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ABSTRACT 

In this research a direct numerical simulation (DNS) of turbulent flow is performed in a geometrically standard 

case like plane channel flow. Pseudo spectral (PS) method is used due to geometry specifications and very high 

accuracy achieved despite relatively few grid points. A variable time-stepping algorithm is proposed which may 

reduce requirement of computational cost in simulation of such wall-bounded flow. Channel flow analysis is 

performed with both constant and varied time-step for 128 × 65×128 grid points. The time advancement is carried 

out by implicit third-order backward differentiation scheme for linear terms and explicit forward Euler for 

nonlinear convection term. PS method is used in Cartesian coordinates with Chebychev polynomial expansion in 

normal direction for one non-periodic boundary condition. Also Fourier series is employed in stream-wise and 

span-wise directions for two periodic boundary conditions. The friction Reynolds number is about Reτ=175 based 

on a friction velocity and channel half width. Standard common rotational form was chosen for discritization of 

nonlinear convective term of Navier-Stocks equation. The comparison is made between turbulent quantities such 

as the turbulent statistics, Reynolds stress, wall shear velocity, standard deviation of (u) and total normalized 

energy of instantaneous velocities in both time-discretization methods. The results show that if final decision rests 

on economics, the proposed variable time-stepping algorithm will be proper choice which satisfies the accuracy 

and reduces the computational cost. 

 

Keywords: Channel flow, Pseudo spectral method, Direct numerical simulation, Variable time-stepping 
algorithm. 

 

NOMENCLATURE 

a upper wall boundary condition   U 
 

wall-units for velocity 

b lower wall boundary condition  u(x)   vector of velocity flow
 

C (u) the constant term of NSE  u (x; )tot t   total fluid velocity field
 

C  Fourier transform of C  u(x; t)  fluctuating velocity 

c constant of wall law   
, ,ûkx ny kz

 
spectral coefficients of u

 

ex  unit vector in x direction  u
 wall-shear velocity 
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xk  
wave number in x direction

 
 u  Fourier transform of u 

zk  
wave number in z direction

 
 *u  friction velocity 

J number of discretized step  u i  
instantaneous velocity  

L (u)  linear term of NSE  y 

 
wall-units for length 

L  Fourier transform of L     coefficient of the discretization formula 

in SBDF3 

x
L   period in stream wise direction

 
    coefficient of the discretization formula 

in SBDF3
 

y
L   

period in normal direction
 

    coefficient of the discretization formula 

in SBDF3
 

z
L   period in span wise direction

 
 T  time step of recorded information 

N (u)  nonlinear term of NSE  t  varied or constant time step 

N  Fourier transform of N  
0t  initial time step in varied form 

yN
 

vumber of discretization in 

normal directions 

 
mint  minimum values of time step in varied 

form 

p (x; )
tot

t   total pressure field
 

 
maxt  maximum values of time step in varied 

form  

p(x; t)  periodic fluctuating pressure   x   grid spacing in the stream-wise direction 

in wall unit  

q  modified pressure  
miny   minimum grid spacing in normal 

directions in wall unit  

Re
L  

Initial Reynolds number
 

 
maxy   maximum grid spacing in normal 

directions in wall unit 

Re   friction Reynolds number
 

 z   grid spacing in the span-wise directions 

in wall unit  

m
T   mth Chebyshev polynomial  Πx(t)  spatially-constant base pressure gradient 

T  time of recorded information    computational domain 
U velocity of base flow  

0
 boundary of sub-domain 0   

U(y)  mean velocity profile     viscosity 
 

 
1. INTRODUCTION 

In fluid dynamics turbulent flows are not the 

exception. Virtually most kinds of flows either 

generated by nature or by human industrial activity 

are turbulent. Turbulent flows consist of a wide range 

of scales from a few micrometers in high-speed 

aircrafts to parsec scales for astrophysical flows such 

as conventional matter in the Universe. The 

governing equations of such disordered flow in space 

and time are deterministic, but due to the nonlinear 

interactions, the evolution in time is very 

complicated. 

Numerical methods can be used to study the 

properties of turbulent flows and improve the basic 

understanding of turbulent field. This would be a 

complete description of turbulent flow, where the 

flow variables (e.g. velocity and pressure) are known 

as a function of space and time with the resolution of 

all scales, which can only be obtained by solving the 

Navier-Stokes equations (NSE) numerically. This 

approach is called direct numerical simulation (DNS). 

