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ABSTRACT 

Work performed in this study concerns mainly the analysis and the wisely use of TVD type schemes (total 

variation diminishing) for numerical simulation of reactive flows, these schemes are first presented in scalar 

equation. Their extension to Euler equations for a reactive gas mixture is conducted through the approximate 

extended solver of Riemann problem. A comparative study of specific variants of TVD schemes has been made 

in the case of one-dimensional unsteady flow for an inert and reactive gas mixture, which represents the classical 

instance of a shock tube. The purpose of this investigation is to highlight the general behaviour (order of 

accuracy) and performance of TVD schemes with various flux limiters for the simulation of reactive flows and in 

particular, to make possible the capture of the shock wave together with waves expansion for choosing the 

appropriate scheme to apply eventually in simulation of hypersonic viscous flow in chemical non equilibrium. 
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NOMENCLATURE 

F Numerical flux i Mesh point index 

u,v Velocity components z Space variable  

S Vectors of sources termes A Flux Jacobian Matrix 

R Matrix of eigen values t Time Variable  

hi Yee numerical flux  Vector of heat flux 

x,y Directions x 
Parameter equal to  .,,1

1

21 jijix UUR
ji







 

Qi Centred scheme of limiter Function   Parameter equal to  x21  

P Pressure [Pa]  Correction parameter  z

E total  Energy of gas mixture  Density [ Kg.m-3] 

e Internal Energy of gas mixture [m2s-2]  Entropic correction function 

T Temperature [K]  Dissipation function 

U Vector of conservative variables  Difference between two elements 

q Variable : Newton – Raphson    Specific heat ratio 

f Hyperbolic scalar function   Time / space ratio 

a Eigenvalues of  A i Parameter equal to   ii uu 1

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1. INTRODUCTION 

When treating numerically the fluid mechanic 

equations, the necessity of computing convective 

fluxes arises. Generally, polynomial functions were 

often used to approach the variations of variables. But 

this approach becomes inappropriate if the solution 

contains discontinuities. In these cases, schemes that 

use second or higher order approximations present 

inconveniences during the convergence process and 

solutions have oscillations next to the discontinuity 

(scheme highly diffusive). To deal with this problem, 

flux limiter functions were built as linear 

combinations of first and second order 

approximations (Sweeby P 1984) . These schemes are 

known as TVD although, the TVD property has 

expressly only been demonstrated for scalar 

convection equations. If we use the first order 

approach, the resultant scheme is diffusive; on the 

other hand, if the second order approach has more 

credibility the scheme is compressive. When 

extending these concepts from systems of linear 

equations to non linear, the certainty that they 

continue being TVD is lost (Toro E 1999).  

In some papers ( Comg Yu 2006 ) , (Yee   1987 ) , 

and ( Yee and al  1985) and books (Laney 1998) and  

(Anderson 2004) , various schemes were proposed, in 

one hand, to look for the best way to capture contact 

discontinuities without the characteristic smearing 

linked to degenerate linear waves, and on the other 

hand, which have the capacity to solve satisfactorily 

discontinuities associated with lineally degenerate 

wave families and without losing robustness in 

dealing with gas dynamics shock waves. 

One of the most popular scheme was introduced by 

Harten (Harten 1978) using an Artificial Compression 

Method (ACM) that renders the local slope of the 

minmod limiter steeper. This last was implemented in 

second order central difference schemes for Euler 

equations (Lie and al 2003) More recent ACM 

applications are given in Ref. (Lo and al 2007). 

The construction of a large number of second order 

TVD schemes is based essentially on the principle of 

flux limitation (Hirsch  1992 ) , (Queiroz and al 

2008) . The second order is obtained by adding an 

anti dissipative flux that should be limited to ensure 

the TVD property. To simulate of reactive flow we 

have applied a TVD discretization to no stationary 

Euler equations for a one-dimensional reactive flow 

to study the influence of the scheme choice and flux 

limiter. In this work we present first the numerical 

process used. We then investigate the case of a shock 

tube containing two different inert gases before 

presenting results registered in a shock tube 

containing a mixture of reactive gases 

2. MODELLING PROCESS 

For the case of a two-dimensional flow with an 

inert gas mixture, Euler equations can be written in 

their conservative form as follow: 
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where U, F and G are vectors expressed as follow: 
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There are different approaches to treat the problem of 

