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ABSTRACT 

In this paper, we have investigated theoretically the effect of Soret parameter on the onset of double diffusive 

rotating anisotropic convection in a horizontal sparsely packed porous layer using linear stability theory 

which is based on the usual normal mode technique. The Brinkman model that includes the Coriolis term is 

employed for the momentum equation. The effect of anisotropy parameters, Soret parameter, solute Rayleigh 

number, Taylor number, Lewis number, Darcy and Darcy Prandtl number on stationary and oscillatory 

convection is shown graphically.  
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NOMENCLATURE 

 
 

a      wave number 

c      specific heat of solid 

p
c    specific heat of fluid at constant pressure 

d      height of the porous layer 

1D    anisotropic thermal diffusion tensor,   

        1 1 1x y zD D D ii jj kk  

11D   soret coefficient 

2D    solute Diffusivity 

Da   Modified Darcy number, 
2

e Z fK d   

g     gravitational acceleration, (0, 0,−g) 

K     inverse anisotropic permeability tensor,  

       
1 1 1

x y zK K K
  

 ii jj kk  

,l m    horizontal wavenumbers 

Le     Lewis number, 
1 2z

D D  

p       pressure 

DPr    Darcy-Prandtl number, 
2

1z zd K D  

q        velocity vector,  u,v,w  

TR     thermal Rayleigh number,  

         1Δ zT zg TdK D   

SR      solute Rayleigh number,    

          Δ 1g SdK DS z z   

 

      porosity 

0    reference density  

      thermal anisotropy parameter, 1 1x zD D  

f    fluid viscosity 

e     effective viscosity 

       kinematic viscosity 

      dimensionless amplitude of temperature  

          perturbation 

      growth rate 

Ω     angular velocity of rotation,  0, 0,  

       mechanical anisotropy parameter, x zK K  

       normalized porosity,    

      dimensionless amplitude of  

          concentration perturbation 

       stream function 

Other symbols 

2

h  

2 2

2 2
x y

 


 
 

2
  

2
2

2h
z


 


 

Subscripts 

b  basic state 
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S        solute concentration 

Sr      soret parameter, 11 1D DS Tz   

t         time 

T       temperature 

Ta     Taylor number,  22 K Z   

S     salinity difference between the walls 

T    temperature difference between the  

          walls                            

, ,x y z         space coordinates 

Greek symbols 

T    thermal expansion coefficient 

S     solute expansion coefficient 

      ratio of specific heat, 
( )

( )

c m

c p f




 

 

c  critical 

f  fluid 

h  horizontal 

s  solid 

m  porous medium 

0  reference value 

Superscripts 

  dimensionless quantity 

' perturbed quantity 

osc  oscillatory state 

st  stationary state 

 

 

 

1. INTRODUCTION 

A double diffusive process is one that is driven by 

the presence of two different substances that diffuse 

at different rates.  Double diffusion was first 

explored because of its application to oceanic 

phenomena.  In the ocean, the density of water is 

governed primarily by temperature and salinity. The 

applications of the present study has recently 

increased in view of its potential occurrence in 

nature and wide range of applications such as high-

quality crystal production, liquid gas storage, 

migration of moisture in fibrous insulation, 

transport of contaminants in saturated soil, 

solidification of molten alloys, and geothermally 

heated lakes and magmas, underground disposal of 

nuclear wastes, liquid re-injection, electro-chemical 

and drying processes. 

A comprehensive review of the literature 

concerning double diffusive natural convection in a 

fluid-saturated porous medium may be found in the 

book by Nield and Bejan (2006). Useful review 

articles on double diffusive convection in porous 

media include those by Trevisan and Bejan (1999), 

Mojtabi and Charrier-Mojtabi (2005) and Mamou 

(2002), Vafai(2005) and Vadasz(2008), Ingham and 

Pop(2005). 

The onset of double diffusive convection in a 

horizontal porous layer has been investigated by 

Rudraiah et al. (1982) using a weak non-linear 

theory. Finite amplitude double diffusive 

convection near the threshold of both stationary and 

oscillatory instabilities in a binary mixture was 

investigated by Brand and Steinberg (1983).The 

linear stability analysis of the thermosolutal 

convection in a sparsely packed porous layer was 

made by Poulikakos (1986) using the Darcy-

Brinkman model. Small amplitude nonlinear 

solutions in the form of standing and traveling 

waves and the transition to finite amplitude 

convection, as predicted by bifurcation theory, were 

studied by Knobloch (1986). The double diffusive 

convection in porous media in the presence of Soret 

and Dufour coefficients has been analyzed by 

Rudraiah and Malashetty (1986).  