In the last decades, DNS has started to gain popularity 

due to significant progress in the speed and capacity 

of the computers, and also the development of 

efficient and accurate algorithms. Direct numerical 

simulation is a time-dependent three dimensional 

solution in which the governing equations are 

computed as accurately as possible without using any 

turbulence models. Precise knowledge of every fluid 

particle’s position, velocity, pressure and their 

derivatives is provided in a wide range of information 

in the flow field. These are extremely difficult to be 

measured in experiments. Yet DNS is used to simulate 

flow in a channel with rough-walls (Bhaganagar and 

Leighton ,2013). 

The development of the theory in fluid mechanics is 

closely coupled to experiments. It was not until the 

19th century that mathematicians developed the 

fundamental equations called the NSE, which governs 

viscous flow. After developing the digital computer, 

researchers start to simulate turbulent flows, 

numerically. 

The simulations of turbulence in three dimensional 

flows are complicated. It dramatically increases the 

number of required grid points compared to the two-

dimensional flow calculation. Still with such features, 

the method demands high computer memory 
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compared to the conventional techniques. In recent 

years, the developments of supercomputers facilitate 

such numerical simulations of fluid flows in different 

cases. However, with present resources, a direct 

simulation is feasible for simulation of transient, 

three-dimensional (3D) flows in or around simple 

geometries at low and moderate Reynolds numbers. 

Nowadays both finite-difference schemes and spectral 

schemes are used for direct numerical simulations of 

the fluid flows .Yet it seems spectral methods are the 

best tools to achieve higher accuracy on a simple 

domain and demand less computer memory than 

other alternatives. 

The first attempt of the three dimensional DNS was 

made by Orszag and Patterson (1972) to perform 

computation of isotropic turbulence at a Reynolds 

number (based on Taylor microscale) of 35. More 

recently, the DNS of the fully developed turbulent 

channel flow started for the wall turbulence. The 

DNS of plane channel flow was performed by Kim et 

al. (1987). Their Reynolds number based on the 

friction velocity ut and the channel half width d was 

Reτ=180. Since then, the channel flow has proven to 

be an extremely useful framework for the study of 

wall-bounded turbulence. It has often been performed 

because of its simple geometry and fundamental 

nature to understand the transport mechanism. 

Afterwards various Reynolds number channel 

simulations have been performed by many others. 

Kuroda et al. (1989) and Kasagi et al. (1992) carried 

out the DNS for a slightly lower Reynolds number of 

Reτ=150. Kim et al. (1990) also performed a DNS 

with a higher Reynolds number of Reτ=395. 

Kawamura et al. (1998, 1999) performed the DNS to 

include the scalar transport with various Prandtl 

numbers for Reτ=180 and 395. They also carried out 

the DNS for a higher Reynolds number of Reτ=640 

and reported preliminary results in Kawamura et al. 

(1999). In recent years, numerical simulations of fully 

developed turbulent channel flow at Reynolds 

numbers up to Reτ=2320 by Iwamoto et al.  (2005) 

and Reτ=2000 by Hoyas and Jimenez (2006) are also 

reported.  

