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ABSTRACT 

We analyse the effects of radiation and rotation on unsteady hydromagnetic free convection flow of a viscous 

incompressible electrically conducting fluid past an impulsively moving vertical plate in a porous medium by applying 

inclined magnetic field, Under Boussinesq approximation, assuming that the temperature of the plate has a temporarily 

ramped profile. An exact solution of the governing equations, in dimensionless form is obtained by Laplace transform 

technique. To compare the results obtained in this case with that of isothermal plate and exact solution of the governing 

equations are also obtained for isothermal plate and results are discussed graphically in both ramped temperature and 

isothermal cases. 

Keywords: MHD, Rotation, Radiation, Inclination, Free convection, Ramped temperature. 

1. INTRODUCTION 

The study of convective heat transfer from a solid body 

with different geometries embedded in a fluid saturated 

porous medium has varied and wide applications in many 

areas of science and engineering such as geothermal 

reservoirs, drying of porous solids, chemical catalytic 

reactors, thermal insulators, nuclear waste repositories, 

heat exchanger devices, enhanced oil and gas recovery, 

underground energy transport etc.  

Keeping the above facts Kumar and Varma (2011) have 

studied the radiation effects on MHD flow past an 

impulsively started exponentially accelerated vertical 

plate with variable temperature in the presence of heat 

generation. The combined effects of rotation and 

radiation on MHD flow past an impulsively started 

vertical plate with variable temperature was studied by 

Rajput and Kumar (2011). Chebbi and Bouzaiane (2012) 

discussed the effects of rotation on the passive scalar and 

kinematic fields of homogeneous sheared turbulence. Jha 

and Ajibade (2010) have studied the unsteady free 

convective Couette flow of heat generating/absorbing 

fluid. The unsteady MHD heat and mass transfer free 

convection flow of polar fluids past a vertical moving 

porous plate in a porous medium with heat generation 

and thermal diffusion has been analyzed by Saxena and 

Dubey (2011). The  effects of  thermal  radiation  and  

free  convection  currents on  the  unsteady Couette  flow 

between  two  vertical parallel plates with constant heat 

flux at one boundary have been studied by Narahari 

(2010). Effects of hall current and rotation on unsteady 

MHD couette flow in the presence of an Inclined 

Magnetic field was analyzed by Seth et al 

(2012).Vijayalakshmi (2010) have studied Radiation 

effects on free-convection flow past an impulsively 

started vertical plate in a rotating fluid. The effect of a 

uniform  transverse  magnetic  field  on  the  unsteady  

transient  free  convection  flow  of  an  incompressible  

viscous electrically conducting fluid between two infinite 

vertical parallel plates with constant temperature was 

studied by Rajput and Sahu (2011). Bestman and 

Adjepong (1988) discussed the magneto hydrodynamic 

free convection flow, with radiative heat transfer, past an 

infinite moving plate in rotating incompressible, viscous 

and optically transparent medium. Arpaci (1968) 

analysed effects of thermal radiation on the laminar free 

convection from a heated vertical plate. Sandeep and 

Sugunamma (2013) analyzed aligned magnetic field and 

chemical reaction effects on flow past a vertical 

oscillating plate through porous medium 

The present paper deals with the effects of radiation and 

rotation on unsteady hydromagnetic free convection 
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flow of a viscous incompressible electrically 

conducting fluid past an impulsively moving 

vertical plate in a porous medium by applying 

inclined magnetic field, Under Boussinesq 

approximation, assuming that the temperature of 

the plate has a temporarily ramped profile. An 

exact solution of the governing equations, in 

dimensionless form is obtained by Laplace 

transform technique. To compare the results 

obtained in this case with that of isothermal plate 

and exact solution of the governing equations are also 

obtained for isothermal plate. 

2. MATHEMATICAL FORMULATION 

We consider an unsteady hydromagnetic free convection 

flow of a viscous incompressible electrically conducting 

fluid past an impulsively moving infinite vertical plate 

embedded in a porous medium. And consider the 

coordinate system in such a way that the x-axis is taken 

along the plate in the upward direction, y-axis normal to 

the plane of the plate in the fluid and z-axis 

perpendicular to xy – plane. The fluid is permitted by an 

inclined magnetic field applied along the direction of y-

axis. Both the fluid and plate rotate in unison with a 

permit uniform angular velocity   about y-axis. 

Initially, at time
* 0t  , both the fluid and plate are at 

rest and at a constant temperature
*T


. At time * 0,t   

the plate starts moving in x direction with uniform 

velocity 0U  and the temperature of the plate is raised or 

lowered to  * * *

0*wT T T t t    when *

0t t , and 

thereafter, for 0*t t , it is maintained at the constant 

temperature *

wT . Since the plate is infinite in x and z 

directions and is electrically non-conducting with all 

physical quantities, except pressure will be functions of y 

and *t  only.  

