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ABSTRACT 

The analysis of three dimensional rotationally symmetric boundary layer flow of field dependent viscous 

ferrofluid saturating porous medium is performed. The fluid under consideration is electrically non-

conducting incompressible magnetic fluid. The flow is generated due to the rotation of an infinite disk 

maintained at a uniform temperature. The momentum equations give rise to nonlinear coupled boundary 

value problem which is solved using Finite Difference and Newton methods. The numerical solutions for the 

governing nonlinear differential equations are obtained over the entire range of physical parameters. The 

effects of field dependent viscosity, permeability parameter, Prandtl number (Pr) and Eckert number (Ec) on 

various flow characteristics are discussed in detail and presented graphically. A special attention has been 

paid to study the effects of viscous dissipation on thermal boundary layer. Appreciable effects of these 

physical parameters are recorded on boundary layer displacement thickness, skin friction coefficients and rate 

of heat transfer.  
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NOMENCLATURE 

 
B  magnetic induction

 

 
pC  specific heat at constant pressure

 

 rf
C  radial skin friction coefficient 

 tf
C  tangential skin friction coefficient 

 d  boundary layer displacement thickness 
  E dimensionless radial velocity 

Ec  Eckert number, 2 2( ) (( ) )w pr T T C   

  F dimensionless tangential velocity 

 G dimensionless axial velocity 

H  applied magnetic field 

 k  thermal conductivity 

 0k  porous permeability
 

M  magnetization
 

 m MFD viscosity parameter 

Nu  Nusselt number 
 P dimensionless fluid pressure 

p  reduced fluid pressure
 

Pr  Prandtl number, ( )pC k  

q  fluid velocity
 

eR  rotational Reynolds number, 
2( )r     

T  fluid temperature
 

wT  temperature at the wall
 

T  free stream temperature
 

u  radial velocity
  

v  tangential velocity
 

w  axial velocity
  

  dimensionless distance from the disk 
  permeability parameter, 0( )k   

  coefficient of viscosity variation
 

  reference fluid viscosity 

m  magnetic field dependent viscosity
 

  dimensionless temperature 

0  magnetic permeability in free space
 

  reference kinematic viscosity
 

  fluid density
 

r  radial shear stress 

t  tangential shear stress 

  angular velocity of disk
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1. INTRODUCTION 

The ferrohydrodynamic flow and heat transfer over 

a rotating disk has been at center of research 

interests owing to the fact that disk driven FHD 

flows are not only of theoretical interests but are of 

practical significance in many areas, such as 

rotating machinery, thermal-power generating 

systems, computer storage devices, gas turbine 

rotors, medical equipments, air cleaning machines, 

crystal growth processes and aerodynamics. In 

turbine engines and other rotator type machine 

systems, the flow may be subjected to high 

operating temperatures and to ensure the optimal 

operation of machinery, it is vital to keep an 

accurate map of velocity and temperature fields. 

The flow of an ordinary viscous fluid near a 

rotating disk was first considered by Karman (1921) 

in one of the most influential articles ever written in 

aerodynamics, where the famous similarity 

transformations were introduced to reduce the 

governing Navier-Stokes equations (PDE‟s) into a 

set of coupled ordinary differential equations. That 

is why the flow near a rotating disk is widely 

known as Von Karman flow. Cochran (1934) 

improved Karman`s solution and calculated more 

accurate values by numerical integration. Cochran‟s 

hydrodynamic problem was extended to the flow 

starting impulsively from rest with some 

improvement by Benton (1966). Later, Evans 

(1969) studied the effects of uniform suction at the 

surface of porous rotating disk. Parter and 

Rajagopal (1984) studied the special solutions of 

Navier-Stokes equations for the swirling fluid flow 

between two infinite parallel plates rotating with 

some constant angular velocities. The 

comprehensive review and detailed discussions of 

the rotating flow due to a single and two disk 

systems are given by Owen and Rogers (1989).   