There is a rich variety of strategies for time 

discretizing the NSE in DNS. Most commonly used 

time-discretization strategies are splitting techniques 

and coupled methods (monolithic methods). In fluid 

dynamics, the progenitor of splitting methods is the 

Chorin–Temam method in the late 1960s. In the late 

1970s, second-order Adams–Bashforth for explicit 

terms and second-order Crank–Nicolson for implicit 

terms were common choices. Low-storage Runge–

Kutta (third-order and fourth-order) became popular 

in the 1980s for explicit terms. In the 1990s, the third-

order backward difference scheme came into use for 

implicit terms that seemed to be more accurate based 

on a higher order discretization of the time derivative 

(Canuto et al., 2007). This paper presents results from 

DNS of fully developed plane channel flow with 

backward difference scheme, which is a prototypical 

flow used to study physical and numerical modeling of 

wall-bounded flows frequently. The mathematics of 

numerical method are based on the spectral channel 

flow algorithm, proposed by Canuto et al.(2006) , with 

Spectral discretization in spatial directions 

(Fourier×Chebyshev×Fourier) and finite-differencing 

in time. The differential equations are Helmholtz 

equations. The tau-equation solution with tau 

correction is also applied in discretized form of each 

Fourier mode. Primitive variables (3D velocity and 

pressure) are used to integrate the incompressible 

NSE. The time advancement is carried out by three-

stage scheme based on a backward difference 

algorithm treatment of the linear terms, combined with 

explicit extrapolation of the nonlinear convection 

terms. Variable time stepping algorithm is proposed to 

minimize the computational cost of the integration by 

maximizing the time step while keeping the Courant–

Friedrichs–Lewy condition (CFL condition) near a 

threshold. It should be noticed that variable time 

stepping algorithm is applied especially in Parallel 

CFD, like: Bazavan (2007) and Chien et.al. (1997). 

Also this algorithm has been used in Gibson et. al. 

research on turbulent Plane Couette flow to reduce run 

time in time advancement calculation (Gibson et. 

al.,2007,2008,2009). 

The primitive variable form of the three-dimensional 

incompressible NSE has several equivalent versions 

due to the precise manner of expressing the nonlinear 

terms. The more common alternatives are the 

convection form, the divergence form, the skew-

symmetric form and the rotation form (Zang, 1991). 

Zang performed tests to compare four alternative 

formulations of the convective terms in an 

incompressible NSE in a PS method. It has been 

shown that the rotational form had poor performance 

due to aliasing errors. To avoid this loss of accuracy, 

the number of grid points should be increased in order 

to produce a meaningful solution, or more accurate 

form like skew-symmetric scheme should be 

employed. However, using the skew-symmetric form 

in place of the rotation adds a significant cost to the 

calculation. There is a modified technique that reduces 

or removes the aliasing error from discrete Fourier 

coefficients of Pseudo spectral methods referred as the 

2/3-rule. In this research, the rotational form is being 

used with de-aliasing in x and z directions by 2/3-rule 

method to make the process more economical. The 

effect of aliasing error and proposed de-aliased 

method in this code has been discussed in Rajabi and 

Kavianpour (2012) in details.  

In this work, a new variable time stepping method is 

applied to reduce the computational cost in PS method 

by adding an accessory (supplementary) algorithm. 

This algorithm is used to minimize the computational 

cost of integration by maximizing the time step, while 

the CFL number keeps near a threshold. The CFL 

number and time step are bound in a given range to 

control the stability. This time step determines as a 

fraction of a fixed time-interval to keep CFL number 
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maximum under above condition. Here, a direct 

numerical simulation for turbulent channel flow with 

rotational forms of nonlinear terms and 3rd order 

semi backward difference algorithm (SBDF3) time-

discretization methods is computed via variable and 

constant time stepping algorithms. The results of 

turbulence intensity and other quantitative values are 

compared to choose more economic, accurate and 

stable algorithm. 

2. PROBLEM FORMULATION 

The channel flow is a remarkable example of wall 

bounded problems. In this study, a plane Poiseuille 

flow with two parallel stationary plates and parabolic 

stream-wise velocity profile base flow is considered. 

The flow geometry and the coordinate system are 

shown in Fig. 1. 

Flow fields are allocated in terms of their physical 

grid sizes 128 65 128   and integrated on the 

computational 

domain      0, 4 1, 1 0, 2     . The flow 

domain has finite height, with the centerline at zero, 

but two infinite stream- wise and span-wise directions 

periodically continued in x and z directions. No-slip 

boundary conditions at y= ±1 and 
21U y   as the 

base flow are assumed. The initial Reynolds number 

is 4000 so the viscosity set to be 1 4000  . The 

velocity flow represents by vector-valued 

Fourier×Chebyshev×Fourier expansions whose 
mathematical form is as follows; 

12 2

2 ( )

, ,

2 1 0 2 1

ˆu(x)= u ( )

yx z

x x z z

x x y z z

NN N

i k x L k z L

kx ny kz m

k N n k N

T y e






      

    

(1) 

 
Fig. 1. Schematic of channel flow 

where, x=(x,y,z). The double tilde/hat notation on the 

spectral coefficients 
, ,

û
kx ny kz

 indicates that the 

coefficients result from a combined Fourier transform 

in xz and a Chebyshev transform in y direction. Here, 

Tm is the mth Chebyshev polynomial rescaled to the 

interval [-1, 1]. The spectral coefficients of u can be 

computed efficiently from the function values taken at 

a discrete set of Chebyshev grid points in the form of; 

cos (0, 1)
1

n y

y

n
y n N

N


  



