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ABSTRACT 

The effect of non-uniform heat generation on an unsteady MHD laminar boundary layer flow of viscous, 

incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium is 

investigated numerically. The flow in the porous medium is governed by Brinkman-Forchheimer extended 

Darcy model. The variation of porosity, permeability and thermal conductivity is assumed. By applying 

similarity analysis, the governing partial differential equations are transformed into a set of time dependent 

non-linear coupled ordinary differential equations and they are solved by Runge-Kutta Fehlberg Method 

along with shooting technique. The effects of governing parameters on the dimensionless velocity and 

temperature distributions for uniform permeability (UP) and variable permeability (VP) of the porous 

medium are discussed graphically. Also, the local skin friction coefficient and the rate of heat transfer are 

computed for various pertinent parameters governing the problem. Moreover, the numerical results obtained 

in this study is compared with the existing literature and found they are in good agreement. 

 

Keywords: MHD, Brinkman-Forchheimer model, Stretching plate, Non-uniform heat source/sink, Variable 

porosity and permeability, Variable thermal conductivity. 

 

NOMENCLATURE 

a, b, c, d, d*   constants 

A  unsteady parameter 

A*,B*   dimensionless heat generation parameters 

B0  uniform magnetic field 

Cb  empirical constant of second order 

Cf  skin-friction  

cp  specific heat at constant pressure 

f  dimensionless stream function 

g  acceleration due to gravity 

Gr  local Grashof number 

k(y)  permeability of the porous medium 

k0  permeability of the porous medium at 

the edge of the boundary layer  

K(T)  thermal conductivity 

K∞  thermal conductivity far away from the  

            sheet 

M  magnetic parameter 

Nux  Nusselt number 

Pr  Prandtl number 

Re  local Reynolds number 

qw  local heat flux at the sheet 

Q*  volumetric non-uniform heat  generation 

 

T & t   fluid temperature and time    

Tw      given temperature at the sheet 

T∞    constant temperature of the fluid far away  

          from the sheet 

Ix, y    axial and normal co-ordinate 

u, v    velocities in x, y directions respectively 

 Uw      velocity of the stretching surface 

 

 Greek symbols 

 

γα∞, α* thermal diffusivity and ratio of viscosities 

 ε(y)   porosity of the porous medium 

 η   similarity variable 

  ν   kinematic viscosity 

 β*, β   inertial parameter, thermal expansion co-

eff. 

  μ   dynamic viscosity 

 ψ   stream function 

  ρ   density 

 σ   permeability parameter 

  τw   shear stress 

  θ   dimensionless temperature variable 

  λ   buoyancy parameter 
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1. INTRODUCTION 

The study of MHD flow and heat transfer over a 

stretching surface has gained considerable interest 

because of its extensive engineering applications, 

such as in the extrusion of a polymer sheet from a 

die, glass fiber and paper production. These flows 

occur in many manufacturing processes in modern 

industry, such as hot rolling, hot extrusion, wire 

drawing and continuous casting. Considering of its 

importance, those flow have been studied by 

several research groups (Sakiadis 1961; Sparrow 

and Cess 1961; Sing and Cowling 1963; Riley  

1964).  The continuing interest in heat transfer and 

fluid flow through porous media is mainly due to 

several engineering and geophysical fields such as 

cooling of nuclear reactors, enhanced oil recovery, 

thermal insulation drying of porous solids, solid 

matrix heat exchanges, geothermal and petroleum 

resources, ceramic processing, filtration processes, 

chromatography, etc. 

The problem of mixed convection flow past a 

stretching sheet embedded in porous medium arise 

in some metallurgical processes which involve the 

cooling of continuous strips or filaments by 

drawing them through quiescent fluid and the rate 

of cooling can be better controlled and final product 

of desired characteristics can be achieved if the 

strips are drawn through porous media (Pal and 

Mondal 2011). A comprehensive review of 

convection through porous medium was reported by 

Nield and Bejan (1992) and by Ingham and Pop 

(1998). Lai and Kulacki (1991) have studied the 

boundary layer mixed convection flow of heat and 

mass transfer over a vertical plate embedded in a 

saturated porous medium with constant wall 

temperature and constant heat flux. Recently, 

Makinde and Aziz (2010) investigated the mixed 

convection flow from a vertical plate embedded in a 

porous medium with magnetic effect and 

convective boundary condition. 