Taking into consideration the assumptions made above, 

the governing equations for laminar free convection flow 

of a viscous incompressible electrically conducting fluid 

past a vertical plate in a uniform porous medium with 

radiative heat transfer, under Boussinesq approximation, 

in a rotating frame of reference are 

 
*

*

2 *
* * * 2 ** *2

2 *
1

u
w g T T u BSin u

y K

u

t


  


      





                                                                              

                                                                                  (1) 

* 2 *
* * 2 *

* 2 *

1

2
w w

u w BSin w
t y K


 

 
    

 
             

                                                    

                                                                                   (2) 

* 2 * *1

* 2

T k T qr

c c yp pt y 

  
 

 
                         (3)                                                        (3) 

where 
*T , g , 

* ,  ,  ,  , k , 
*

1K , 
pc  and 

*

rq  

are respectively, temperature of the fluid, acceleration 

due to gravity, volumetric coefficient of thermal 

expansion, kinematic coefficient of viscosity, electrical 

conductivity, fluid density, thermal conductivity, 

permeability of porous medium, specific heat at constant 

pressure and radiative flux vector. Here 
2

0B
B




  is 

applied magnetic field. 

The initial and boundary conditions are 

 

* * * * *

* * *

0

* * * * * *

0 0

* * *

0

* * * * *

0,   for 0 and 0,

, 0 at 0  for 0,

 at  0 for 0 ,

 at 0 for ,

0, 0,   as  for 0.

w

w

u w T T y t

u U w y t

T T T T t t y t t

T T y t t

u w T T y t



 



    


    


      


   


        

(4) 

We now use Rosseland approximation which leads to the 

value of radiative heat flux 
*

rq  as  

  
* *4

*

*

4

3
r

T
q

k y

 
 


,                                 (5)                                                                 (5) 

Where 
*k  is mean absorption coefficient and 

*  is 

Stefan-Boltzmann constant.  It may be noted that by 

using Rosseland approximation we limit our analysis to 

optically thick fluids. Assuming small temperature 

differences between fluid temperature *T  and free 

stream temperature
*T


, the Eq. (5) is linearized by 

expanding  
4*T  in Taylors series about free stream 

temperature  
*T


,  after neglecting second and higher 

order terms in  * *T T  it takes the form 

*4 *3 * *44 3T T T T                                            (6) 

Making use of Eqs. (5) and (6), Eq. (3) becomes 

* *32 2

2 * 2

16* * 1 *

* 3p p

TT k T T

t c y c k y



 
  

 
  

                                                   

                                                                                    (7) 

Introduce the following non-dimensional variables 

0 0/Y y U t , *

0/u u U , *

0/w w U , 

*

0/t t t  and    * * * * ,wT T T T T   
     

(8) 

The Eqs. (1), (2) and (3) in the non-dimensional form are 
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2
2

2

1

1
2 r

u u
K w G T M u

t Y K

  
     

                 

                                        

                                                                                (9) 

2
2

2

1

1
2

w w
K u M w

t Y K

  
    

   

        (10)                                                   (10) 

  2

2

1

r

RT T

t P Y

 


 

                              (11)                                                                  (11) 

Where 2 2/ 0K U  is rotation parameter,

2 2' /0 0M B U    is magnetic parameter, 

2'M M Sin  is inclined magnetic field. 

2 2
1 1 0K K U 

 
Is porosity parameter, 

  3
0G g T T Ur w       is Grashof number, 

P c kr p  is Prandtl number and * 3 *16 3R T kk    

is radiation parameter. According to above non 

dimensionalization process, the characteristic time to can 

be defined as 

2
0 0t U .                                              (12)                                                                                 (12) 

Making use of (12) the initial and boundary conditions 

(5), in non-dimensional form, reduces to 

0,  0 for Y 0 and 0,

1,  0 at Y 0 for 0,

 at Y 0 for 0 1,

1 at Y 0 for 1,

0,  0,  0 as Y  for 0.

u w T t

u w t

T t t

T t

u w T t

     


   


    
  


        

 (13)                 

combining (9) and (10) in the form of f u iw 
 
, we 

obtain 

2
2

2

1

1
2 r

f f
iK f Mf f G T

t Y K

 
    

 

.     (14)                                         (14) 

The initial and boundary conditions (13) in combined 

form are 

0,  0 for Y 0 and 0f T t                  (15a)                    

1 at Y 0 for 0f t   (15b)

 at Y 0 for 0 1T t t    ,                      (15c)                                             (15c) 

1 at Y 0 for 1T t   ,                        (15d)                                               (15d) 

0,  0 as Y  for 0f T t    .        (15e)                                     (15e) 

   3. SOLUTION OF THE PROBLEM 

It is evident from the Eqs. (11) and (14) that the energy 

Eq. (11) is uncoupled from the Eq. (14). Therefore, first 

we can obtain the solution for the fluid temperature 

 ,T Y t  by solving Eq. (11) and then using it in Eq. 