an inert or reactive gas mixture. If at first, we ignore 

the diffusion phenomena, convection pressure 

phenomena are described by the momentum, total 

energy and the Euler equations for the density of the 

gas mixture. The evolution of species is represented 

by the equations of balance sheet, or for an inert gas 

mixture by a convection equation for the partial 

densities, the coupling between the two processes is 

performed by the equation of mass conservation, but 

also through the temperature that intervenes in the 

equation of energy conservation and in the calculation 

of chemical production rate if the gas mixture is 

reactive. The conceived algorithms are based on the 

discretization methods developed in the non-reactive 

case (without source terms). Whereas the source 

terms presence is the origin of new phenomena (such 

a strong coupling between characteristics equations), 

not taken into account by these methods (Perrel and al 

1990 ) The numerical method implemented here deals 

with the fully coupled set of the problem equations. 

Thus, the discretization scheme relies on an extension 

of Riemann solvers obtained in the case of an ideal 

gas applied to a gas mixture which has been emitted 

by Roe (Roe 1981) and extended by Montagné and 

Vinokur (Vinokur and al 1990) to a reactive gas 

mixture. 

3. NUMERICAL DISCRETIZATION 

The discretization of the two-dimensional system 

of equations (1) is performed by simply addressing in 

separate manner each of the two directions of space.A 

second-order accurate in the TV-L1 norm for general 

smooth and non monotone solutions of total variation 

diminishing (TVD) finite-difference scheme is then 

applied to the discretization of the flux F. The 

numerical procedure implemented here deals 

specifically with the computation of an unsteady 

solution for which we have chosen an explicit 

discretization accurate to the second order in space 

and time for the convective terms. To overcome 

stiffness due to source terms, these last are discretized 

implicitly. Therefore, by introducing  x  and y  as 

space steps such that   xixi  1  and   yiyi  1  

we obtain an equation of the form: 
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Where we take v = 0 and remove the (ns+2)th 

component . The expression of the flux n

iF 21

~


 (not 

taking into account the j index) is: 
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The 
l

x  components of 
x vectors are given for 

decentred upwind TVD schemes or symmetrical by 

the following identities: 
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For unsteady applications, the entropic parameter  

involved in the function    can be set to zero: 
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The non-linear system is solved by employing the 

method of Newton - Raphson: 1lim 


 nm

m Uq  and 

the source term is linearised around qm: 
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Thus, we get from (3) the following discretization: 
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Solving (9) involves the inversion of a matrix of        

(ns x ns) dimension, because the last two rows of the 

matrix US   are zero. We can also reduce the size 

of the system by considering the property of 

conservation of atomic elements (Wuthrich and al. 

1994) 

3.1. Flux limiters and TVD schemes 

Here we present a unified formulation of an 

accurate class of TVD schemes to second order made 

by Yee (Yee 1989) and in which the flux 
21ih  is in 

general expressed as the sum of a centred term and a 

dissipation term: 

         
 21121 5.0   iiii ffh                (10) 

Schemes that we have taken into account in this study 

and which we are going to explain briefly in what 

follows differ only by the expression of the  function  

3.2. Finite difference 2
nd

 order decentred 

upwind scheme of  Harten - Yee 

 Yee (Yee and al 1987) has proposed a less 

dissipative scheme of Harten second order by 

factoring the term  21ia . Thus, she gets a scheme 

that is TVD, only for constant coefficients, with very 

good results. The   function is then written as: 
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The limiter function gi can be one of the following:  

- minmod of Roe   ( Roe and al 1991)    

      ,modmin 2121   iiig                                 (12)                      

-  Van Leer             ( Van Leer  1974) 
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- Van Albada         (Van Albada and al 1982) 
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- Collela  (Woodwars and al 1984 )  
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-  Superbee ( Roe 1985)    
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  Where   21 isigneS  . If  2121   ii
=0, we 

take gi = 0 in Eq. (13), 2 [Eq. (14)]  is a parameter 

whose sole purpose is to prevent division by zero. 
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3.3. finite difference 2
nd

  order symmetrical 

scheme of Yee- Roe- Davis 

The previous scheme is a decentred scheme in the 

sense that the dissipation term 
21i depends on the 

sign of the characteristic velocity. In the following 

scheme, the dissipation does not depend on the sign 

of the characteristic velocity. The resulting scheme in 

this case is somewhat more diffuse, but its 

implementation is less expensive. Thus, the  can be 

expressed by (Yee 1984):  
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Since the simulations are run in unsteady mode, 

the residual tracking has not been used as a 

convergence criterion, but computations have been 

run for long enough (typically up to 1000 iterations, 

using a CFL limit number up to 0.5) to insure 
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stability of explicit schemes and to let the flow fully 

establish. 
 