 
 
 

 (2) 

The discretization in the horizontal directions are done 

using Fourier series expansions thus assuming 

periodicity, which is reasonable if the flow is 

homogeneous in these directions. The NSE for an 

incompressible flow in the channel flow geometry can 

be written in the following form: 

u
u u

tot

tot tot

t


  



2
u

tot tot
p     (3) 

u 0
tot

   (4) 

Where utot(x; t) is the total fluid velocity field with u, 

v and w components in three dimensions and ptot(x; t) 

is the total pressure field. The first and second 

equations represent conservation of momentum and 

incompressibility of the fluid, respectively. The 

velocity satisfies the no-slip boundary conditions 

(u=0) at both upper and lower channel walls (y=a,b). 

The boundary conditions in the x and z directions are 

periodic: utot(x+Lx,y,z; t)= utot(x,y,z; t) and 
utot(x,y,z+Lz; t)= utot(x,y,z; t).   

Total velocity and pressure fields can be broken into 

constant and fluctuating parts, so the velocity field is 

the sum of the base velocity or base flow U(y)ex, and 

the fluctuating velocity u(x; t). The total pressure field 

is obtained from a linear-in-x term Πx(t)x and a 

periodic fluctuating pressure p(x; t). The gradient of 

this decomposition relates the total pressure gradient 

to a spatially-constant base pressure gradient Πxex and 

a fluctuating pressure gradient ptot(x; t). Therefore; 

u (x; ) ( )e u(x; )
tot x

t U y t   (5) 

(x; )
tot

p t  ( ) (x; )
dP

x t p t
dx

 ( ) (x; )
x

t x p t    (6) 

(x; )
tot

p t 
x

( ) e (x; )
dP

t p t

dx

    

x

( )e (x; )
x

t p t       (7) 
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Substituting Eq. (5) and (7) into Eq. (3) gives: 

u
p

t






2

2

x2
u u u + e

tot tot x

U

y
 


    



 
 
 

 

(8) 

(8) 

There are several different forms for the nonlinear 

term u u
tot tot
   in Eq. (8) that are identical in 

continuous mathematics but have different properties 

when discretized. Four commonly used forms of them 

referred to as divergence, advective, skew-symmetric, 

and rotational forms. The nonlinear term in rotational 
forms defined as: 

   
1

u u u u
2

tot tot tot tot
      (9) 

Despite the equivalent of these forms in the 

continuous NSE, the rotation form may offer better 

physical properties in terms of conservation laws and 

has superior properties for iterative algorithm 

development. Rotational form is typically more stable 

than the convective form and less time consuming 

than the skew-symmetric form. However, it may lead 

to a less accurate approximate solution than skew-

symmetric form due to aliasing errors that would 

remove by de-aliased techniques. Eq. (8) could be 
rewrite as:  

u
q

t


 



2

2

2
u N(u)+

x

U

y
 


  



 
 
 

 (10)  

Here, the modified pressure (q) in rotational form is 

equal to:  

1 2 u.uq p   (11) 

And N (u) is the rotational form of nonlinear term that 

would substitute in this code as follows; 

 
u

N(u) u u e
x

U
U

x y


 
   

 
Rotational (12)  

Equation (10) is solved by the Chebychev-tau method 

for each wave number after it is Fourier transformed in 

the stream wise and spans wise directions (Canuto et 

al., 2007). Also, there is a need to add tau correction to 

the solution of the equations in their discretized form 

which is used to determine the pressure. In 

formulation of time integration scheme, linear term L 

(u) and the constant term C in NSE are defined by: 

2
Lu u   (13) 

2

2
C e

x x

U

y






 
 
 

 (14) 

With these definitions the Eq. (10) can be written as: 

u
q

t


 


Lu N(u)+C  (15) 

After Fourier transform, Eq. (15) is equal to; 

u
q

t


 


Lu N(u)+C  (16) 

Let u
n

be the approximation of u at time t n t   

and let
n n

N(u )N .Here, splitting method was used 

that leads to a three stage pressure-correction 

algorithm based on a backward difference algorithm 

(BDF) treatment of the linear terms. It is combined 

with an explicit extrapolation of the nonlinear 

convection terms. Also, 3rd order discretization of the 

time derivative based on BDF is used for linear terms. 