(14) the solution for  ,f Y t  can be obtained. 

Applying Laplace transform technique, the Eqs. (11) and 

(14) with the help of (15a) reduces to 

2 1 22 0
2 1

d f
s M iK f G Tr

KdY

 
      
 

,                                       

                                                                                (16) 

2

2
0

d T
asT

dY
  ,                                            (17)                                                                              (17) 

where  1ra P R   and  ,f Y s   and 

 ,T Y s  are Laplace transforms of  ,f Y t  and 

 ,T Y t  respectively defined by 

   
0

, , stf Y s f Y t e dt



 
       

and 

   
0

, , stT Y s T Y t e dt



 
, 

 ( 0s   Being Laplace transform parameter). 

The boundary conditions (15b) to (15e) becomes 

  21/ ,  1  at Y 0,
 

0,  0 as Y .

sf s T e s

f T

     


   

(18) 

The solutions of  Eqs. (16) and (17), subject to the 

boundary conditions (18) are given by 

  2

1
,

s
Y ase

T Y s e
s




 ,                         (19)                                                                  (19) 

 
 

 2

1 1
,

s
Y s Y s Y ase

f Y s e e e
s s s

 



    

  


,                       

                                                                             (20) 

where  

   

1 22 ,
1

1 , 1 .

M iK
K

G a ar



  

 
    

 


    

        (21)                                                 (21) 

Taking the inverse Laplace transform of Eqs. (19) and 

(20), the exact solution for the fluid temperature 

 ,T Y t  and fluid velocity      , , ,f Y t u Y t iw Y t   are 

obtained and expressed in the following form as
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       , , 1 , 1T Y t P Y t H t P Y t       (22)                               

 
21

,
2

2

Y

Y

Y
e erfc t

t
f Y t

Y
e erfc t

t









  
  

   
  
   
   

 

           
     , 1 , 1F Y t H t F Y t      

,                    

                                                                              (23)     

 

  Where  

 
2

2

4,
2 2

aY

t
aY Y a at

P Y t t erfc Ye
t 

  
      
   

                                                                                  

                                                                             (24) 
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
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        

   

    
      

      
     (25) 

In the Eqs. (22) to (25),  erfc x  is the complementary 

error function and  1H t   is the Heaviside unit step 

function. 

   4. SOLUTION IN CASE OF ISOTHERMAL 

PLATE 

The analytical solution for the fluid temperature and 

velocity, represented by Eqs.(22) and (23) respectively, 

are obtained for an unsteady hydromagnetic free 

convection flow of a viscous incompressible electrically 

conducting fluid near a vertical moving plate with 

ramped temperature. In order to highlight the effects of 

ramped temperature distribution within the plate on the 

fluid flow, it may be worthwhile to compare such a flow 

with the one, near a moving plate with uniform 

temperature. Taking into account the assumptions made 

in the present study, the solution for the fluid temperature 

and velocity for the fluid flow near a vertical moving 

isothermal plate is obtained and expressed as 

 ,
2

Y a
T Y t erfc

t

 
   

 

                              (26)                                                             
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 

 

                                    (27) 

Where /    . 

5. RESULTS AND DISCUSSION 

To study the effects of  radiation, magnetic field, 

rotation, porosity of medium, inclined angle and time on 

the flow-field the numerical values of fluid velocity are 

displayed graphically versus boundary layer coordinate 

Y in Figs.1 to 12 for various values of magnetic 

parameter M, rotation parameter 
2K , Grashof number 

Gr , radiation parameter R , porosity parameter 1K  

,inclined angle   and time t  taking 0.71Pr   (ionized 

air).Here inclined angle is taken as 
2


   for discussing 

velocity and temperature profiles. 

It is noticed from Fig.1 that an increase in the magnetic 

parameter M  leads to a decrease in the velocity for 

ramped temperature and isothermal plates. But initially at 

isothermal plate velocity takes reverse action. i.e. 

increase in magnetic field causes an increase of velocity 

after wards velocity  decreases gradually in increase 

magnetic field.  This is due to the fact that the application 

of an inclined magnetic field to an electrically 
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conducting fluid gives rise to a resistive force which is 

known as Lorentz force. From Fig.2 It is evident that, for 

both ramped temperature and isothermal plates, an 

increase in rotation parameter 
2K  leads to a decrease in 

the velocity near the plate. From Fig.3 it is found that the 

velocity of the fluid at ramped temperature increases an 

increase in Grashof number Gr but in an isothermal 

plate, velocity varies in certain time and follows ramped 

profile. Fig.4 that the velocity increases by increase in 

the radiation parameter R ,but at ramped temperature 

velocity decreases with an increase in the radiation. Fig. 

