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ABSTRACT 

The present study is devoted to investigate the effects of Soret and Dufour on the mixed convection flow, heat 

and mass transfer over a stretching sheet in the presence of viscous dissipation, Ohmic heating, thermal 

radiation in porous medium. Numerical solutions for the coupled governing equations are obtained  by using 

the fifth-order Runge-Kutta-Fehlberg method with shooting technique. Important features of flow, heat and 

mass transfer characteristics for different values of the physical parameters are analyzed and discussed.  

Numerical results reveal that the magnetic field and inertia coefficient reduce the skin friction but reverse 

effects are seen on local Nusselt number. 

 

Keywords: Magnetohydrodynamics, Thermal radiation, Stretching sheet, Dufour and Soret effect, Porous 

medium,Convection. 

NOMENCLATURE 

A0 stretching parameters on temperature   

A1 stretching parameters on concentration 

b stretching parameter 

B


        transverse magnetic field 

0B         uniform transverse magnetic field 

C          concentration of the species 

Cf  local skin-friction coefficient 

Cp  specific heat at constant pressure 

Dm  mass diffusion coefficient 

Df  Dufour number 

E         electric field 

Ec         Eckert number 

E0             uniform electric field 

E1         local electromagnetic parameter 

F          empirical constant 

F*         local inertia-coefficient 

xGr       Grashof number 

g          acceleration due to gravity 

Ha       Hartmann number 

k          permeability of the porous medium 

k1         porous parameter 

K         mean absorption coefficient 

Nr      thermal radiation parameter 

Pr       Prandtl number 

qr       radiative heat flux 

xRe    local Reynolds number 

Sc      Schmidt number 

xSh    local Sherwood number 

Sr   Soret number 

T        temperature of the fluid 

Tw      stretching sheet temperature 

T      temperature far away from stretching sheet 

I   Tm    mean fluid tempetature 

     u       velocity of the fluid in the x-direction 

     v       velocity of the fluid in the y-direction 

     x    flow directional coordinate along the the 

stretching sheet 

     y       distance normal to the stretching sheet  

            non-dimensional temperature parameter 

           co-efficient of thermal expansion 

    similarity variable 

       kinematic viscosity 

      density of the fluid 

       thermal conductivity 

           solutal buoyany parameter 

γ      buoyancy parameter 
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1. INTRODUCTION 

Convective heat and mass  transfer phenomena in 

fluid saturated porous media over stretching surface 

has been of growing interest during the last several 

decades because of its great practical applications in 

many areas, such as continuous casting, drawing of 

plastic sheets, metal and polymer extrusion etc. 

Crane (1970) studied the steady two-dimensional 

boundary layer flow due to the stretching of a flat 

elastic sheet. Minto et al. (1998) have considered 

free convection flow on a vertical surface embedded 

in the porous medium.  Ali (2007) analyzed the 

effect of lateral mass flux on the natural convection 

boundary layer induced by a heated vertical plate 

embedded in a saturated porous medium with an 

exponential decaying heat generation.  

All the above mentioned investigations are confined 

to Darcy's law which states that the volume-

averaged velocity is proportional to the pressure 

gradient. The Darcy model is valid in a densely 

packed porous medium made up of uniform 

spherical particles under condition of low velocity 

and small porosity and permeability. However, for 

relatively high velocity flow situations, the Darcy 

law is inadequate to represent the flow behavior 

correctly since it does not account inertia effects of 

the porous medium. In such case, the pressure drop 

has a quadratic relationship with volumetric flow 

rate.  Several investigators have considered the non-

Darcian model to study convective heat transfer in a 

porous medium for Newtonian fluid. Vafai and Tien 

(1981) discussed the importance of inertia effects 

for high velocity flow in porous media. Bejan and 

Poulikakos (1984) used Forchheimer,s model to 

study natural convection in a porous medium.  The 

boundary effects can be included by adding viscous 

shear term and adding a non-linear term in the 

momentum equation to account for drag effects as 

noted by Nield and Bejan (2006). Rudraiah (1984) 

investigated convection in a porous medium by 

incorporating the boundary and inertia effects. 

Applying the boundary layer approach, some 

authors have reported analytical solution for the 

Brinkman Forchheimer momentum equation by 

Vafai and Kim (1989).  