One common feature of all the above-mentioned 

fluid saturated porous media studies deal with the 

Darcy flow model. But in many practical 

applications, for example packed sphere beds, the 

porous medium is bounded by an impermeable wall 

has higher flow rates, and reveals non-

homogeneous porosity variation near the wall, 

making Darcy’s law inapplicable. Such a case, the 

boundary and inertial effects should be included. 

The boundary and inertia effects on forced 

convective heat transfer from a flat plate were first 

examined by Vafai and Tien (1981). These effects 

were shown to decrease the velocity in the thermal 

boundary layer and reduce the heat transfer rate. 

Recently, Pal and Mondal (2011) studied the effect 

of radiation on the heat and mass transfer past a 

stretching sheet in a non-darcian porous medium. 

They found that the radiation parameter enhances 

the skin-friction coefficient and sherwood number 

whereas the local nusselt number decreases.  

Owing to adding time effect, the transient heat 

transfer is usually difficult to solve with either an 

analytical approach or numerical method. Examples 

of transient convective flows are numerous such as 

cooling of electronic devices in which the heat 

generation is not constant but time varying. First 

study on transient boundary layer on flat plate was 

made by Johnson and Cheng (1978). Raptis (1983) 

studied the case of two-dimensional free convection 

over a vertical plate embedded in a porous medium 

using the perturbation method. Al-Nimr and 

Masoud (1998) analyzed the problem of transient 

free convection flow over an impermeable vertical 

flat plate embedded in porous medium using 

Laplace transformation method.  Anand Rao et al. 

(2012) investigated the effect of chemical reaction 

on unsteady MHD free convection flow over a 

semi-infinite vertical porous plate. Recently, Reddy 

et al. (2013) found the exact solutions of the 

unsteady MHD flow, heat and mass transfer over a 

moving vertical porous plate using Laplace 

transform technique.   

The study of heat generation or absorption effects 

in moving fluid is important in view of several 

physical problems. Due to the fast growth of 

electronic technology, effective cooling of 

electronic equipment has become warranted and 

cooling of electronic equipment ranges from 

individual transistors to main frame computers and 

from energy suppliers to telephone switch boards. 

Several authors have investigated the heat transfer 

problems by considering temperature dependent 

heat source/sink (Chamkha and Ahmed 2011; 

Anand Rao 2012 ; Prakash et al. 2012, etc). 

Although, exact modelling of non-uniform heat 

generation is quite difficult, some simple 

mathematical model can express its average 

behavior for most physical situations. For example, 

in many situations there may be appreciable 

temperature difference between the surface and the 

ambient fluid. In such a case, non-uniform heat 

generation plays a crucial role and exerts strong 

influence on the heat transfer characteristics. Abo-

Eldahab and El-Aziz (2004) studied the problem to 

involve a space-dependent exponentially decaying 

with internal heat generation or absorption. Abel et 

al. (2007) and Bataller (2007) investigated the 

effects of non-uniform heat source on visco-elastic 

fluid flow and heat transfer over a stretching sheet. 

In most of the papers, the thermo physical 

properties of the ambient fluid were assumed to be 

constant. Based on previous investigations (Chiam 

1996,1998 ; Mahmoud 2007 ; Rahman et al.2009; 

Sharma and Singh 2009 ; Mahanti and Gaur 2009 ; 

Prasad et al. 2013), it is well known that these 

physical properties may change with temperature, 

especially thermal conductivity. For lubricating 

fluids, heat generated by internal friction and the 

corresponding rise in the temperature affects the 

physical properties of the fluid and so the properties 

of the fluid are no longer assumed to be constant. 
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The increase in temperature leads to increase in the 

transport phenomena by reducing the physical 

properties across the thermal boundary layer and 

the heat transfer at the wall is also affected. 