Murray and Chen (1989) have extended the linear 

stability theory, taking into account effects of 

temperature-dependent viscosity and volumetric 

expansion coefficients and nonlinear basic salinity 

profile. Double diffusive fingering convection in a 

porous medium with horizontally periodic boundary 

conditions was studied by Chen and Chen (1993). 

Malashetty (1993) made a linear stability analysis 

to determine the effects of anisotropic thermo 

convective currents on the double diffusive 

convection in a sparsely packed porous medium. 

Straughan and Hutter (1999) have investigated the 

double diffusive convection with Soret effect in a 

porous layer using Darcy-Brinkman model and 

derived a priori bounds. An analytical and 

numerical study of double diffusive convection with 

parallel flow in a horizontal sparsely packed porous 

layer under the influence of constant heat and mass 

flux was performed using a Brinkman model by 

Amahmid et al. (1999).  

Bahloul et al. (2003) have carried out an analytical 

and numerical study of the double diffusive 

convection in a shallow horizontal porous layer 

under the influence of Soret effect. Hill (2005) 

performed linear and nonlinear stability analyses of 

double diffusive convection in a fluid saturated 

porous layer with a concentration based internal 

heat source using Darcy’s law. Double diffusive 

natural convection within a multilayer anisotropic 

porous medium is studied numerically and 

analytically by Bennacer et al. (2005). Mansour et 

al. (2006) have investigated the multiplicity of 

solutions induced by thermosolutal convection in a 

square porous cavity heated from below and 

subjected to horizontal concentration gradient in the 

presence of Soret effect.  

There are only few studies available on double 

diffusive convection in the presence of rotation. 

Chakrabarti and Gupta (1981) have analyzed the 

nonlinear thermohaline convection in a rotating 

porous medium. The effect of rotation on linear and 
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non-linear double diffusive convection in a sparsely 

packed porous medium was studied by Rudraiah et 

al. (1986). 

Anisotropy is generally a consequence of 

preferential orientation or asymmetric geometry of 

porous matrix or fibers and is in fact encountered in 

numerous systems in industry and nature. 

Anisotropy is particularly important in a geological 

context, since sedimentary rocks generally have a 

layered structure; the permeability in the vertical 

direction is often much less than in the horizontal 

direction. The review of research on convective 

flow through anisotropic porous media has been 

well documented by McKibbin (1992) and 

Storesletten (2004). Castinel and Combarnous 

(1974) have conducted an experimental and 

theoretical investigation on the Rayleigh-Benard 

convection in an anisotropic porous medium. 

Epherre (1977) extended the stability analysis to a 

porous medium with anisotropy in thermal 

diffusivity also.  

Recently many authors have studied the effect of 

anisotropy and/or rotation on the onset of 

convection in a horizontal porous layer (see e.g. 

Govender; 2007, Malashetty and Swamy; 2007). 

There appears to be only couple of studies available 

on the double diffusive convection in an anisotropic 

porous medium with rotation ( Patil et al., 1989) 

and without rotation (Tyvand; 1980).  

Recently Gaikwad and Kamble  (2012) have 

investigated the Soret effect on double diffusive 

convection in a horizontal sparsely packed porous 

layer. Rani and Reddy (2013) have studied the 

Soret and Dufour Effects on Transient Double 

Diffusive Free Convection of Couple-stress Fluid 

past a Vertical Cylinder. The effect of rotation on 

the onset of double diffusive convection in a 

sparsely packed anisotropic porous layer is studied 

by Malashetty and Begum (2011). A very little 

attention has been devoted to the study of double 

diffusive convection in rotating porous medium 

including the mechanical and thermal anisotropic 

effects in presence of Soret effect. Therefore, the 

objective of the present study is to investigate the 

combined effect of rotation and anisotropy in 

presence of Soret effect on the double diffusive 

convection in a horizontal sparsely packed porous 

layer using linear stability analyses.  