A new dimension is added to the study of flow and 

heat transfer in a viscous fluid over a stretching 

surface in the presence of thermal radiation. The 

radiative effects have important applications in 

physics and engineering particularly in space 

technology and high temperature processes.  

Thermal radiation effect might play a significant 

role in controlling heat transfer process in polymer 

processing industry.  Bakier and Gorla (1996) 

investigated the effect of thermal radiation on 

mixed convection from horizontal surfaces in 

saturated porous media.The quality of the final 

product depends to a great extent on the heat 

controlling factors and the knowledge of radiative 

heat transfer in the system can perhaps lead to a 

desired product with a sought characteristic. Pal and 

Malashetty (2008) have presented similarity 

solutions of the boundary layer equations to analyze 

the effects of thermal radiation on stagnation point 

flow over a stretching sheet with internal heat 

generation or absorption.  Pal (2009) investigated 

the effect of thermal radiation on heat and mass 

transfer in two-dimensional stagnation point flow of 

an incompressible viscous fluid over a stretching 

sheet in the presence of buoyancy force. Recently, 

Pal and Mondal (2011) analyzed the influence of 

thermal radiation on hydromagnetic Darcy--

Forchheimer mixed convection flow past a 

stretching sheet embedded in a porous medium. 

Recently, Anjalidevi and Kayalvizhi (2013) 

investigated nonlinear hydromagnetic flow with 

radiation and heat source over a stretching surface 

with prescribed heat and mass flux embedded in a 

porous medium. 

Some specific industrial applications such as in 

polymer processing technology that involves 

cooling of continuous strip or filaments.  During the 

process, strips are sometimes stretched. The 

properties of the final product depend on the rate of 

cooling. The rate of cooling can  be controlled by 

the use of electrically conducting fluid with the 

application of the magnetic field.  Numerous 

attempts have been made to analyze the effects of 

transverse magnetic field on the boundary layer 

flow, heat and mass transfer characteristics of 

electrically conducting fluid.  Vajravelu and Rollins 

(1992) studied heat transfer in an electrically 

conducting fluid over a stretching surface by taking 

into account of magnetic field.  Mostafa et al. 

(2012) investigated the MHD flow and heat transfer 

of a micropolar fluid over a stretching surface with 

heat generation/absorption and slip velocity. 

It is well known that the heat transfer due to 

concentration gradient is called the Dufour effect 

(or diffusion-thermo) whereas the mass transfer 

caused by temperature gradient is called Soret effect 

(or thermal-diffusion). In other words, Soret effect 

is referred to the species differentiation developed 

in an initial homogeneous mixture submitted to a 

thermal gradient whereas  Dufour effect is referred 

to  heat flux produced by the concentration gradient. 

Alam et al. (2006) studied the Soret and Dufour 

effects on a steady MHD combined free-forced 

convective and mass transfer flow past a semi-

infinite vertical plate. Postelnicu (2004) discussed 

the influence of a magnetic field on heat and mass 

transfer by natural convection from a vertical 

surface in  porous media in the presence of Soret 

and Dufour effects. Pal and Chatterjee (2011) 

analyzed mixed convection magnetohydrodynamic 

heat and mass transfer past a stretching surface in a 

micropolar fluid--saturated porous medium  in the 

presence of Ohmic heating, Soret and Dufour 

effects. Reddy and Rao (2012) analyzed thermo-

diffusion and diffusion–thermo effects on 

convective heat and mass transfer through a porous 

medium in a circular cylindrical annulus with 

quadratic density temperature variation. Recently, 

Gangadha (2013) studied Soret and Dufour effects 

on hydro magnetic heat and mass transfer over a 

vertical plate with a convective surface boundary 

condition and chemical reaction.  

In all these works effect of electric field has been 

neglected which is one of the important parameters 

to alter the momentum and heat transfer 
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characteristics in a Newtonian boundary layer flow.  

Thus in view of the above investigations, authors 

envisage to analyzed the effects of thermal 

radiation, viscous dissipation and Ohmic heating on 

MHD non-Darcy mass diffusion of species over a 

continuous stretching sheet in the presence of 

variable electric and magnetic fields with Soret and 

Dufour effects.  Highly non-linear momentum, 

energy and mass-diffusion  equations are solved 

numerically using fifth-order Runge-Kutta- 

Fehlberg method with shooting technique by Na 

(1979). 