In view of wide applications of rotating disk in 

industrial and other technological fields, the 

problem of flow near a rotating disk has been 

extended to magneto as well as ferro 

hydrodynamics. Smart materials such as ferrofluids 

are not available in free state in nature but are to be 

synthesized. Rosensweig (1985) has given an 

authoritative introduction to research on magnetic 

fluids in his monograph. For last three decades, 

ferrofluids have been used commercially in 

numerous devices like sensors, densimeters, 

accelerometers, pressure transducers etc and in 

sealing of hard disc drives, rotating X-ray tubes, 

rotating shafts and rods. These are used as 

lubricants in seals, bearings and dampers and as 

heat controller in electric motors and hi-fi speaker 

systems without the need of change in their 

geometric shape (Hathway (1979); Raj and 

Moslowitz (1990); Berkovsky and Bastovoi 

(1996)). In addition, ferrofluids can be used to 

deliver certain drugs to specific area of body and 

also treatment of cancer by heating the tumor 

soaked in ferrofluid by the means of alternating 

external magnetic field as an application in the field 

of bio-medicine. Attia (2001) discussed the 

unsteady magneto-hydrodynamic (MHD) flow of 

an incompressible viscous electrically conducting 

fluid due to an infinite rotating disk in the presence 

of an external uniform magnetic field. 

Turkyilmazoglu (2011) obtained the exact solution 

for the flow of viscous MHD fluid over a rotating 

disk. Ram and Kumar (2012) studied the effects of 

temperature dependent viscosity on steady axi- 

symmetric ferrofluid flow over a stationary disk. 

The effects of rotation on the ferrofluid due to a 

rotating disk were studied by Ram and Sharma 

(2012). 

In study of magnetic fluid flows, physical properties 

like fluid viscosity changes significantly with the 

applied magnetic field. So consideration of field 

dependent variable viscosity gives a realistic view 

of the flow field. In some research studies, the 

effects of magnetic field dependent (MFD) 

viscosity on electrically conducting and non-

conducting fluid flows over a rotating disk have 

been considered. However, general information on 

magneto viscous effects in ferrofluid has been given 

in a monograph by Odenbach (2002). Sunil and 

Mahajan (2009) studied the nonlinear stability 

analysis of magnetized ferrofluid heated and soluted 

from below with MFD viscosity via generalized 

energy method by taking stress free boundaries. 

Ram et al. (2010) solved the non-linear differential 

equations under Neuringer – Rosensweig model for 

ferrofluid flow and discussed the effect of MFD 

viscosity on flow profiles. Nanjundappa et al. 

(2010) studied Benard-Marangoni ferroconvection 

in a ferrofluid layer in the presence of a uniform 

vertical magnetic field with MFD viscosity. Further, 

the effects of porosity and MFD viscosity on 

velocity and pressure profiles on a revolving 

ferrofluid over a rotating disk has been discussed by 

Ram and Sharma (2011). Veerraju et al.  (2012) 

studied the variable viscosity effects on mixed 

convection boundary layer flow over a vertical plate 

in porous medium. The influence of MFD viscosity 

on ferrofluid flow in porous medium over a rotating 

disk is studied by Ram and Kumar (2012). The 

study of heat transfer in boundary layer flows is of 

great significance in various engineering 

applications such as drag reduction, transpiration, 

the design of thrust bearings and radial diffusers 

etc. Rahman et al. (2009) examined the heat 

transfer characteristics of a two dimensional flow of 

micro polar fluid passed a non-linear stretching 

sheet with temperature dependent variable 

viscosity. Chen (2010) studied the effects of joule 

heating and viscous dissipation on radiative heat 

transfer in MHD flow past a stretching surface. 

Sibanda and Makinde (2010) analyzed the effects of 

ohmic heating and viscous dissipation on axi-

symmetric MHD flow and heat transfer in porous 

medium. The MHD nonlinear flow and heat transfer 

past a stretching porous surface in porous medium 

is examined by Devi and Ganga (2010). The study 

of nanofluid flow with heat transfer in the presence 

of a porous rotating disk has been carried out by 

Bachok et al. (2011). Siddiqui et al. (2011) 

investigated the effects of partial slip on velocity 

profiles, temperature distribution and heat transfer 

in the fluid flow over a porous rotating disk. The 

disk driven steady flow and heat transfer of the 
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power-law fluid is examined by Ming et al. (2011). 

Rashidi et al. (2012) employed the Homotopy 

Analysis method to obtain the analytical 

approximate solutions of fluid flow in porous 

medium and heat transfer. The flow and heat 

transfer characteristics of Oberbeck convection of 

chiral fluid in the presence of transverse magnetic 

field and viscous dissipation is studied by Rudraiah 

et al. (2013).  

