                                  (26)                      

 

 

The expression for the ratio of the hydrodynamic drag 

force,   takes the following form by substituting the 

values of D   and SD :

 

 

2{ 6 ( 2 )(5 ( 5 2 )) 2 (15 ( 15

       4 ))(1 )}/{12 ( 2 )(5 ( 5 2 )) (15

                 ( 15 4 ))( 6 4 )}

m

m

    

     

  

          

       

   

 

                                                                                                       

                                                                                      (27)                

From Eq. (27) we can conclude that:  
 

 

a) If 0   (i.e. when fluid shell is absent and R =1); 

then we have 1  confirming that the hydrodynamic 

drag force is equal to the Stokes force. 
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b)  If    , then 1  and so the Stokes force is 

recovered again. 

c)  If  m , then 1   and so the Stokes force is 

recovered again. 

d)  If  1  , R = 0; then   reduces to :    

                        
2 3 2

3 3 2

m

m





 
 

 
  

 

Further if m = 1, then the expression for the dimensionless 

hydrodynamic drag force ratio reduces to: 
 

                        
5 2

6 2






 

  

e) If  m =0 , then  we have  

                         

2(1 )

3 2






 


                                       (28)

 

The variation of the dimensionless drag force ratio    as 

given by Eq. (27) with the parameter   at different   is 

presented in Fig. 12. The decrease of drag force ratio is 

seen to be more pronounced at lower values of  and then 

it increases to its asymptotic value 1 as observed in case 

(b). The increase of the thickness of the fluid shell, 

represented by  , contributes to the decrease of drag ratio 

The dimensionless drag force ratio  , as given by Eq. 

(27) is plotted against the parameter m at different values 

of the dimensionless thickness   of the fluid shell in Fig. 

13. All plots starts from an identical point determined by 

Eq. (28). In the above figure this point is 0.67 . The 

value of this identical point increases when   increases. 

As viscosity ratio m increases, the drag force increases and 

1  as m . This maximum value of   is 

reached earlier at low thickness of the shell  . Next if m = 

1, the expression for the dimensionless hydrodynamic drag 

force ratio reduces   

2 3

2 3

{60 30 ( 2 ) 6 ( 4 5 ) ( 4 8 )}

      /{60 (9 30 ) 8 15 ( 3 2 )}

     

     

          

     

                                                                                        

(29) 

Figure 14 shows the variation of  , as is calculated from 

Eq. (29) with the dimensionless thickness of the shell, at 

various parameters  (surface dilatational viscosity). It 

shows that   decreases as the thickness of the shell 

increases. This decrease is more pronounced at low values 

of the parameter   that is at lower surface dilatational 

viscosity of the surfactant layer. At 0   there is no 

shell and hence, 1 . As the thickness of the shell 

increases the drag force exerted to the particle decreases. 

 

 
Fig. 12. Variation of   with surfactant layer parameter

at 1m   and 0.4 (1) ,   0.6 (2) ,   

0.8 (3) and  1 (4) .  
 

 

Fig. 13. Variation of   with m (viscosity ratio) 0   

0.4 (1) ,  0.6 (2) ,  0.8 (3)   and 1 (4) .   

 
 

Fig. 14. Variation of   with the dimensionless thickness 

of the shell  at 1m  and 0 (1) ,  1 (2) ,  

5 (3) and 10 (4)     
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