2. MATHEMATICAL 

FORMULATIONS 

We consider two-dimensional steady 

incompressible electrically conducting fluid flow 

over a continuous stretching sheet embedded in a 

porous medium in the presence of mass diffusion of 

species. The flow region is exposed under uniform 

transverse magnetic field )0,,0( 0BB 


 and 

variable electric field  ))(,0,0( 0 xEE 


since 

such imposition of variable electric and magnetic 

fields stabilizes the boundary layer flow. It is 

assumed that the flow is generated by stretching of 

an elastic boundary sheet from a slot by imposing 

two equal and opposite forces in such a way that 

velocity of the boundary sheet is of linear order of 

the flow direction (see Fig.1).  

 
Fig.1. Boundary layer over stretching sheet 

We know from Maxwell's equation that 

0.  B


and 0 E


. When magnetic field is not 

so strong then electric field and magnetic field obey 

Ohm's law )( BqEJ


   where J


is the Joule 

current,   is the magnetic permeability and q


is 

the fluid velocity. We assume that magnetic 

Reynolds number of the fluid is small so that 

induced magnetic field and Hall effect are 

neglected. The governing boundary layer equations 

under Boussinesq's approximation are 

(i) Conservation of mass 
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(iii) Energy Equation 
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(iv) Conservation of species 
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The boundary conditions for Eqs.. (1) to(4) are 

expressed as  
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where u and v are the velocity components in the x- 

and y-directions respectively;   is the kinematic 

viscosity,  C  is the concentration of  species in 

the free stream,  
wT  stands for stretching sheet 

temperature, 
T  is the temperature far away from 

the stretching sheet,  wC  stands for concentration 

at the wall and xExE  )(0   is a variable electric 

field and E is the constant electric parameter. In Eq. 

(2), fourth term on the r.h.s is added to include the 

inertial effects due to Forchheimer.  Fourth term on 

the r.h.s. of Eq. (3) is related to the thermal 

radiation term whereas the fifth term is the Dufour 

term. In Eq. (5), second term on the r.h.s. indicates 

Soret effects. To solve the governing boundary 

layer Eq. (2) to (4), the following similarity 

transformations are introduced as  

.,
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                             (6) 

The thermal radiation heat flux  rq is employed 

according to Rosseland approximation such that 

 

y

T

K
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where * and K are the Stefan-Boltzmann constant 

and the mean absorption coefficient, respectively. 

The fluid-phase temperature differences within the 

flow are assumed to be sufficient small so that 
4T may be expressed as a linear function of 

temperature. This is done by expanding 
4T in a 

Taylor series about the free stream temperature 

T and neglecting higher order terms to yield 
 

.34 434
  TTTT                                        (8)     

Substitution of Eqs. (6) and (7) into the governing 

Eqs. (2) to (4) and using the above relations we 

finally obtain a system of non-linear ordinary 

differential equations with appropriate boundary 

conditions 
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The boundary conditions (9)-(11) becomes 
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where 
2x

k
Dax 

 is the local Darcy number (Afify 

and Elgazery, 2013), 
kb

k


1
is the porous 

parameter, 
0B

b
Ha






  is the Hartmann number, 

bB

E
E

0

1 
is the local electric parameter, 

xDa

C
F b*  is 

the inertia-coefficient, 
2

Re x

xGr
  is the buoyancy or 

mixed convection parameter, 
xGr  is the local 

Grashof uumber and Rex is the local Reynolds 

number. 
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Pr   is the Prandtl number,   
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is the thermal radiation parameter,  
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 is the Dufour number. 
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 is the Soret number. 

The physical quantities of interest are the skin-

friction coefficient Cf ,  which is defined as  

2/2U
C w

f



                                                         (13) 

where wall sharing stress w  is given by 
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Using the non-dimensional variables (6), we get 

from Eqs. (13) and (14) as 
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The local Nusselt number which are defined as 
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where  
wq is the heat transfer from the sheet is 

given by 
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Using the non-dimensional variables (6),  we get 

from Eqs. (16) and (17) as 
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where 
w is the temperature excess ratio parameter. 