2.  GOVERNING EQUATIONS 

Consider a horizontal  sparsely packed  anisotropic 

porous layer, saturated with Boussinesq fluid of 

infinite horizontal extent confined between parallel, 

stress-free planes 0z    and z d  subject to 

rotation and maintained at constant temperatures 

0T T   and 0T with solute concentration 

0S S   and 0S  respectively. A Cartesian frame 

of reference is chosen with x -and y -axes at the 

lower boundary plane and z -axis directed 

vertically upwards in the gravity field. The axis of 

rotation is assumed to coincide with the z -axis 

with a constant angular velocity  0,0, Ω . The 

Darcy-Brinkman model that includes the Coriolis 

term is used for the momentum equation. The 

velocities are assumed to be small so that the 

advective and Forchheimer inertia effects are 

ignored. The Boussinesq approximation, which 

states that the variation in density is negligible 

every where in the conservations except in the 

buoyancy term, is assumed to hold. With these 

assumptions the basic governing equations are 

. 0 (1) q

0

2

1 2

(2)

f

e

t

p

 
 

 


   



    

 
 
 

Ω K

g

q
q q

        q

  1. ( ) (3)
T

T D T
t




    


q

  2 2

2 11. (4)
S

S D S D T
t




     


q

0 0 0(1 ( ) ( )) (5)T ST T S S       

 The basic state of the fluid is assumed to be 

quiescent. The quantities of the basic state are given 

by  

 

(0, 0, 0), ( ), ( ),

, ( )

b b b

b b

p p z T T z

S S z z 

  

 

q
  (6)                                                                             

which satisfy the equations                                      
2 2

2 2
, 0, 0,b b

b

d Tdp d Sbg
dz dz dz

   

0 0 0(1 ( ) ( ))b T b S bT T S S             (7)                                                                                                                     

On the basic state we superpose small perturbations 

around the basic solutions in the form 

, , ,

,

b b b

b b

T T T S S S

p p p   

       

    

q q q
        (8)  

where the primes indicate  perturbations. 

Substituting  Eq. (8) into Eqs. (1) to (5) and using 

the basic state Eqs. (7) and transformations 

     

    

   

* * * * 2

1

* * *

1

, , , , , ' / ,

, , , , ,

' , '

z

z

x y z x y z d t t d D

u v w D d u v w

T T T S S S



 

    

   

   

                                                                           (9) 

 to render the equations dimensionless we 

obtain(after dropping the asterisks for simplicity  

 

2
1 12 4 2

2

2

2

1 1 2

1 1 2 2 2

Da h
Pr t zD

Ta

z

Da

Pr tD

Da R T R ST Sh h
Pr tD

w






 
     

 







  




      




 
 
 

 
 
 
  
  
  

 
 
 

 

                                                                         (10) 
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2
2

2
0h T w

t z


 
      

 

  
  

  
q       (11) 

2 21

S

RTS w Sr T
t Le R



      



 
  

q       (12) 

Where 2
1Pr d K DD z z , the Darcy-Prandtl 

number, 2Da K de Z f   , the modified Darcy 

number,  22Ta K Z   , the Taylor number, 

,11 1Sr D DS Tz   the Soret parameter 

Δ 1R g T d K DT T z z  , the thermal Rayleigh 

number,  Δ 1R g SdK DS S z z  , the solute Rayleigh 

number, 1 2Le D Dz , the Lewis number, 

K Kx z , the mechanical anisotropy 

parameter, 1 1D Dx z , the  thermal anisotropy 

parameter,    , normalized porosity.  The 

boundary conditions in only the z -direction are 

required to solving Eqs. (10) to (12) and are given 

by 

2

2
0 0 (13)

w
w T S at z

z


    


 

3.   LINEAR STABILITY ANALYSIS 

In this section we predict the thresholds of both ¸ 

stationary and oscillatory convections using linear 

theory. The Eigen value problem defined by Eqs. 