Therefore to predict the flow and heat transfer rates, 

it is necessary to take into account the variable fluid 

properties. 

The present study is to investigate the non-uniform 

heat generation effect on unsteady MHD boundary 

layer flow of an incompressible viscous fluid and 

heat transfer over a vertical surface embedded in 

the porous medium with variable porosity and 

variable thermal conductivity. By using similarity 

approach, the transport equations are transformed 

into non-linear ordinary differential equations and 

they are solved by Runge-Kutta-Fehlberg with 

shooting method. The present results are compared 

with previously obtained solutions and they are in 

good agreement. The behavior of the velocity, 

temperature, skin-friction and heat transfer has been 

discussed for a range of physical parameters. 

2. MATHEMATICAL FORMULATION 

Consider an unsteady two-dimensional laminar 

boundary layer flow over a continuous moving 

stretching plate in a viscous incompressible 

electrically conducting fluid saturated porous 

medium of variable porosity, permeability and 

thermal conductivity. A uniform magnetic field 
2/1

00 )1(ˆ)(  ctBtB  is applied in the direction 

perpendicular to the stretching surface. Since the 

transverse applied magnetic field and magnetic 

Reynolds number are assumed to be small, the 

induced magnetic field can be neglected. The x-axis 

is taken along the stretching plate in the direction of 

the motion and the y-axis is perpendicular to the 

plate in the outward direction towards the fluid of  

ambient temperature T
 (See Fig. 1). 

Fig. 1 Physical configuration & coordinate 

system 

 
We assume that for time t<0 the fluid and heat 

flows are steady. The unsteady fluid and heat flows 

start at t=0, the plate is being stretched with the 

velocity )1/(),( ctaxtxU
w

  along the x-

axis, where a (stretching rate) and c are positive 

constants having dimension 
1t  (with ct<1, c≥0). 

The surface temperature of the plate varies with the 

distance x from the slot and time t in the form 

)1/( ctbxTTw  
where b is a constant and 

has dimension temperature/length. 

The porous medium is isotropic and homogeneous. 

Local thermal equilibrium is assumed. With the 

inclusion of quadratic drag, inertial and boundary 

effects, the governing boundary layer equations for 

unsteady two dimensional flow can be written in 

the following form: 
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                                                         (2.3) 

The initial and boundary conditions are:  

 

0),(,0),,(  yattxTTvtxUu ww
         (2.4) 

  yasTTu ,0                       (2.5) 

where u and v are the velocity components along x 

and y directions, respectively. T is the temperature 

of the fluid, ρ is the fluid density,   is the 

effective viscosity of the fluid, μ is the fluid 

viscosity, k(y) is the variable permeability of the 

porous medium, ε(y) is the porosity of the saturated 

porous medium, Cb is the empirical constant of the 

second-order resistance term due to inertia effect, g 

is the acceleration due to gravity, β is the 

coefficient of thermal expansion, cp is the specific 

heat at constant pressure, σm is the magnetic 

permeability of the fluid and B0(t) is the applied 

magnetic field. 

Savvas et al. (1994) observed that for liquid metals, 

the thermal conductivity varies linearly with 

temperature in the range 0 to 4000C. Following 

Chiam (1996, 1998) and Savvas et al. (1994), we 

consider the specific model for variable thermal 

conductivity as  






















TT

TT
KTK

w

1)(

                                 (2.6)   

where K∞ is the thermal conductivity of the fluid far 

away from the stretching surface, ε is a small 

parameter known as the variable thermal 

conductivity parameter. 