The formulation of three-stage scheme based on 

implicit treatment for the linear terms combined with 

an explicit extrapolation of the nonlinear convection 
terms, which refers as SBDF3 here, is: 

1

1

0

1
û u

J

n n q

q

qt




 



 


 
 
 


1

0

N in

J

n q

q

q








  (17) 

Equation (17) is the first stage that consists of solving 

the explicit problem in the forms of BDF time-

discretization formulas. In equation 17 J ≥ 1 is the 

number of steps, 
0 0 1 1
, , , ,

J
   


are the coefficients 

of the BDF formula for the discretization, and 
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0 1 1
, , ,

J
  


 are the coefficients of the extrapolation 

formula for nonlinear term. The time derivative dy

dt

 

at time 1n   is: 

1

1
1

0

0

1

n

J
n n q

q

qt t

dy
y y

dt t
 




 






 
 
 

  (18) 

Thus, we have; 

1

1

0

N

J

n n q

q

q

N 


 



  (19) 

The second and third stages are projection and 
diffusion step: 

 1 1 1

1

1

0

projection step

1 ˆ̂ ˆu u 0 in

ˆ̂ . u 0 in

ˆ̂u . 0 on

n n n

n

n

p
t

n

  





    


  

 









 (20) 

 1 1 1

0

1

0

diffusion step

1 ˆ̂u u 0 in

u 0 on

n n n

n

u
t
 

  



    


 






 (21) 

Here ˆˆ ˆ,u u are used as intermediate velocity in sub 

steps and an exception to our usual practice of using 

ˆ’s for chebishev coefficients. The initial time step is 

set to a definite t0 and may vary during the 

integration t =t0 /n to adjust CFL number to the 

given bound. Maximum and minimum values of time 

step would define preliminary and the fraction n make 

the varied time step between the prescribed 

tmax=0.04 and tmin.=0.001 obtaining by try and 

error. 

3. RESULTS AND DISCUSSION 

Direct numerical simulation of turbulent Poiseuille 

channel flow is carried out on the periodic, 

rectangular, wall bounded domain with 128 × 65 × 

128 grid points that obtained friction Reynolds 

number of Re 175   based on friction velocity and 

channel half width and initial viscosity of ν=1/4000. 

Fully spectral method of Fourier series in the 

homogeneous directions and Chebyshev polynomial 

expansion in the normal direction is used for the 

spatial derivatives with different time advancement 

scheme. Rotational form of nonlinear term u u
tot tot
   

is employed with de-aliased XZ to vanish aliasing 

error at x and z directions. The third order semi-

implicit backwards-differentiation algorithm 

mentioned as SBDF3 is used for time discritization. 

The results of turbulence statistics has been collected 

in both constant and variable time stepping algorithm. 

The comparison of turbulence intensities is made over 

the interval from T0=100 to T1=300 due to Abe et al 

(2001). The time step of recorded information was 

T=10 sec. In varied time stepping algorithm, the 

initial time step t0 is set to .025 and the variable time 

step is bounded from tmin=0.001 to tmax=0.04. Also 

the CFL condition is adjusted to [0.4, 0.8]. In constant 

time stepping algorithm, the maximum value of time 

step is chosen about t=0.015 that satisfy convergence 

and stability of the solution with determinate [0.2, 0.8] 

bounded CFL number. The results are spatially 

averaged along the x and z directions. 

The verification and accuracy of the presented analysis 

in rotational form with varied time step algorithm is 

validated in Fig. 2, where turbulence statistics profiles 

are in excellent agreement with Kim et. al. results in 

fully developed turbulent channel flow. 

It should be noticed that the uniform grid spacing in 

the stream-wise and span-wise directions are 

15x


   and 7.5z


   respectively. In the vertical 

direction, a non-uniform mesh distribution is used, 

with the minimum grid spacing of min 0.2y    near 

the wall and the maximum of 
max

7.5y


   spacing 

at the centerline of the channel, which are acceptable 

due to Moser et. al.(1999) and Moin & Mahesh 

(1998). The grid spacing are 12,x


   

max
4.4,y


   

min
0.05y


   and 7z


   in the 

wall units in Kim et al. (1987) within192 × 129 × 160 

mesh points that obtain friction Reynolds number of 

Re 175    that appears to be sufficient for the 

Reynolds number under consideration.  