(10) to (12) subject to the boundary conditions (13) 

is solved using the time-dependent periodic 

disturbances in a horizontal plane. Assuming that 

the amplitudes of the perturbations are very small, 

we write           

 
 
 

 

W zw

T z exp i lx my t

S z

 



  

  
            

      (14) 

where ,l m  are horizontal wavenumbers and   is 

the growth rate. Infinitesimal perturbations of the 

rest state may either damp or grow depending on 

the value of the parameter  . Substituting  Eq. (14) 

into the linearized version of Eqs. (10) to (12) we 

obtain 

 

 

 

 

 

2 2

2

2
2 2 2 2

2 2

2 2

2 2

1

1

1

D

D

D

S T

D a
Pr

Ta D

D a Da D aw

D a Da
Pr

D a Da
Pr

R a R a













 

 



  

  

  




  
  
  
  
  

  
  
  
  

  
  
  
 
 

   

                                                                             (15)  

 2 2
0 (16)D a W      

 
                          

 

 2 2 2 21
( )D a W B D a

Le
      
 
  

                                                             (17) 

Where,
T

S

R
B Sr

R
 , D d dz  and 

2 2 2a l m  .  

We assume the solutions of Eqs. (15) to (17) 

satisfying the boundary conditions (13) in the form 

 

 

 

0

0

0

Sin ,( 1, 2, 3......)

W z W

z n z n

z

   



   
   
   

     

(18) 

The most unstable mode corresponds to 

1n  (fundamental mode). Therefore substituting 

Eq. (18) with 1n   into Eqs. (15) to (17), we 

obtain a matrix equation 
2 2

11 0
2

2 0

2 2 1
0

0

1 0 0

01

T SA a R a R W

B Le

  

  




  

 

     
     
           

(19)  

For brevity 
2 2

,11 1,A    and 
2
2 are not mentioned 

here.  The condition of nontrivial solution of above 

system of homogeneous linear Eqs (19) yields the 

expression for thermal Rayleigh number in the form      

 
  

  

 

2 2

2
2

1
1 2

2 1 2

2

21 2

2

1 2

1

D

D

T

S

Da
Pr

Ta

Pr Da

Le
R

aLe Sr

R a

Le Sr


 




 


   

 

 











 

 

 
  

 

 

   
   
    
  
  

   
     

 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                             (20) 

3.1 Stationary  State 

If   is real, then marginal stability occurs when 

0   (i.e. 0r i   ). Then the Rayleigh 

number 
St

TR   for the onset of stationary convection, 

in the form 
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 
 

 

 

  

 
  

2 2 1

2

2
2 2

2

2

1 2 2

2 2

2 2

2

1

.
1

St

T

S

a

a
R a Da

a SrLe

Ta

a Da

a
R Le

SrLe a

 

 




 

 







 


 




 




 

 
 
 
 
 
 
 
 
 

  

 (21)  

In the absence of Soret effect i.e., 0Sr   Eq. (21) 

gives  

 
 

 

 
 

2
2

2 2 2

2 2

2
2

2 2

2 2

2 2

1

.

St

T

S

a a Da

a
R Ta

a

a Da

a
R Le

a





 






 



  






 





  
  
  
 
 
 
  

 

                                                                             (22) 

The minimum value of the Rayleigh number 
St
TR  

occurs at the critical wavenumber 
St

c
a a  . In the 

limit as 0Da   i.e., for a densely packed porous 

medium Eq. (22) reduces to  

 
2

2 2 2 2

2

2 2

2 2
.

St

T

S

a a Ta

R
a

a
R Le

a


   



 



  








  
  
   

 
 
 

          

                                                                             (23) 

This is exactly the one given by Malashatty and 

Heera (2008). When 0Da   and 0Ta , i.e. for 

a densely packed porous medium in the absence of 

rotation, Eq. (23) reduces to 
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                                                                             (24) 

given by Malashatty and Swamy (2009). Further, 

for an isotropic porous media, that is when  

1   , Eq. (22) gives 

 
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4 2

2 2
,

1
St S
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M RTa
R
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              (25) 

Where 
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, 

2
2

2

a



 , 

1

Le
  , 

which is the one obtained by Rudraiah et al. (1986). 

3.2 Oscilatory State 

We now set ii   in Eq. (20) and clear the 

complex quantities from the denominator, to obtain 

 1 2T iR i                                             (26)  

 Since TR  is a physical quantity, it must be real. 

Hence, from Eq. (26) it follows that either 0i   

(steady onset) or 2Δ 0  ( 0i  , oscillatory 

onset). 