The objective of this paper is to study the effects of 

magnetic field dependent viscosity and viscous 

dissipation on heat transfer in steady axi-symmetric 

FHD boundary layer flow of an incompressible 

ferrofluid in porous medium. The equations 

governing the boundary layer flow in component 

form are non-dimensionalized using the similarity 

transformations. The resultant non-linear coupled 

differential equations are solved by subsequent use 

of the Finite Difference and Newton‟s method. 

Numerical calculations have been carried out in 

MATLAB and Flex PDE solver.  

2. MATHEMATICAL FORMULATION AND 

NUMERICAL SOLUTION 

2.1 Mathematical Formulation 

Let us consider steady axially symmetric flow of an 

incompressible viscous electrically non-conducting 

ferrofluid with heat transfer in the presence of a 

rotating disk in porous medium with viscous 

dissipation, assuming that magnetic fluid is infinite 

in extent in positive z-direction. Electrically non-

conducting disk is placed at z = 0 and rotates with 

some uniform angular velocity    about z-axis. 

The flow is subjected to an externally applied 

magnetic field ,H and the magnetization M of 

fluid is aligned with the applied field. The disk is 

maintained at a uniform temperature wT  and the 

free stream is kept at a constant temperature .T   

The fluid viscosity is taken to be magnetic field 

dependent i.e. variable viscosity. Rosenswieg 

(1966) in his experimental work demonstrated that 

the magnetic field dependent viscosity has got 

exponential variation with respect to the magnetic 

field. However, for a small field variation, linear 

variation in MFD viscosity has been used, given as  

 Bm   1                                     (1) 

The differential equations governing the axi-

symmetric and steady boundary layer flow of 

ferrofluid are given as follows: 
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Boundary conditions for the flow are 

0 , 0,

0, 0;

, , 0,

tends to somefinite negative

valueas

w

u v r w
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(7) 

The second term on right hand side in the energy 

equation (6) is due to viscous dissipation. In the 

boundary layer flow of ferrofluid, the centrifugal 

force generated due to disk rotation is balanced by 

the radial pressure gradient and the radial 

component of magnetic force. So, the boundary 

layer approximation to Eq. (3) is  
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The similarity transformations suggested by Von 

Karman for rotating disk problem are as:  

( ), ( ), ( ),

( ) and ( ) ( )w

u r E v r F w G

p P T T T T

     

    

  

   

 (9) 

where .z





  

On taking negligible z-component of the magnetic 

field and using Eq. (9), the Eqs. (2 to 6) transform 

to a system of non-linear differential equations in 

non-dimensional variables E, F, G, P and   as 

02  EG                                                   (10)  

0122  EmFEEGEm          (11) 

02  FmFEFGFm                       (12) 

0 GmGGGmP 
                 (13)

 

     0
1 22

 FEEcmG
Pr


           (14)

 

The modified boundary conditions are 
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(0) (0) (0) 0, (0) (0) 1,

0, 0, 0, 0

E G P F

E F P and

G tends to some finite negative value

as
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(15) 

Re-writing the differential Eqs. (11) to (14) by 

eliminating E with the help of Eq. (10), we get 

  22
422 FGGGGm   

042  Gm                                  (16) 

0 FmFGFGFm                  (17) 

0 GmGGGmP                       (18) 
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4 22
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Pr
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And the modified boundary conditions are 
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G F P and
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(20) 

2.2 Numerical Solution 

The system of non-linear coupled differential Eqs. 

(16), (17) and (19) is solved with the boundary 

conditions (20) leaving the Eq. (18) as the 

dimensionless fluid pressure P can directly be 

obtained from it, once the vertical component of 

velocity G is made known.  We adopted a second 

order numerical scheme, in which differential 

equations are discretized by approximating the 

involved derivatives by central differences, and 

subsequently, Newton‟s method is employed to 

solve the obtained nonlinear simultaneous 

difference equations. For numerical computations, 

the semi infinite integration domain 

   0:*D  is replace by the finite 

domain  .0:  D
 
It is to be noted 

that if this   is not chosen large enough, the 

numerical solution of the problem will not only 

depend upon the physical parameters but also on 

this  . So, a sufficiently large value of   
is 

taken so that the numerical solution closely 

approximate the asymptotic boundary conditions 

(20) and is not affected by imposing the terminal 

boundary conditions at a finite distance. The value 

12  is found suitable to simulate   for 

all the cases shown in Figs. 1 – 10. 