Figure 3 illustrate stream-wise, normal and span-wise 
turbulence statistics (which is called as turbulence 
strength value) and Reynolds stress in both time 
advancement algorithms. Rotational form is used to 
extract the nonlinear term. The results shows that the 
trend of all profiles is completely similar and the 
qualitative agreement in both forms is obvious, 
detailed comparison in all regions of the channel 
reveals insignificant discrepancies between those 
schemes. The maximum of relative deviation in 
stream-wise turbulence strength (uu), which computed 
at each grid point of normal direction, is less than 
5.5%. This deviation of averaged values is reached to 
5.48% for vv, while the resulted differences are 

http://www.google.com/search?hl=en&client=firefox-a&hs=DOJ&rls=org.mozilla:en-GB:official&sa=X&ei=SsvsTqzMLsTV8gOBjP31CQ&ved=0CBgQvwUoAQ&q=Poiseuille&spell=1&biw=1262&bih=596
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about4.55% in span-wise turbulence strength value 
(ww). 
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Fig. 2.  Root-mean-square velocity fluctuations, symbols represent the data from Kim et.al. (1987) 

 

The comparison of Reynolds stress uv revealed slight 
discrepancy. The maximum of relative deviation is 
about 4.88% in whole region except at the centre of 

channel where the uv values is close to zero. In the 
middle of channel, the differences between the uv 
values are insignificant (about 1.0e-6). 
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Fig. 3. Turbulence strengths with varied and constant time advancement algorithm 
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In Fig. 4, variation of CFL number during the process 
is shown. The figure shows sharper fluctuating at the 
beginning of the solution, which may make the 
solution unstable. But the source of instability is 
eliminated by decreasing the initial time step (dt) 
from 0.025 to 0.015 in constant time stepping 
algorithm.  

Also, the time step could vary from 0.4 to .001 to 
satisfy the CFL condition in the given interval of CFL 
number [0.4, 0.8] in variable time stepping algorithm. 
These changes increase the overall CPU time from 
1.97e+04 up to 2.937e+04 and decrease the dominant 
CFL condition from about 0.5 to 0.3 between varied 
time step and constant time step algorithm.  
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Fig. 4. Variation of CFL number in different time advancement scheme 

 

In Fig. 5 the result of mean velocity from both time 
advancement methods are compared to scaling laws 
for the viscous sublayer and the inertial layer. Based 
on theoretical and experimental scaling laws, the 
velocity profile can be split into three distinguished 
regions: the viscous sublayer, the logarithmic layer 
and the defect layer. If the values scaled by wall units, 
then units of a turbulent channel flow obey: 

10 in the viscous sublayer 

2.5 ln 30 in the inertial layer 

U y y

U y c y

  

  



 

 (22) 

c is the additive constant which varies between 5 to 

5.5 based on Reτ . The wall-units for length and 

velocity are set to: 

* *
,U U u y yu 

 
        (23) 

Also the friction velocity u* is defined by 

*

0y

dU
u

dy




                     (24) 

where ( )U y is the mean velocity profile. According 
to the results, the differences between the results of 
mean velocity profile of a turbulent channel flow 
computed with varied and constant time advancement 
algorithms against wall law are negligible in all 
regions.  
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Fig. 5. The law of the wall, (Comparison of mean velocity profile in both time advancement schemes) 

 

Table 1 reviews the values of wall-shear velocity, 
standard deviation, overall CPU time and total 
normalized energy of instantaneous velocities. The 
computed values are providing with both time 
advancement schemes. The standard deviation of u in 
each method is also computed by; 

   
1

i i i i

0 00

1 1
u u u u

L LbT x z

mean mean

i T
a

x y z

dx dy dz

N L L L

     

  

(25) 
And the total normalized energy of instantaneous 
velocities is computed by: 

1

0

i i

0 0

1
u u

x z
L LbT

i T ax y z

dx dy dz
L L L

     (26). 

The differences between computed values are 
unnoticeable. In both versions, the calculated values of 
wall shear velocity, energy and standard deviation of 
streamwise velocity are almost similar. The maximum 
relative deviation is about 1.78% for normalized 
energy of instantaneous velocities, 0.3% for standard 
deviation and 0.04% for wall shear velocities. It 
should be noticed that in comparison with ordinary 
constant time advancement algorithms, varied time 
advancement algorithms provided similar accuracy in 
analysis of plane channel flow problem. The 
comparison between these methods indicates that the 
proposed varied time step algorithms do greatly 
reduces the total time. It is believed that the use of 
constant time step algorithm for the solution of 
nonlinear term is time consuming. Therefore, this 
modification decreases the overall time from 
2.937e+04 to 1.97e+04, which is about 49.1% 
reduction in time and thus, in computational cost.  