The term Q* in the right hand side of Eq.(2.3) is due 

to non-uniform heat generation which is defined 

(Abo-Eldahab and El-Aziz 2004; Pal 2011; Das 

2012) as  

 )()(
),( ***






  TTBeTTA

x

txUK
Q w

w 

          
                                                             (2.7)  

where A* and B* are the coefficient of  

exponentially decaying space and temperature-
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dependent heat source/ sink, respectively. It is to be 

noted that the case 0* A , 0* B  

corresponds to internal heat generation and that 

0,0 **  BA ,  corresponds to internal heat 

absorption. 

We now introduce a stream function ψ(x, y, t), 

which is defined by  

x
v

y
u












,

                               (2.8) 

The mathematical analysis of the problem is 

simplified by introducing the dimensionless 

functions f, θ in terms of the similarity variable η 

[see Ishak et al. (2009a), Prakash et al. (2014)] as 

 







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w
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                                                                            (2.9) 

We consider the variable permeability k(η) and 

variable porosity ε(η) are to decrease exponentially 

with the normal distance to the wall, from a value 

close to one at the solid boundaries to k0 and ε0 

value at the edge of the boundary layer (see 

Chandrasekhara and Namboodiri 1985).  
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            (2.10) 

where k0 and ε0 are the permeability and porosity at 

the edge of the boundary layer respectively. For 

variable permeability, d and d* are treated as 

constants having values 3.0 and 1.5 respectively 

and for uniform permeability 0*  dd .  

Substituting Eqs.(2.6) to (2.10) into Eqs.(2.1) to 

(2.5), we get the following transformed equations:  
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and the boundary conditions  

1)0(,1)0(',0)0(  ff
          (2.13) 
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where prime denotes the differentiation with respect 

to η, a
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 is the unsteady parameter, a
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is the local magnetic parameter, 0
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 is the local 

inertial parameter, 
2Re
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 is the free convection 

parameter, 
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number, 
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 is the local permeability parameter. 

 

The important characteristics of the flow are the 

skin-friction co-efficient Cf and the local Nusselt 

number Nux, which are defined as  
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where the wall shear stress τw and the surface heat 

flux qw are given by  
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Substituting Eq.(2.16) in Eq.(2.15), we get  
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Re

,)0(Re
2
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                                                                          (2.17) 

where 
xU w

x Re
 is the local Reynolds number 

which is based on the surface velocity. 

3. NUMERICAL PROCEDURE 

The coupled system of equations Eq. (2.11) to 

(2.12) is highly non-linear. Most of the physical 

systems are inherently non-linear in nature and are 

of great interest to physicists, engineers and 

mathematicians. Problems involving non-linear 

ordinary differential equations are difficult to solve 

exactly. So, the governing equations together with 

the boundary conditions have to be solved 

numerically. 

The system of equations subject to the boundary 

conditions (2.13)-(2.14) was solved numerically by 

Runge-Kutta-Fehlberg method along with shooting 

technique using MATLAB. Its accuracy and 

robustness has been repeatedly confirmed in 

various heat transfer papers. The asymptotic 

boundary conditions given by Eq.(2.14) were 

replaced by using a value of 6 for the similarity 

variable ηmax as follows:  

 

0)6(,0)6(',6max   f                   (3.1) 

Table 1 Comparison of results of the wall 

temperature gradient with Ishak et al. (2009b) 

and Vajravelu et al. (2013) for  

 0,0,0 **

Re

* *

 BAAM



 

 

Pantokratoras (2009) noticed that the erroneous 

result is found by many researchers in the field of 

ε   Pr Ishak 

et al. 

Vajravelu 

et al. 

Present 

results 

0 0 0.72 0.8086 0.808836 0.80883589 

  1.0 1.0000 1.000000 1.00000008 

  3.0 1.9237 1.923687 1.92365749 

  10.0 3.7207 3.720788 3.72064164 

0 1.0 1.0 1.0873 1.087206 1.08726848 

 2.0  1.1429 1.142298 1.14233042 

 3.0  1.1853 1.185197 1.18528379 

0.1 1.0 1.0 — 1.018446 1.01861813 
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convective heat and mass transfer because of taking 

small far field asymptotic value of ηmax during their 

numerical computation. Here, the choice of ηmax= 6 

ensured that all numerical solutions approached the 

asymptotic values correctly. 