 

The physical quantity of interest is the local 

Sherwood number which are defined as 
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where mq  is the mass transfer which is defined by 
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Using the non-dimensional variables (6), we get 

from Eqs. (19) and (20) as 

 

)0('Re/
2/1

xxSh                                                (21) 

where 


)(
Re

xxUw

x 
  is the local Reynolds number 

3. NUMERICAL SOLUTIONS 

The coupled ordinary differential Eqs. (9) to (11) 

are of third-order in f and second-order in   and 

 , which are first  reduced to a system of seven 

simultaneous equations of first-order having seven 

unknowns. We adopt numerical method to solve the 

system of equations using fifth-order Runge-Kutta-

Fehlberg integration scheme with shooting 

technique. The value of  
 was selected to vary 

from 3 to 25 depending upon the physical 

parameters such  as magnetic parameter, Prandtl 

number, thermal radiation parameter and Schmidt 

number so that no numerical oscillations would 

occur. The coupled nonlinear boundary value 

problem has been reduced to a system of seven 

simultaneous equations of first-order for seven 

unknowns as follows: 
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and a prime denotes differentiation with respect to 

η. The boundary conditions now become 

.,0,0,

0,1,1,1,0

642

6421


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



asfff

atffff            (23) 

Since )0(),0( 53 ff  and  )0(7f  are not 

prescribed so we have to start with the initial guess 

value of 
205103 )0(,)0( sfsf  and 

307 )0( sf  . Let 21 ,  and 3  be the correct 

values of )0(),0( 53 ff   and )0(7f , respectively.  

The resultant system of seven ordinary differential 

equations is integrated using fifth-order Runge-

Kutta-Fehlberg method with shooting technique and 

denote the values of 
53 , ff  and 7f  at 

   by  

),,,( 3020103 sssf ,    ),,,( 3020105 sssf  

and ),,,( 3020107 sssf ,  respectively. Since 

53 , ff  and 7f  at   are clearly function 

of  21 , and 3 ,  they are expanded in Taylor 

series around 202101 , ss    and 303 s  

, respectively by retaining only the linear terms. The 

use of difference quotients is made for the 

derivatives appeared in these Taylor series 

expansions. Thus, after solving the system of Taylor 

series expansions for 
20221011 , ss    

and 3033 s   , we obtain the new estimates 

202021101011 , ssssss    and 

.303031 sss   Next the entire process is repeated 

starting with )0(,),0(,),0(),0( 52141121 fsfsff   

and  31s  as initial conditions. Iteration of the whole 

outlined process is repeated with the latest estimates 

of  21 ,  and 3   until prescribed boundary 

conditions are satisfied. Finally,   

)1(2)1(22)1(1)1(11 ,   nnnnnn ssssss 

  and  
)1(3)1(33   nnn sss  for  n=1,2,3,...  are 

obtained which seemed to be the most desired 

approximate initial values of  )0(),0( 53 ff   and  

)0(7f . In this way all the six initial conditions are 

determined. Now it is possible to solve the resultant 

system of seven simultaneous equations by fifth-

order Runge-Kutta-Fehlberg integration scheme so 

that velocity, temperature and concentration fields  

for a particular set of physical parameters can easily 

be obtained. The results are provided in the form of 

table and graphs.  

4. RESULTS AND DISCUSSION 

Numerical solutions of the governing 

Eqs. (9) to (11) subject to boundary 

conditions (12) are obtained using 

Runge-Kutta-Fehlberg with shooting 

technique.  The results are presented 

graphically in  Figs. 2 to 21 and the 

conclusions are drawn for velocity, 

temperature and concentration field for 

various physical quantities of interest that 

have significant effects.  Comparison of 

the present results of )0('  with those 

of Ishak et al. (2008) and Chen (1998) 

(see Table 1) in the absence of buoyancy 

force and magnetic field show a very 

good agreement. 

Figures 2 to 4 depict the velocity, temperature and 

concentration profiles for different values of Dufour 

and Soret numbers. It is observed that the velocity 

and temperature profiles decrease by decreasing the 

Dufour number 
fD (or increasing the Soret number 

rS ), whereas reverse effects are seen on the 

concentration profiles.  The effects of Soret and 

Dufour numbers are significant near the stretching 

sheet for all velocity, temperature and concentration 

profiles.  