Table 1 Specification of turbulent flow in varied and constant time advancement algorithms 

 

Energy(u) Standard Dev. Wall-Shear 

Velocity(uτ) 

Total Time 

(sec) 

Scheme Time 

Stepping 

Algorithm 

0.0199848 

(Relative dev. 1.74%) 

0.0790983 

(Relative dev.0.320%) 

0.037694 

(Relative dev.0.043%) 
1.97e+04 Rotational, 

SBDF3 

Varied 

0.0192868 
(Relative dev. 1.8%) 

0.078591 

(Relative dev.0.323%) 

0.037726 
(Relative dev.0.042%) 

2.937e+04 Rotational, 

SBDF3 

Constant 
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4. CONCLUSION 

The present work demonstrated the comparison of 
two time advancement schemes for three-dimensional 
incompressible NSE to find a better framework for 
simulation of the Poiseuille channel flow. Rotational 
form with aliasing errors removal was employed for 
discritization of nonlinear term in a fully pseudo 
spectral method. Also, the common time-
discretization strategy of 3rd order backward 
difference algorithm was used.  

The proposed variable time stepping algorithm seems 
to be a desirable modification and could reduce the 
computational time around 50% in plan Poiseuille 
flow. It was clearly shown that between the sampling 
techniques, the variable time stepping provides 
simultaneity more improvement in total CPU time, 
without loss of accuracy. Also, the results showed 
that this technique has less effect on stability problem 
by adjusting the variation of CFL condition in 
bounded limitation.  

It is concluded that based on economic consideration, 
the de-aliased rotational form with variable time 
stepping algorithm is proper choice. The ordinary 
constant time stepping scheme requires greater 
computational time without much accuracy 
improvement. Therefore, from practical point of 
view, a combination of third order SBDF3 and 
rotational form in a variable time stepping algorithm 
is suggested in direct numerical simulation of 
Poiseuille channel flow. 

REFERENCES 

Abe, H.; Kawamura, H.; Matsuo, Y.;( 2001) Direct 

Numerical Simulation of a Fully Developed 

Turbulent Channel Flow With Respect to the 

Reynolds Number Dependence, J. Fluids Eng., 

123(2) , 382-393. 

 

Bazavan, P.; (2007), Approximation of attractors by a 

variable time-stepping algorithm for Runge-Kutta 

methods, Ninth International Symposium on 

Symbolic and Numeric Algorithms for Scientific 

Computing. 

 

Bhaganagar, K., Leighton, R.,(2013), Three-Level 

Decomposition for the Analysis of Turbulent 

Flow over Rough-Wall, Journal of Applied Fluid 

Mechanics, 6(2), 257-265. 

 

Cantou, M.Y. Hussaini, A. Quarteroni, T.A. Zang, 

(2007), Spectral Methods Evolution to Complex 

Geometries and Applications to Fluid Dynamics, 

Springer series in computational physics. Berlin 

New York: Springer-Verlag. 

 

Cantou, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, 

T.A.;(1988), Spectral Methods in Fluid Dynamics, 

1st Edition, Springer-Verlag,  

 

Cantou, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, 

T.A., (2006), Spectral Fundamentals in Single 

Domains, Springer series in computational 

physics. Berlin New York: Springer-Verlag. 

  

Chien, Y.P.; Secer, S.; Ecer A.; Akay, H.U.;( 1997) 

Communication Cost Function for Parallel CFD 

Using Variable Time Stepping Algorithm, 

Proceedings of the Parallel CFD '97 Conference, 

Manchester, U.K. 

 

Gibson J. F., Halcrow,J., Cvitanović,P., Viswanath ,D. 

, (2009), Heteroclinic connections in plane Couette 

flow, Journal of Fluid Mech. 621, 365-376.  