In order to check the accuracy of the numerical 

solution procedure used, a comparison of wall 

temperature gradient –θ’(0) for various values of Pr, 

ε, λ with those of Ishak et al. (2009b) and Vajravelu 

et al. (2013) under certain limiting conditions is 

shown in Table 1. From the table, the present 

results are found to be in good agreement. 

4. RESULTS AND DISCUSSION 

In order to understand the physical nature of the 

problem and the effects of various parameters like 

Magnetic number M, free convection parameter λ, 

variable thermal conductivity parameter ε, the 

unsteadiness parameter A, the Prandtl number Pr, 

the space and time dependent heat generation 

parameters 
**, BA , we have computed the 

numerical solutions of the velocity and temperature 

profiles. 

The influence of the magnetic parameter M on the 

velocity and temperature profiles with fixed values 

of other parameters for both steady and unsteady 

cases are depicted in Fig.2 and Fig.3. It can be seen 

that with the fixed value of unsteady parameter, the 

effect of increasing of magnetic parameter is to 

decrease the velocity profile near the plate (0≤η≤6). 

This is due to the fact that the transverse magnetic 

field gives rise to a resistive-type of force called the 

Lorentz force. This force has a tendency to slow 

down the motion of the fluid which results in 

reducing the velocity profiles. Further, the 

temperature profile increases with the increasing of 

magnetic parameter, due to interaction of applied 

magnetic field and fluid particles. These results 

qualitatively agree with the expectations. Moreover, 

with the fixed values of magnetic parameter, the 

effect of increasing values of unsteady parameter A 

is to decrease the velocity and temperature field and 

hence it reduce the momentum and thermal 

boundary layer thickness. 
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Fig. 2 Velocity profile for different values of 

magnetic and unsteady parameters 
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Fig. 3 Temperature profile for different values of 

magnetic and unsteady parameters 
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Fig. 4 Velocity profile for different values of 

buoyancy parameter 
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Fig. 5 Temperature profile for different values of 

buoyancy parameter 

The effect of free convection parameter 

2Re
Gr

for the cases of UP and VP on velocity 

and temperature fields are shown in Fig.4 and Fig.5. 

It can be observed that an increase in the buoyancy 

parameter is to increase the velocity field and also 

increase the boundary layer thickness. Also in the 
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case of higher buoyancy parameter, a peak is 

observed near the stretching boundary which 

exponential decreases away from the stretching 

boundary layer. This means that the ambient fluid 

velocity near the surface is higher than the 

stretching surface velocity. Whereas in temperature 

field, an increase in λ is to decrease in thermal 

boundary layer thickness. Moreover, when 

comparing the velocity and temperature profile for 

variable permeability (VP) with uniform 

permeability (UP) for a fixed value of λ, there is a 

decrease in momentum boundary layer thickness 

and increase in thermal boundary layer thickness. 
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Fig. 6 Velocity profile for different values of 

inertial parameter and unsteady parameter 
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Fig. 7 Temperature profile for different values of 

inertial parameter and unsteady parameter 

Figures 6 and 7 show the effect of inertial 

parameter on the velocity and temperature profiles 

for both steady and unsteady cases. It is observed 

that the inertia effect tends to decrease the velocity, 

since the fluid inertia provides an additional 

pressure loss in the flow field for both steady and 

unsteady cases. Moreover, the temperature 

increases as the inertial parameter increases due to 

the fact that the flow inertia force retards the 

momentum transport. This, in turn produces 

decrease in the velocity and increase in the fluid 

temperature. In addition, a slight increase in the 

thermal boundary layer thickness is observed as a 

result of increasing the inertial parameter for 

unsteady case comparing with steady one. 
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Fig. 8 Velocity profile for different values of α*/ 

σRe 
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Fig. 9 Temperature profile for different values of  