For oscillatory onset 2Δ 0  ( 0i  ) and this 

gives a dispersion relation of the form (on dropping 

the subscript i) 

   
2

2 2

0 1 2 0a a a                                (27) 

for simplicity the coefficients 0 1,a a  and 2a  are 

not mentioned here. Now Eq. (26) with 2Δ 0 , 

gives  
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       (28) 

4. RESULT AND DISCUSSION 

The Soret effect on the onset of double-diffusive 

rotating anisotropic convection in a horizontal 

sparsely packed porous layer is investigated 

theoretically using the linear stability theory.  The 

variation of stationary and oscillatory curves in the 

TR a  plane for various parameter values are as 

shown in Figs.(1a to 4d). We fixed the values for 

the parameters except the varying parameter.  

Figs (1a to 1d) and (3a to 3d) shows that the 

stationary and oscillatory curves respectively for 

different values of , , Ta   and Da  for fixed 

values of other parameters. We observed from these 

figures that the convection sets in as oscillatory 

mode prior to the stationary mode. 
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From Figs. 1a and 3a, it can be observed that the 

critical value of the Rayleigh number increases with 
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the increasing   for both oscillatory and stationary 

convection. Thus   has stabilizing effect on 

stationary and oscillatory convection. Figs. 1b and 

3b indicates the effect of thermal anisotropy 

parameter   on both the stationary and oscillatory 

convection for the fixed values of other parameters. 

It is observed that critical value of the Rayleigh 

number for stationary and oscillatory mode 

increases with increasing  , indicating that the 

effect of   is to inhibit the onset of stationary and 

oscillatory convection. Figs. 1c and 3c depicts the 

effect of Taylor number  Ta  on the both the 

stationary and oscillatory curves. We find that the 

effect of increasing  Ta  is to increase the critical 

value of the Rayleigh number for stationary and 

oscillatory modes and the corresponding 

wavenumber. Thus the Taylor number  Ta  has a 

stabilizing effect on the double diffusive convection 

in a horizontal sparsely packed anisotropic porous 

medium.  Figs. 1d and 3d present the effect of 

Darcy number Da  on both the curves. We find that 

critical value of the stationary Rayleigh number 

increases with  Da , indicating that the effect of 

Darcy number  Da  is to inhibit the onset of 

stationary convection. Whereas for the oscillatory 

convection, the critical value of oscillatory 

Rayleigh number decreases with increasing  Da , 

and with further increase in the value of Da , the 

critical Rayleigh number increases. Thus Da  has 

dual effect on oscillatory convection. 
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In Figs. 2b and 4b the marginal and oscillatory 

curves for different values of Lewis number Le are 

drawn. It is observed that with the increase of Le 

the critical values of Rayleigh number and the 

corresponding wavenumber for oscillatory mode 

decreases while those for stationary mode increases. 

Therefore, the effect of Le is to advance the onset of 

oscillatory convection while its effect is to inhibit 

the stationary convection. The marginal and 

oscillatory curves for different values of Darcy-

Prandtl number DPr  are presented in Figs.2c and 

4c, from these figures it is evident that for small and 

moderate values of DPr  the critical value of 

oscillatory Rayleigh number decreases with the 

increase of DPr , however this trend is reversed for 

large values of DPr . Figures. 2d and 4d indicates 

the effect of Soret parameter Sr  on the both the 

stationary and oscillatory modes. It is observed that 

as Sr  increases positively, the critical values of 

Rayleigh number and the corresponding 

wavenumber for oscillatory mode increase while as 

Sr  increases negatively, those decrease. Whereas 

the effect is reversed for the stationary mode. Thus 

Soret parameter has stabilizing effect on oscillatory 

convection and destabilizing effect on stationary 

convection.  

The detailed behavior of stationary and oscillatory 

critical Rayleigh number with respect to the Taylor 

number is analyzed in the TcR Ta  plane through 

Figs. (5a to 5f) and (6a to 6f) respectively. We 

observe from these figures that the critical Rayleigh 

number increases with the increase of  Ta , 

indicating that the effect of rotation is to inhibit the 

onset of thermal convection and it is in agreement 

with the corresponding problem of isotropic and 

pure fluid layer. 
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In Figs. 5a and 6a, we display the variation of 

stationary and oscillatory critical Rayleigh number 

TcR  with Taylor number  Ta  for different values 

of mechanical anisotropy parameter   for the fixed 

values of other parameters. It is important to note 

that TcR  decreases with the increase of   for small 

values of  Ta , and for large value of  Ta , the 

critical Rayleigh number increases. Thus the 

mechanical anisotropy parameter   has dual effect 

on oscillatory and stationary convection. Figures. 