Figures 5 to 8 represent the variations of velocity, 

temperature and concentration distributions in the 

boundary layer for various values of mixed 

convection parameter or thermal buoyancy 

parameter  . Here, the positive values of thermal 

buoyancy parameter   correspond to cooling of the 

plate. Also, as the buoyancy parameter   increases, 

the peak of the velocity distribution increases 

rapidly near the vertical plate which decays 

smoothly to the free stream velocity. Reverse trend 

is seen on the temperature and concentration 

distributions, i.e.,  the effect of increasing the 

thermal buoyancy parameter   decreases the 

temperature and concentration profiles in the 

boundary layer due to decrease in the thickness of 

the thermal and solutal boundary-layers.  

The solutal buoyancy parameter   defines the ratio 

of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity 

increases, and the peak value is more distinctive due 

to increase in the species of the solutal buoyancy 

parameter    as seen from Fig. 8. Further, it is 

observed that the velocity distribution attains a 

distinctive maximum value in the vicinity of the 

plate which ultimately decreases to the free stream 

value. From Figs. 9 and 10, it is observed that the 

temperature and concentration profiles decrease 
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with increasing the solutal buoyancy parameter  . 

Figures 11 and 12 depict the graph of non-

dimensional temperature and concentration 

profiles for different values of Eckert number.  

By analyzing the graph, it is revealed that the 

effect of Eckert number Ec is to increase the 

temperature distribution in the flow region. 

This is because heat energy is stored in the 

liquid due to the frictional heating, which 

causes the temperature to increase in the 

thermal boundary layer. Thus the effect of 

increasing Ec is to enhance the temperature at 

any point whereas reverse trend is seen on 

concentration profiles.  

The influence of thermal radiation parameter Nr on 

the tangential velocity is shown in Fig. 13. It is seen 

from this figure that increase in the thermal 

radiation parameter produces an increase in the 

tangential velocity of the flow. This is because large 

values of  Nr  correspond to increased  velocity 

profiles. The effects of radiation parameter Nr on 

temperature and concentration profiles are shown in 

Figs. 14 and 15. The effect of Nr is prominently 

seen throughout the boundary layer. From Fig. 14 it 

is observed that the effect of Nr is to increase the 

temperature distribution in the thermal boundary 

layer. This is due to the fact that increase in the 

value of Nr implies increasing of radiation in the 

thermal boundary layer and hence increases the 

value of temperature profile in the thermal 

boundary layer. Figure 15 depicts the effect of the 

thermal radiation parameter Nr on the concentration 

profiles. It is observed that an increase in the 

thermal radiation parameter Nr leads to decrease in 

the concentration profile. 

The graph of concentration profiles )(  for 

different values of Schmidt number Sc is plotted in 

Fig. 16. The analysis of the graph reveals that the 

effect of increasing the value of Schmidt number Sc 

is to decrease concentration distribution in the flow 

region. Physically, the increase of Sc means 

decrease of molecular diffusivity, which results in 

decrease in the thickness of the concentration 

boundary layer. Hence, the concentration of species 

is more for small values of Sc and lower for higher 

values of Schmidt number in the solutal boundary 

layer. 

The effect of magnetic field on the local skin 

friction coefficient, in terms of )0(''f  , is displayed 

in Fig. 17. It is observed that the local local skin 

friction coefficient decreases with increasing the 

Hartman number Ha, whereas no change is 

observed by increasing the Schmidt number Sc.  It 

is observed from Fig. 18 that the local Nusselt 

number, in terms of  )0(' increases with increase 

in the magnetic field strength and Schmidt number 

Sc.  

Figures 19 to 21 depict the effect of local inertia 

coefficient F  and Schmidt number Sc on the skin-

friction coefficient, local Nusselt number and local 

Sherwood number, respectively. From these figures, 

it is analyzed that the behavior of  )0('),0('' f  

and )0('  changes with increase in the values of 

F  and  Sc. Thus we observe that the local skin 

friction coefficient decreases with increasing the 

value of F . Further, the effect of increasing the 

value of Schmidt number Sc on the local Nusselt 

number is to increase its value and similar effect is 

seen on the Sherwood number which increases with 

increase in the value of F . The effect of Sc is 

prominently seen on Nusselt number and Sherwood 

number for all the values of F , i.e., local Nusselt 

number increases with increase in the value of 

Schmidt number and reverse effect is seen on the 

local Sherwood number. 