 

Gibson J. F., Halcrow,J., Cvitanović, P., (2008) 

Visualizing the geometry of state space in plane 

Couette flow , J. Fluid Mech. 611, 107-130 

 

Gibson J. F., Wang, J., and Waleffe F, (2007),Lower 

branch coherent states: transition and control 

,Phys. Rev. Lett. 98(20)  

 

Hoyas, S.; Jim´enez, J.; (2006), Scaling of the velocity 

fluctuations in turbulent channels up to 

Reτ=2003”, Phys. of Fluids 18 

 

Iwamoto, K.; Kasagi, N.; Suzuki, Y.;( 2005) Direct 

Numerical Simulation of turbulent channels Flow 

at Reτ =2320, Proc 6th Symposium Smart Control 

of Turbulence, Tokyo. 

 

Kasagi, N., Tomita, Y., and Kuroda, A., (1992), Direct 

numerical simulation of passive scalar field in a 

turbulent channel flow, ASME J. Heat Transfer 

114, 598–606. 

 

Kavianpour, M.R, Rajabi, E., (2012) Optimum 

Algorithm for Channel Flow Analysis in Direct 

Numerical Simulation Method, International 

Journal of Civil Engineering 10(4). 

 

Kawamura, H., Ohsaka, K., Abe, H., Yamamoto, K., 

(1998), DNS of turbulent heat transfer in channel 

flow with low to medium-high Prandtl number 

fluid, Int. J. Heat and Fluid Flow 19, 482–491. 

 

Kawamura, H., Abe, H., and Matsuo, Y., (1999), DNS 

of turbulent heat transfer in channel flow with 

http://www.google.com/search?hl=en&client=firefox-a&hs=DOJ&rls=org.mozilla:en-GB:official&sa=X&ei=SsvsTqzMLsTV8gOBjP31CQ&ved=0CBgQvwUoAQ&q=Poiseuille&spell=1&biw=1262&bih=596
http://www.cns.gatech.edu/~gibson/publications/HalcrowJFM09.pdf
http://www.cns.gatech.edu/~gibson/publications/HalcrowJFM09.pdf
http://www.cns.gatech.edu/~gibson/publications/GibsonJFM08.pdf
http://www.cns.gatech.edu/~gibson/publications/GibsonJFM08.pdf
http://www.cns.gatech.edu/~gibson/publications/WangPRL07.pdf
http://www.cns.gatech.edu/~gibson/publications/WangPRL07.pdf


E. Rajabi and M. R. Kavianpour / JAFM, Vol. 7, No. 2, pp. 287-297, 2014.  

 

 

297 

 

respect to Reynolds and Prandtl number effects, 

Int. J. Heat and Fluid Flow 20, 196–207. 

 

Kawamura, H., (1998), Direct numerical simulation 

of turbulence by parallel computation, Proc. 10th 

Int. Conf. Parallel CFD, pp. 19–21. 

 

Kawamura, H., Abe, H., and Matsuo, Y., (1999), 

Direct numerical simulation of turbulence by 

parallel computation, Parallel Computational 

Fluid Dynamics, Lin et al., eds., North-Holland, 

Amsterdam, pp. 3–9. 

 

Kim, J., Moin, P., and Moser, R., (1987), Turbulence 

statistics in fully developed turbulent channel 

flow at low Reynolds number, J. Fluid Mech. 177, 

133–166. 

 

Kim, J., Moin, P., and Moser, R., (1990), The 

Diskette of Collaborative Testing of Turbulence 

Models, Bradshaw, P., ed., Stanford University. 

 

Kuroda, A., Kasagi, N., and Hirata, M., (1989), A 

direct numerical simulation of the fully developed 

turbulent channel flow at a very low Reynolds 

number, Int. Symp. Computational Fluid 

Dynamics, Nagoya, pp. 1174–1179. 

 

Moser R.D., Kim J., Mansour N.N., (1999) Direct 

Numerical Simulation of  Turbulent Channel Flow 

up to Reτ=590”, Phys. Fluids, 11(4), 943–945,  

 

Moin, P.; Mahesh, K.;(1998) DIRECT NUMERICAL 

SIMULATION: A Tool in Turbulence Research, 

Annu. Rev. Fluid Mech., 30, 539–578. 

 

Orszag, S. A., and Patterson, G. S., (1972), Numerical 

simulation of three dimensional homogeneous 

isotropic turbulence, Phys. Rev. Lett., 28, 76–79. 

 

Zang, T.A., (1991), On the rotation and skew-

symmetric forms for incompressible flow 

simulations, Applied Numerical Mathematics 7 

,27-40. 

 

 

 

 

 