5b and 6b indicates the variation of TcR  with  Ta  

for different values of thermal anisotropy 

parameter  . It is observed that the critical 

Rayleigh number TcR  increases with the increase 

of   indicating that the effect of thermal 

anisotropy parameter is to inhibit the onset of 

stationary and oscillatory convection. 
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Fig. 6a. Variation of oscillatory critical curves 

for different values of   

Figures. 5c and 6c presents the variation of TcR  

with  Ta  for different values of Darcy 

number Da . We find that the critical Rayleigh 

number TcR  increases with the increase of Da  for 

small values of  Ta , and for large value of  Ta , 

the critical Rayleigh number decreases. Thus Da  

has dual effect on oscillatory and stationary 

convection.  The variation of TcR  with  Ta  for 

different values of solute Rayleigh number SR  on 

the onset criteria is shown in Figs. 5d and 6d. We 

observe from these figures that TcR  increases with 

the increasing SR . Thus the effect of SR  is to 

inhibit the onset of convection for both stationary 

and oscillatory modes. In Figs. 5e and 6e, the 

variation of TcR  with  Ta  for different values of 

Lewis number Le  is shown for the fixed values of 

other parameters. It is observed that TcR , increases 

with the increase of Le , for the stationary 

convection while decreases for the oscillatory 

convection, indicating that Le  has stabilizing effect 

on stationary convection while destabilizing effect 

on oscillatory convection. 
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Fig. 6 b
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Fig. 6b. Variation of oscillatory critical curves 

for different values of   
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Fig. 6 c
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Fig. 6c. Variation of oscillatory critical curves 

for different values of Da  
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Fig. 6d. Variation of oscillatory critical curves 

for different values of SR  
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Fig. 6e. Variation of oscillatory critical curves 

for different values of Le  
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Fig. 6f. Variation of oscillatory critical curves for 

different values of Sr  

The variation of TcR  with  Ta  for different values 

of Soret parameter is presented in the Figs. 5f and 

6f.  We find that as Sr  increases positively, the 

critical values of Rayleigh number and the 

corresponding wavenumber decrease for stationary 

mode while as Sr  increases negatively, those 

increase. And the effect of Sr  is reversed for 

oscillatory mode. Thus positive Sr  has 

destabilizing effect for stationary mode and 

stabilizing effect for oscillatory mode. 

5.  CONCLUSIONS 

The effect of rotation on the onset of double-

diffusive convection in a horizontal sparsely packed 

anisotropic porous layer, in the presence of Soret 

effect is investigated theoretically using the linear 

stability theory. The usual normal mode technique 

is used to solve the linear problem.  The 

applications of the present study has recently 

increased in view of its potential occurrence in 

nature and wide range of applications such as high-

quality crystal production, liquid gas storage, 

migration of moisture in fibrous insulation, 

transport of contaminants in saturated soil, 

solidification of molten alloys, and geothermally 

heated lakes and magmas, underground disposal of 

nuclear wastes, liquid re-injection, electro-chemical 

and drying processes 

Finally, from the results we conclude that the 

mechanical anisotropy parameter   has stabilizing 

effect on stationary and oscillatory. However the 

convection sets in as oscillatory mode prior to the 

stationary mode. The effect of thermal anisotropy 

parameter   is to inhibit the onset of stationary and 

oscillatory convection.  The Taylor number  Ta  has 

a stabilizing effect on the double diffusive 

convection in sparsely packed anisotropic porous 

medium. The effect of Darcy number Da  is to 

inhibit the on the onset of stationary convection 

while it has dual effect on oscillatory convection.  

The  effect of solute  Rayleigh number is to delay 
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both  stationary and oscillatory  convection. And 

the effect of Lewis number is to delay the onset of 

stationary convection while it advances the 

oscillatory convection.  The Darcy Prandtl DPr  has 

a dual effect on the oscillatory mode. The Soret 

parameter has stabilizing effect on oscillatory 

convection and destabilizing effect on stationary 

convection. 
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