The discretized equation corresponding to the 

reduced momentum Eqs. (16), (17) and the energy 

Eq. (19) are as follows: 
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Now dividing the interval  12,0  into 120 

subintervals of length 
10

1
h  each, and 

 1200
10

 i
i

i  with 00   and 

.12120 
 
Using the above value of h in the Eqs. 

(21) to (23), we get  
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And the further modified boundary conditions (20) 

are 

0,1,

,,0,0,1
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GG
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Now taking 119,...,2,1i in the Eqs. (24) to 

(26), we get of three sets of non-linear simultaneous 

difference equations containing 119 equations each.  

From Eq. (24), we have 
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From Eq. (25), we have 
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From Eq. (26), we have 
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Using boundary condition (27) in the Eqs. (28) to 

(30), we get a system 357 nonlinear coupled 

equations in 357 variables, which is solved using 

Newton‟s method.  

Define the Eqs. (28) to (30) as functions 

,0),,;,,;,,( 119111911191   FFGGf i

0),,;,,;,,( 119111911191   FFGGgi  and 

1 119 1 119 1 119( , , ; , , ; , , ) 0.ih G G F F     

),1191(  i respectively. And initialize the values 

of variables 119111911191 ,,;,,;,,   FFGG  

as: 

1 0 1 0
1 1 1 2 2 2

1 0
119 119 119

1 0 1 0
1 1 1 2 2 2

1 0
119 119 119

1 0 1 0
1 1 1 2 2 2

1 0
119 119 119

, ,

,

, ,

,

, ,

,

G G a G G a

G G a

F F b F F b

F F b

c c

c

   

 

   

 

    


  


    


  

                     

(31) 

Here subscript „0‟ denotes the initial value and „1‟ 

denotes the improved values after first iteration is 

performed. )1191(,,  icba iii are the 

perturbations from actual values, which may be 

positive or negative. It may take few steps more to 

converge as due to its dependence on initial guess. 

If initial guess is closer to the actual values, then it 

converges rapidly and comparatively less number of 

iterations is required, otherwise solution may not 

converge.  

Using Newton‟s method, for the perturbations (31), 

the Eqs. (28) to (30) are linearized as follows: 
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In matrix form the system can be written 

as BAX  , where 
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Solution of this system (i.e. the values of 

)1191(,,  icba iii ) is obtained in MATLAB. 

However the initial guess is taken with the help of 

PDE solver. The values of the variables F, G and 

  tend to the solution of Eqs. (28) – (30) when 
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perturbations tend to zero. This obtained solution 

gives us the velocity and temperature profiles 

within the generated boundary layer over the 

surface of the disk.  

Further, viscous ferrofluid layer in contact with the 

disk sets up the stress which opposes the rotation of 

the disk. The radial and tangential components of 

the generated stress are given by the Newtonian 

formulae as follows: 
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So radial and tangential skin frictions are 

respectively given by 

)0(
2/1

EmCR
rfe                                (33) 

)0(
2/1

FmCR
tfe                                 (34) 

The skin frictions calculated using Eq. (33) and Eq. 

(34) are presented in Table 1. 

    Table 1 Radial and tangential skin frictions 

Radial Skin Friction 

At  β = 2, Pr =1, Ec = 0.5 

m = 1.0 m = 1.1 m = 1.2 
m = 

1.3 

0.5399 0.5940 0.6478 0.7021 

At  m=1.2, Pr =1, Ec = 0.5 

β = 0 β = 1 β = 2 β = 3 

0.6479 0.6483 0.6478 0.6480 

Tangential Skin Friction 

At  β = 2, Pr =1, Ec = 0.5 

m = 1.0 m = 1.1 m = 1.2 
m = 

1.3 

0.6200 0.6818 0.7442 0.8061 

At  m=1.2, Pr =1, Ec = 0.5 

β = 0 β = 1 β = 2 β = 3 

0.7439 0.7438 0.7442 0.7440 

       Table 2 Boundary layer displacement thickness 

At  β = 2, Pr =1, Ec = 0.5 

m = 1.0 m = 1.1 m = 1.2 m = 1.3 

2.3863 2.6279 2.8689 3.1093 

At  m=1.2, Pr =1, Ec = 0.5 

β = 0 β = 1 β = 2 β = 3 

1.2892 2.0789 2.8689 3.6586 

The boundary layer displacement thickness (d) is 

calculated as 
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d                          (35) 

Also, the rate of heat transfer from the surface of 

disk is evaluated using the Fourier law as follows: 
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Therefore, the Nusselt number (Nu) is given by 

)0(2/1  NuRe                                          
(36) 

After above computations, the boundary layer 

displacement thickness and the rate of heat transfer 

are presented in Table 2 and Table 3, respectively. 