4. RESULTS AND INTERPRETATIONS 

4.1. Mixture of non - reactive gas 

Consider first the case of a shock tube containing 

two ideal inert gases which their isentropic 

coefficients are respectively 1 = 1.4 and 2 =1.2, the 

initial conditions are described in Table 1, where the 

index L (resp. R) denotes the state of gas in the driver 

(resp. driven) shock tube. The length of the tube is set 

at 1 m; and a spatial discretization with constant step 

in 120 intervals is used. 

Table 1. Computing conditions (inert gas mixture) 

L R L R PL PR uL uR 

  0.0 0.125 1.0 0.1 0.0 0.0 

Due to the axial symmetry of the shock tube, the 

flow domain is modelled with an axi- symmetric 

structured mesh with grid adaptation to resolve 

regions with the steepest gradients. The axi-

symmetric approach is appropriate for the cylindrical 

geometry of the shock tube and is sufficient to render 

an accurate description of the real flow configuration.  

      Only the solid boundary condition is 

considered in the current work since the flow is 

confined within the tube. At the wall, no slip 

boundary condition is imposed for the momentum 

equations to enforce no mass fluxes can penetrate 

through the solid boundary. For the energy equation, 

adiabatic condition is assumed. And for Euler 

equations only a single physical boundary condition 

is to be imposed. This condition is expressed by the 

vanishing normal velocity (Vnormal= 0). As a 

consequence, all convective flux components through 

the solid boundary will vanish. Uniform grid spacing 

is used. The boundary conditions of the problem are 

held fixed as a short time span of the unsteady flow is 

considered. A uniform time step prescribed by a CFL 

condition and written as follow, was used throughout 

the area:  
        

shockj,ij,i t,tmint
~

                       (22) 

Where 
shockt is the maximal value of the time step 

near the shock and: 
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 Finally, Relaxation method by line on x direction was 

employed to resolve the linear system. 

   The results of the numerical simulations have been 

displayed in contour plots. Thus, from the initial time, 

the wave pattern of this problem consists on the 

apparition of three waves in the shock tube (Hubert 

Chanson 2008), separating zones of uniform flow: a 

relaxation followed by a contact discontinuity and 

shock. The density profile highlights these three 

waves (Fig. 1.). The pressure and velocity remain 

constant across the contact discontinuity while the gas 

mixture does not vary through the relaxation and the 

shock wave (Figs. 2, 3 and 4). The exact solution of 

the problem has been calculated using the method of 

characteristics (Hubert Chanson 2008), and it is 

represented in continuous line on all figures. 

The exact solution of the problem has been calculated 

using the method of characteristics. On all figures, 

this exact solution is represented in dashed line while 

the numerical solution proposed in this research is 

indicated by dots. 

 
 

Fig. 1. Shock Tube: an inert gas mixture Density 

profile, decentred upwind scheme and Van Albada 

limiter 

 
Fig. 2. Shock Tube: an inert gas mixture Pressure 

profile, decentred upwind scheme and Van Albada 

limiter 

 
Fig. 3. Shock Tube: an inert gas mixture Temperature 

profile , decentred upwind scheme and Van Albada 

limiter 
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Fig. 4. Shock Tube: an inert gas mixture Mass 

fraction profile, decentred upwind scheme and Van 

Albada limiter 

 

4.2. Study of various schemes 

On Fig. 5 to Fig.7 are represented the density 

profiles obtained with the symmetrical schemes 

associated with the three limiters [(18) (19) and (20)]. 

Likewise, the results obtained with the decentred 

upwind scheme and five limiters [(12) to (16)] are 

given in Fig.8 to Fig.11. Limiters here are listed from 

first to fifth in order of decreasing dissipation. 