ε

,

  

The influence of Re/*  with UP and VP on the 

velocity profile is shown in Fig.8. It is observed that 

in the presence of porous medium causes higher 

retardation to the fluid which reduces the velocity 

and momentum boundary layer thickness. It is 

noted that, there is a significant increase in VP than 

UP for the higher Re/*  . Fig.9 is plotted to 

demonstrate the temperature profile for the selected 

values of thermal conductivity parameter ε and 

unsteady parameter A with the fixed values of other 

parameters. It can be seen that an increasing ε is to 

increase the temperature profile due to the 

assumption of temperature dependent thermal 

conductivity, which makes reduction in the 

magnitude of the transverse velocity by a 

quantity
)(TKy



. Also for each value of ε, the 

thermal boundary layer thickness reduces for 

unsteady state comparing with steady one. 
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Temperature profile for the selected values of space 

and temperature-dependent heat source/sink 

parameters are predicted in Fig.10 and Fig.11. It is 

evident from these figures, the temperature in the 

thermal boundary layer increases with increase in 
** , BA  for a given value of 

** , AB  in both cases of 

UP and VP. The heat sink )0,( ** BA  

parameters lead to decrease in the thermal boundary 

layer whereas the boundary layer thickness 

increases with increase in (
** , BA >0). Moreover, 

it is observed that the variation between UP and VP 

is more for space dependent heat sink parameter 
0* A  than heat source parameter 0* A , whereas 

reverse trend is observed in
*B . 
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Fig. 10 Temperature profile for different values 

of space dependent heat source/sink parameters 
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Fig. 11 Temperature profile for different values 

of temperature dependent heat source/sink 

parameters 

 

The variation of temperature distribution within the 

boundary layer for various values of Pr, A in both 

cases of UP and VP are depicted in Fig.12. As Pr 

increases, the temperature is decreasing at a steeper 

rate in the flow region, which shows that the rate of 

cooling is much faster and the thermal boundary 

layer thickness becomes thinner for higher values of 

Pr. In the case of steady state and low Prandtl 

number, the temperature distribution for VP is 

slightly increasing behavior than in UP. But, there 

is no such a significant behavior between UP and 

VP with increase in Pr and A. 
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Fig. 12 Temperature profile for different values 

of Prandtl number and unsteady parameter 
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Fig. 13 Variation of Nusselt number with 

unsteady, non-uniform heat generation 

parameters 

 

The variation of temperature gradient with unsteady 

parameter A, non-uniform heat generation 

parameters 
** ,BA  is plotted in Fig.13. It is 

pointed out that the rate of heat transfer increases 

with an increase in unsteady parameter and 

decreases with an increase in non-uniform heat 

generation parameters
** ,BA . Also, the heat 

transfer rate is low in VP comparing with UP with 

an increase of heat generation parameters. 

Moreover, the heat transfer rate for time-dependent 

heat generation parameter 0* B  decreases very 

fastly than in space dependent heat generation 

parameter 0* A . The positive value of heat 

transfer rate shows that the heat is transferring from 

plate to the fluid i.e. cooling of the plate occurs. 

Thus it can be concluded that the heat sink 

parameters )0,( ** BA can be effectively used 

for the fast cooling of the plate, as expected. It is 
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pointed out that the unsteady term makes to cool the 

plate faster. 

The impact of physical parameters 



 ,,,, *

Re

*

M
on the skin friction co-efficient 

)0(''f  and the wall temperature gradient )0('  is 

given in Table 2. The skin friction co-efficient is 

governed by the slope of the fluid velocity at the 

wall. As the fluid velocity increases, the slope of 

the velocity profile also increases, which tends to 

increase the skin friction co-efficient. Thus, skin 

friction increases with increase in ε, λ, whereas 

decreases with increase in M,, Re
* *


 . Also, 

the rate of heat transfer enhances with A, λ, but it 

decreases with increase in M,,, Re
* *


 . It is 

noted that from the values of UP, VP for each 

parameter, VP has more tendency to control the 

fluid velocity than UP. Thus, the study of variable 

permeability (VP) is more important in fluid flow 

through porous media. 