Table 3 Rate of heat transfer 

At  β = 2, Pr =1, Ec = 0.5 

m = 1.0 m = 1.1 m = 1.2 m = 1.3 

0.3229 0.3501 0.3865 0.4358 

At  m=1.2, Pr =1, Ec = 0.5 

β = 0 β = 1 β = 2 β = 3 

0.3879 0.3872 0.3865 0.3854 

At  m=1.2, β = 2, Pr =1 

Ec=0 Ec=0.5 Ec=1.0 Ec=1.6 

0.3904 0.3865 0.3742 0.3625 

At  m=1.2, β = 2, Ec = 0.5 

Pr = 1 Pr = 7 

0.3865 0.5423 

3. RESULTS DISCUSSION 

Using the numerical technique, outlined in previous 

section, velocity and temperature distributions for 

considered flow are computed for various values of 

viscosity parameter (m), permeability parameter (β), 

Prandtl number (Pr) and Eckert number (Ec) and 

are displayed graphically in following Figs. (1 to 

10). For β = 0, the problem reduces to the case of 

ferrofluid flow with field dependent viscosity 

without porous medium in the presence of rotating 

disk (Ram et al., 2010). Prior to carrying out the 

calculations for changing parameters, the numerical 

method adopted in the present investigation has 

been validated by comparing the results for the 

reduced case (β = 0) to those obtained by Ram et al. 

(2010), and found them in quite agreement.  

Figure 1 represents the radial velocity profiles for 

various values of permeability parameter for fixed 

value of viscosity parameter m = 1.2. The radial 

velocity increases near the wall and after reaching 

the maximum value in each case, it starts 

decreasing and finally tends to zero. Here, positive 

value of radial velocity indicates the radial outward 

flow near the disk. The centrifugal force, generated 

due to rotation of the disk, throws the fluid near the 

disk in outward direction. It is observed that radial 

velocity increases on increasing the permeability 

parameter and attains the highest peak value for  

β = 3. However, this increase is comparatively 

smaller near the disk surface. Also, higher values of 
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permeability parameter reduce the rate of 

convergence. Effects of viscosity parameter on the 

radial velocity for a fixed permeability parameter  

β = 2 are given in Fig. 2. Like the permeability 

parameter, increasing viscosity parameter increases 

the radial velocity, but effects of later are more 

prominent. Also convergence rate gets slower for 

higher values of m and β both. 

 

Fig.1. Radial velocity profiles for permeability 

parameter β at m = 1.2, Pr = 1 and Ec =0.5 

 
Fig. 2. Radial velocity profiles for viscosity 

parameter m at β = 2, Pr = 1 and Ec =0.5 

 
Fig. 3. Tangential velocity profiles for permeability 

parameter β at m = 1.2, Pr = 1 and Ec =0.5 

 
Fig. 4. Tangential velocity profiles for viscosity 

parameter m at β = 2, Pr = 1 & Ec =0.5 

Effects of permeability parameter on tangential 

component of velocity for m = 1.2 are illustrated in 

Fig. 3. And Fig. 4 shows the tangential velocity for 

change in viscosity parameter m at a specified 

permeability parameter β. It is revealed that 

tangential velocity increases with increasing values 

of the parameter β as well as with viscosity 

parameter m. It decreases smoothly from 1 to zero 

for β = 1 & 2, but a phenomenal change near the 

disk surface can be seen for greater values of β, 

where it once goes up for β = 3. Tangential velocity 

takes the value 1 at the surface of the disk due to the 

no-slip condition at the wall, and then decreases to 

zero owing to the viscosity of the fluid. Further, late 

convergence of tangential velocity for higher values 

of both of the parameters is noticed. 