 

 

 
Fig. 5.  Shock tube (inert gases 

mixture):symmetrical scheme and limiters of Roe 

 

Fig. 6. Shock tube (inert gases mixture):symmetrical 

scheme and limiters of Van Leer 

 
Fig. 7. Shock tube (inert gases mixture): symmetrical 

scheme and limiter Van Albada 

 

 
 

Fig. 8(a). Shock tube (inert gas mixture): decentred 

upwind scheme and Roe limiter 
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Fig. 8(b). Shock tube (inert gas mixture): decentred 

upwind scheme and Van Leer limiter  

 

Fig. 9. Shock tube (inert gas mixture): decentred 

upwind scheme and Van Albada limiter  

 

Fig. 10. Shock tube (inert gas mixture): decentred 

upwind scheme and limiter of Collela - Woodward 

Fig. 11. Shock tube (inert gas mixture): decentred 

upwind scheme and Super bee limiter 

Globally, the symmetrical scheme seems to be 

more diffusive than the decentred upwind scheme. It 

enables the shock wave capture at two points, while 

the capture of the shock wave is slightly more 

accurate with the decentred upwind scheme. The 

influence of the limiter choice is most striking about 

the capture of the shock wave 

It appears most clearly in the expansion that the 

use of the decentred upwind scheme associated with 

the superbee limiter gives the best results. However, 

for both types of schemes (symmetrical or decentred 

upwind) and whatever the chosen limiter, oscillations 

appear in the vicinity of the contact discontinuity 

(Laney 1998 ) , (Sjögreen. and  al 2004) and (Comg 

Yu  2006)  

4.3. Study of a contact discontinuity 

For the study of the contact discontinuity we have 

used the numerical flux expression for a scheme of 

first order in which the entropic correction 

parameter is equal to zero (Toro  1997):   
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Suppose now that at the initial time
0t , the i and i 

+1 states are separated by a discontinuity of contact 

with uuu RL   and  PPP RL   and through the 

contact discontinuity we have the following 

expression data: 
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Suppose further that the speed of propagation of the 

discontinuity is supersonic, which implies that the 

scheme is decentred upstream. We then get for the 

numerical flux 
ii FF  21

~ . At the time 
0t , the 

variables at points i and i +1 can be written as follow: 

       001

1

t

iii

t

i

t

i UFFUU      

        .111
01

ii

t

i

t

i FFUU                  (26) 

That to say: 
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The density and the velocity at the time 1t  and at the 

point of i +1 index are given by: 

         
 LRR

t

i u  
1

1
                 (28) 

         uu
t

i 
1

1
 

And effectively, we find again the inequality of 

speeds on both sides of the contact discontinuity. The 

pressure can be deduced from the expression of total 

energy: for a mixture of two inert gases whose 

coefficients 
21   and    are constant. We can write: 

   eP  1 with 
2211

2211

VV

PP

CC

CC









             (29) 

Thus we can obtain: 
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Thus we see that for a mixture of gases for which  

21       , the pressure at the time 
1t  will be different 

from the pressure P prevailing on both sides of the 

discontinuity. 

4.4. Mixture of reactive gas 

We now consider the case where the shock tube 

(Fig 12) is filled with air, made up of five species 

 NOONON ,,,, 22
 that may react chemically. The 

model of Park (Park 1990) (seventeen reactions) was 

restrained to calculate chemical reaction velocities. 

The initial conditions were taken from (Woodward a 

1984),(Yee and al 2000) and (Shyen and al 1990).  

Initially the air is in chemical equilibrium in the two 

shock tube compartments (driver and driven) and its 

composition is calculated using the model of Park. 

The initial conditions are detailed in Table 2. 

Table 2: Calculation Conditions for the shock 

tube: a mixture of reactive gases 

 R L 

P      (N.m-2)  1.19 104 9.92  104 

T        (K) 1378 4390 

e      (m2.s-2) 1.10  106 7.34   106 

N2   (Kg.m3) 2.30  10-2 4.94  10-2 

O2  (Kg.m3) 6.94  10-3 6.71  10-4 

N    (Kg.m3) 0.0 2.34  10-4 

O   (Kg.m3) 2.09 10-8 1.34  10-2 

NO  (Kg.m3) 3.38  10-5 2.22  10-3 

The length of the tube is 1 m and the mesh is made up 

of 101 points. All calculations presented in this 

section were obtained with a CFL equal to 0.21.  

 
Fig. 12. Shock tube: flow zones and disturbance 

locations.  S: shock wave, CS: contact 

surface, R: Riemann waves 

Fig. 13 to fig. 27. Represent respectively the profiles 

of density, velocity, temperature, and mass fraction of 

air species (N2, O2, N, O and NO) obtained with the 

symmetrical scheme and the limiters (13) and (14). 