 
Fig. 2. Influence of Soret and Dufour parameters 

on the dimensionless velocity profiles. 

Table 1 Comparison of the local Nusselt number 

)0('  with  Ishak et al. (2008) and Chen (1998) 

for various values of Pr and 

1 1 0.

fHa D Sr F Nr Ec

k E Sc 

     

    

 

Pr Ishak 

et al. (2008)  
Chen 

(1998) 

Present 

Results 

1.0 1.3333 1.33334 1.333333 

3.0 2.5097 2.50997 2.509715 

10.0 4.7969 4.79689 4.796871 
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Fig. 3. Influence of Soret and Dufour parameters 

on the dimensionless temperature profiles. 

Fig. 4. Influence of Soret and Dufour parameters 

on the dimensionless concentration profiles. 

Fig. 5. Influence of the buoyancy parameters   

on the dimensionless velocity profile. 

Fig. 6. Influence of the buoyancy parameters   

on the dimensionless temperature profile. 

Fig. 7. Influence of the buoyancy parameters   

on the dimensionless concentration profile. 

Fig.8. Influence of the solutal buoyancy 

parameters   on the dimensionless velocity 

profile. 
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Fig. 9. Influence of the solutal buoyancy 

parameters   on the dimensionless temperature 

profile. 

 

Fig. 10. Influence of the solutal buoyancy 

parameters  on the dimensionless 

concentration profile. 

 

Fig. 11. Influence of the Eckert number Ec on 

the dimensionless temperature profile. 

Fig. 12. Influence of the Eckert number Ec on 

the dimensionless concentration profile. 

 

Fig. 13. Influence of the thermal radiation 

parameter Nr on the dimensionless velocity 

profile. 

 

Fig. 14. Influence of the thermal radiation 

parameter Nr on the dimensionless temperature 

profile. 
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Fig. 15. Influence of the thermal radiation 

parameter Nr on the dimensionless 

concentration profile. 

 

Fig. 16. Influence of the Schmidt number Sc on 

the dimensionless concentration profile. 

Fig. 17. Influence of Sc on skin friction 

coefficient for various values of Ha. 

 

Fig. 18. Influence of Sc on nusselt number for 

various values of Ha. 

 

Fig. 19. Influence of Sc  on skin friction 

coefficient for various values of F*. 

 

Fig. 20. Influence of S c on Nusselt number for 

various values of F*. 
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Fig. 21. Influence of S c on Sherwood number 

for various values of F*. 

5. CONCLUSION 

An analysis has been carried out to study non-Darcy 

boundary layer flow, heat and mass transfer 

characteristics in an incompressible electrically 

conducting fluid over a linear stretching sheet with 

transverse magnetic field, radiation, viscous 

dissipation, Ohmic heating in the presence of Soret 

and Dufour effects. The effects of various physical 

parameters like Schmidt number, Eckert number, 

Hartmann number, Soret and Dufour parameters on 

velocity, temperature, and concentration profiles are 

obtained. The following conclusions are drawn 

from the present study:  
 

(i) Increasing the porous parameter decreases the 

velocity distribution in the boundary layer. 
 

(ii) Temperature profiles are strongly influenced by 

the thermal radiation parameter i.e., temperature 

increases with increase in the thermal radiation 

parameter. 
 

(iii) Increase in solutal buoyancy parameter 

 increases the velocity distribution with formation 

of peak for higher values of solutal buoyancy 

parameter in the solutal boundary layer. 
 

(iv) Increasing thermal buoyancy parameter is to 

increase velocity profiles and decrease temperature 

and concentration profiles. 
 

(v) Skin-friction coefficient decreases with increase 

in the value of Hartmann number Ha whereas 

reverse effect is seen the local on Nusselt number. 
 

(vi) Inclusion of local inertia coefficient effect F* is 

to decrease local skin-friction coefficient and 

increases the local Sherwood number and the local 

Nusselt number.  
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