5 shows that the effect of the fluid velocity at ramped 

temperature and an isothermal plates, for different values 

of porosity parameter 1K  . It is observed that an increase 

in porosity parameter causes an increase in velocity. It is 

revealed from Fig.6 that the velocity decreases with an 

increase in the time at isothermal plate but at ramped 

temperature, velocity increases by increasing the time t . 

Figs. 7 and 8 show the effect of inclined magnetic field 

over velocity. From these it is observed that at ramped 

temperature, velocity of the fluid decreases by an 

increase in inclined angle. In the similar manner at 

isothermal plate also, velocity varies initially and then it 

is decreased by increase in an inclined angle. 

   In order to have physical view of fluid temperature, the 

profiles of fluid temperature are drawn versus boundary 

layer coordinate Y  in Figs. 9 to 12 for various values of 

radiation parameter R , Prandtl number Pr  and time t .It 

is evident from Fig. 9 that the fluid temperature T  

increases by an increase in the radiation parameter at 

ramped temperature but it is reversed in case of 

isothermal plate. From Fig.10, it is observed that the 

fluid temperature T  increases on increasing Prandtl 

number Pr  for both ramped temperature and isothermal 

plates. It is evident from Figs. 11 and 12 shows that an 

increase in the time causes the decrease the fluid 

temperature in both cases. 

  

 

Fig. 1.  Velocity field for different values of M. When K2=1, Gr=5, R=3, K1=0.1 and t=1 
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Fig. 2. Velocity field for different values of K2 .When M=4, Gr=5, R=3, K1=1 and t=2 

 

Fig. 3. Velocity field for different values of Gr. When K2=1, M=1, R=1, K1=0.1 and t=1 
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Fig. 4. Velocity field for different values of R. When K2=1, Gr=5, M=1, K1=0.1 and t=1 

 

Fig. 5. Velocity field for different values of K1. When K2=4, M=5, R=2, Gr=2 and t=1 
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Fig. 6. Velocity field for different values of t. When K2=4, M=1, R=1, K1=0.1 and Gr=5  

 

Fig. 7. Velocity field for different values of θ.When K2=1, M=1, R=3, K1=0.1, Gr=15  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

1.05 

1.1 

Y 

F(Y) 

, , ,
6 4 3 2

   
   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Y 

F(Y),f(Y) 

t=0.8, 0.6, 0.4, 0.3 

t=0.3,0.4,0.6,0.8 

Ramped Temperature................ 
                Isothermal_________ 



N. Sandeep and V. Sugunamma / JAFM, Vol. 7, No. 2, pp. 275-286, 2014.  

 

283 

 

 

Fig. 8. Velocity field for different values of θ.When K2=1, M=1, R=3, K1=0.1, Gr=15 and t=1. 

 

Fig. 9. Temperature field for different values of R. When K2=4, M=2, R=2, K1=0.02, Gr=3 and t=0.5 
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Fig. 10. Temperature field for different values of Pr.When K2=4, M=2, R=2, K1=0.02, Gr=3 and t=0.5 

 

 

Fig. 11. Temperature field for different values of t in Ramped temperature.When K2=4, M=2, R=2, K1=0. 2, Gr=3 
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Fig. 12. Temperature field for different values of t in Isothermal plate.when K2=4, M=2, R=2, K1=0. 2, Gr=3 

6. CONCLUSIONS 

The present study investigates the unsteady 

hydromagnetic free convection boundary layer flow of a 

viscous incompressible electrically conducting fluid past 

a ramped temperature impulsively moving plate in a 

rotating porous medium in the presence of inclined 

magnetic field and thermal radiation. The significant 

findings are summarized as: 

For both ramped temperature and isothermal plates: 

Magnetic field tends to reduce fluid flow in both the 

ramped and isothermal cases. Increase of radiation 

rotation decreases the fluid flow in the isothermal plate 

whereas it increases the fluid flow in the ramped 

temperature. Rotation, Inclined magnetic field angle and 

time decrease the fluid flow in both cases. Prandtl 

number has tendency to increase the fluid temperature. 

Radiation parameter casus the decrease of temperature in 

ramped temperature case but it reversed in isothermal 

case. Here inclination angle causes the increase and 

decrease of magnetic field effect so at
2


   it acts like 

transverse magnetic field.  
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