The same profiles obtained this time with the 

decentred upwind scheme and limiters (14) and (16) 

are plotted in fig.28 to fig. 43 

 

Fig. 13. Shock tube (Reactive gases mixture): Density 

profiles: (Symmetrical scheme  

and Van Leer limiter) 

 
Fig. 14. Shock tube (Reactive gases mixture): 

velocity profile: (Symmetrical scheme  

and Van Leer limiter) 
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 Fig. 15. Shock tube (Reactive gases mixture): 

temperature profile: (Symmetrical scheme  

and Van Leer limiter) 

 

 
 

Fig. 16. Shock tube (Reactive gases mixture): mass 

fraction  profile of N2: (Symmetrical scheme  

and Van Leer limiter) 

 

 
Fig. 17. Shock tube (Reactive gases mixture): mass 

fraction  profile of O2: (Symmetrical scheme  

and Van Leer limiter) 

 

 
Fig. 18. Shock tube (Reactive gases mixture): mass 

fraction  profile of N: (Symmetrical scheme  

and Van Leer limiter) 

 

 
 

Fig. 19. Shock tube (Reactive gases mixture): mass 

fraction  profile of O: (Symmetrical scheme  

and Van Leer limiter) 

 

 
Fig. 20. Shock tube (Reactive gases mixture): mass 

fraction profiles of NO: (Symmetrical scheme  

and Van Leer limiter) 
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Fig 21. Shock tube (Reactive gases mixture): Density 

profile: (Symmetrical scheme  

and Van Albada limiter) 

 

 

 
 

Fig 22. Shock tube (Reactive gases mixture): 

Velocity profile: (Symmetrical scheme  

and Van Albada limiter) 

 

 
 

Fig 23. Shock tube (Reactive gases mixture): 

tempeature profile: (Symmetrical scheme  

and Van Albada limiter) 

 

 
 

Fig. 24. Shock tube (Reactive gases mixture): mass 

fraction  profile of N2: (Symmetrical scheme  

and Van Albada limiter) 

 

 
 

Fig. 25. Shock tube (Reactive gases mixture): mass 

fraction  profile of O2: (Symmetrical scheme  

and Van Albada limiter) 

 

 
 

Fig 26. Shock tube (Reactive gases mixture): Mass 

fraction  profile of N: (Symmetrical scheme  

and Van Albada limiter) 
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Fig 27. Shock tube (Reactive gases mixture): Mass 

fraction  profile of O: (Symmetrical scheme  

and Van Albada limiter) 

 

 

 
 

Fig. 28. Shock tube (Reactive gases mixture): Density 

profile: (decentred upwind  scheme  

and Van Albada limiter) 
 

 
 

Fig. 29. Shock tube (Reactive gases mixture): 

Velocity profile: (decentred upwind  scheme  

and Van Albada limiter) 

 

 
 

 

Fig. 30. Shock tube (Reactive gases mixture): 

temperature profile: (Decentred upwind scheme  

and Van Albada limiter) 

 

 

 
 

Fig. 31. Shock tube (Reactive gases mixture): mass 

fraction  profile of N2: (Decentred upwind scheme   

and Van Albada limiter) 

 

 
 

Fig. 32. Shock tube (Reactive gases mixture): mass 

fraction  profile of  O2: (Decentred upwind scheme   

and Van Albada limiter) 
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Fig. 33. Shock tube (Reactive gases mixture): mass 

fraction  profile of  N: (Decentred upwind scheme   

and Van Albada limiter) 

 

 
 

Fig. 34. Shock tube (Reactive gases mixture): mass 

fraction  profile of  O: (Decentred upwind scheme   

and Van Albada limiter) 

 

 
 

Fig. 35. Shock tube (Reactive gases mixture): mass 

fraction profile of NO: (Decentred Upwind scheme  

and Van Albada limiter) 

 

 
Fig 36. Shock tube (Reactive gases mixture): Density 

profile: (decentred upwind scheme and Roe-Superbee 

limiter) 

 

 
 

Fig. 37. Shock tube (Reactive gases mixture): 

Velocity profile: (decentred upwind  scheme 

and Roe-Superbee limiter) 

 

 
 

 