 

Table 2 Skin friction and wall temperature gradient for different values of pertinent parameters 

)05.0**,,72.0(Pr  BA  
      UP VP 

 A 
2Re

Gr  M 
Re

*


  

*  
ε 

 
   

      )0(''f  )0('  )0(''f  )0('  

0 0.1 0.1 0.1 0.5 0.1 -1.182891 0.796237 -1.372596 0.781352 

     0.5 -1.178497 0.635081 -1.368657 0.622924 

1 0.1 0.1 0.1 0.5 0.1 -1.470428 1.063873 -1.637654 1.055938 

     0.5 -1.467828 0.862374 -1.635273 0.855915 

0 0.1 0.1 0.1 1.0 0.1 -1.311183 0.780905 -1.664145 0.753913 

    2.0  -1.538455 0.754640 -2.149738 0.711683 

1 0.1 0.1 0.1 1.0 0.1 -1.578446 1.056766 -1.895666 1.042267 

    2.0  -1.775346 1.044597 -2.338814 1.021148 

0 0.1 0.1 0.5 0.5 0.1 -1.338582 0.763102 -1.469628 0.757295 

   1.0   -1.511511 0.728565 -1.580282 0.731771 

1 0.1 0.1 0.5 0.5 0.1 -1.599271 1.051072 -1.717523 1.047347 

   1.0   -1.747268 1.037452 -1.811530 1.037902 

0 0.1 0.5 0.1 0.5 0.1 -1.338582 0.763102 -1.514629 0.749923 

  1.0    -1.511511 0.728565 -1.674176 0.717152 

1 0.1 0.5 0.1 0.5 0.1 -1.599271 1.051072 -1.757029 1.044068 

  1.0    -1.747268 1.037452 -1.895335 1.031365 

0 0.5 0.1 0.1 0.5 0.1 -0.998171 0.838582 -1.199267 0.823686 

 1.0     -0.788033 0.875244 -1.002071 0.859801 

1 0.5 0.1 0.1 0.5 0.1 -1.320863 1.080417 -1.495977 1.071941 

 1.0     -1.140954 1.098823 -1.325673 1.089693 

 
 

5. CONCLUSION 

In this paper, we have investigated numerically the 

effect of non-uniform heat generation on unsteady 

MHD boundary layer flow of an incompressible 

viscous fluid and heat transfer over a vertical 

surface embedded in the porous medium with 

variable porosity and variable thermal conductivity. 

From the present investigation the following 

conclusions may be drawn: 

1. An increase in the unsteady parameter is to 

decrease the thickness of the momentum and 

thermal boundary layers for all the governing 

parameters.  

2. The velocity profile decreases with an increase 

in the values of magnetic parameter M, inertial 

parameter and the porous parameter, whereas 

reverse trend is seen with increasing the 

buoyancy parameter λ. Also, the temperature 

profile increases with an increase in the values 

of magnetic parameter, inertial parameter, 

variable thermal conductivity parameter, non-

uniform heat source parameters whereas it 

decreases with an increase in buoyancy 

parameter, Prandtl number, non-uniform heat 

sink parameters. 

3. The value of the local skin-friction coefficient 

increases with increase in buoyancy parameter 

whereas reverse effect is seen by increasing 
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magnetic parameter, the inertial parameter and 

the porous parameter. Moreover, the rate of heat 

transfer decreases with an increase in magnetic, 

thermal conductivity, inertial, porous and non-

uniform heat source parameters.  

4. The rate of heat transfer increases with an 

increase in the unsteady parameter A, the 

buoyancy parameter, non-uniform heat sink 

parameters 0, ** BA . Thus fast cooling of the 

plate can be achieved by implementing these 

effects. 

5. Variable permeability has more tendency to 

control the fluid velocity than by applying 

uniform permeability in the applications. 
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