Axial velocity profiles for different values of 

permeability parameter are depicted in Fig. 5 and 

for MFD viscosity parameter in Fig. 6. To 

compensate the radial outward flow of the 

ferrofluid on the surface of the disk, fluid flows 

axially downwards. So in both of the figures, the 

axial velocity remain negative. It is seen that axial 

velocity goes to more and more negative region as 

the field viscosity parameter increases, while gets 

affected negligibly due to change in the 

permeability parameter β.  

 
Fig. 5. Axial velocity profiles for permeability 

parameter β at m = 1.2, Pr = 1 and Ec =0.5 

 
Fig. 6. Axial velocity profiles for viscosity 

parameter m at β = 2, Pr = 1 and Ec =0.5 

 
Fig. 7. Temperature profiles for permeability 

parameter β at m = 1.2, Pr = 1 and Ec =0.5 
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Fig. 8. Temperature profiles for viscosity parameter 

m at β = 2, Pr = 1 and Ec =0.5 

 
Fig. 9. Temperature profiles for Eckert number Ec 

at m = 1.2, β = 2 and Pr = 1 

 
Fig. 10. Temperature profiles for the Prandtl 

number Pr at m = 1.2, β = 2 and Ec =0.5 

Figures 7 to 10 demonstrate the temperature 

distribution in the flow field for permeability 

parameter (β), viscosity parameter (m), Prandtl 

number (Pr) and Eckert number (Ec). It is observed 

that temperature increases on increasing the 

permeability parameter whereas it behaves 

conversely with respect to the viscosity parameter. 

However, the effects due to change in viscosity 

parameter are more prominent. From Fig. 9, it is 

clear that temperature increases on increasing the 

Eckert number i.e. boundary layer gets heated with 

increasing viscous dissipation. Whereas increasing 

value of the Prandtl number decreases the 

temperature distribution within the layer as 

demonstrated in Fig. 10. Moreover, the thermal 

boundary layer becomes thicker on increasing the 

permeability parameter as well as the Eckert 

number while becomes comparatively thinner with 

an increase in the viscosity parameter and the 

Prandtl number.  

Impact of viscosity and permeability parameters on 

radial and tangential skin frictions are presented 

through the Table 1. It is noticed that radial as well 

as tangential skin frictions get increased on 

increasing the MFD viscosity parameter while the 

permeability parameter has negligible effects on 

these. Table 2 describes the effects of viscosity and 

permeability parameters on the boundary layer 

displacement thickness. Displacement thickness 

increases on increasing the both, the viscosity 

parameter and the permeability parameter, however, 

the effects of permeability parameter are more 

prominent. Further, behaviour of the numerical rate 

of heat transfer from the disk surface is shown in 

Table 3. It is depicted that rate of heat transfer 

increases with growing viscosity parameter and the 

Prandtl number, whereas, it behaves conversely for 

permeability parameter and the Eckert number.  

4. CONCLUSIONS 

The current research work draws light on the effects 

of MFD viscosity and viscous dissipation on the 

boundary layer flow of ferrofluid generated over a 

rotating disk in porous medium. The main results of 

this work are summarized as follows: 

(i) Radial and tangential component of velocity and 

temperature get increased with growing 

permeability parameter β, while axial velocity 

remains almost same for it. 

(ii) On increasing the MFD viscosity parameter m, 

radial and tangential velocities become large 

whereas axial velocity and temperature behave 

conversely. 

(iii) Temperature distribution within the boundary 

layer decreases for higher Prandtl number 

whereas it increases with the Eckert number. 

(iv) An increase in values of the β & Ec thickens the 

thermal boundary layer, while for increasing Pr 

& m, it becomes thinner. 

(v) Radial and tangential skin frictions both become 

large on increasing the viscosity parameter 

whereas the permeability parameter has 

insignificant effects on it. 

(vi) Increasing values of the permeability 

parameters thickens the generated boundary 

layer with insignificant effect of the viscosity 

parameter on it. 

(vii) Numerical rate of heat transfer increases on 

increasing the viscosity parameter and the Pradtl 

number, whereas it behaves conversely for the 

permeability parameter and the Eckert number. 

In nut shell, heat transfer in the ferrofluid flow over 

a heated rotating disk in porous medium is 

significantly affected by MFD viscosity, 

permeability of the medium and the viscous 

dissipation. And this flow can be controlled by 

proper tuning of these parameters depending upon 

its applications in various areas of science and 

engineering. 
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