Fig. 38 . Shock tube (Reactive gases mixture): 

Temperature profile: (Decentred upwind scheme and 

Roe SuperBee limiter) 
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Fig. 39. Shock tube (Reactive gases mixture): Mass 

fraction of N2 profile: (Decentred upwind scheme and 

Roe SuperBee limiter) 

 

 
 

Fig. 40. Shock tube (Reactive gases mixture): Mass 

fraction of O2 profile: (Decentred upwind scheme and 

Roe SuperBee limiter) 

 

 
 

Fig. 41. Shock tube (Reactive gases mixture): Mass 

fraction of O2 profile: (Decentred upwind scheme and 

Roe SuperBee limiter) 

 

 
 

Fig. 42. Shock tube (Reactive gases mixture): Mass 

fraction of O profile: (Decentred upwind scheme and 

Roe SuperBee limiter) 

 

 

Fig. 43. Shock tube (Reactive gases mixture): Mass 

fraction of NO profile: (Decentred upwind scheme 

and Roe SuperBee limiter) 

In the case of a reactive gas, the scheme has 

always the possibility of capturing correctly the three 

waves. The concentrations remain effectively 

constant while crossing the shock wave but now they 

vary during the relaxation due to the presence of 

source terms. The oscillations at the contact 

discontinuity registered in this inert gas mixture study 

still present, and results in a peak on the mass fraction 

profile of nitrogen monoxide. Indeed, the mass 

fraction of nitrogen monoxide is a highly non-

monotonous function of temperature and is more 

stable at intermediate temperatures that appear 

because of the numerical spreading of the contact 

discontinuity (Shyen  and al.. 1990) 

The differences among profiles, which are linked 

to the choice of the scheme or the limiter, appear 

mainly at the discontinuity of contact. The amplitude 

of the oscillation depends on the chosen mass 

fractions limiter. For example, Superbee flux limiter 

leads to less marked oscillation but the discontinuity 

is wider and more spread out. 

By keeping the same number of CFL, a mesh 

almost doubled (201 points) was also tested fig.44.  
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Fig. 44. Convergence History, uniform time step 

We verified that the location of the waves is 

identical to that given by a mesh of 101 points. The 

resolution is better during the relaxation process and 

the shock wave includes the same number of interior 

points. Peaks observed on the mass fractions 

(concentrations) of nitrogen and nitrogen monoxide 

are always present. The profiles are plotted in Fig 45 

to Fig 47. 

 

Fig. 45. Reactive gas mixture, Mesh: 201 points 

Density profile 

 

Fig. 46. Reactive gas mixture, Mesh: 201 points 

Nitrogen molecular  profile 

 

 

Fig. 47. Reactive gas mixture, Mesh: 201 points 

Nitrogen molecular profile 

5. CONCLUSION 

This study concerns the application of TVD type 

schemes with various flux limiters to simulate 

numerically reactive flows on the basis of the 

resolution through the Riemann problem solver of 

Euler equations proposed by Roe and extended by 

Montagné and Vinokur to this type of flows.             

    It gave us the opportunity to highlight the correct 

general behaviour of such schemes and in particular, 

to evaluate there performances in capturing shock 

waves. The determination of the beam expansion was 

performed very satisfactorily. However two 

difficulties have appeared: 

- The first one concern the apparition of just one 

oscillation of pressure or velocity profiles at the 

contact discontinuity instead of those issued from 

other standard schemes: this oscillation, present in 

both cases of a mixture of inert and reactive gases, is 

due to the computation of the pressure value in the 

Roe mean state.  

- A second difficulty, own to reactive flows 

calculations, is linked to the presence of a peak on the 

mass fractions of nitrogen monoxide and molecular 

nitrogen near the contact discontinuity: the existence 

of this peak can be explained by the numerical 

spreading of the contact discontinuity which causes 

the appearance of non physical intermediate 

temperatures for which nitric oxide is stable 

On the other hand, for two-dimensional flows 

applications, a symmetrical scheme (with the Roe min 

mod flux limiter) was the more accurate among the 

tested schemes, because its implementation is simpler 

than that of the decentred upwind scheme and it 

requires fewer operations. Further, being more 

dissipative, the symmetrical scheme has proved that it 

is more stable than the decentred upwind scheme (the 

value of 0.21 of CFL number was imposed for the 

stability of the decentred upwind scheme). 
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