
 

 

 
 

Rayleigh-Taylor Instability at the Interface of Superposed 

Couple-Stress Casson Fluids Flow in Porous Medium 

under the Effect of a Magnetic Field 

B. M. Agoor
1†

 and  N. T. M. Eldabe
2 

1Department of Mathematics Faculty of Science Fayoum University, Fayoum, Egypt. 
2Department of Mathematics Faculty of Education, Ain Shams University, Cairo, Egypt. 

†Corresponding Author Email: bma00@fayoum.edu.eg 

(Received March 01, 2012; accepted December 10, 2001) 

ABSTRACT 

The Rayleigh-Taylor instability (RIT) at the interface of two superposed Couple-stress Casson fluids flowing 

in porous medium and in the presence of a uniform normal magnetic field is studied. The fluids have different 

densities. For mathematical simplicity, the stability analysis based on fully developed approximations is used. 

The maximum wave numbers and the corresponding maximum frequency are obtained. The Growth rate of 

Rayleigh-Taylor instability in the case of non-Newtonian Casson fluid with couple-stress through porous 

medium is discussed. The effects of physical parameters of the problem such as the permeability parameter, 

magnetic parameter, non-Newtonian Parameter and couple-stress parameter on the regions of stability are 

discussed numerically and illustrated graphically through a set of figures.  

 

Keywords: Casson equation, Non-Newtonian fluid, Porous medium, Permeability, Magnetic field, 

Micropolar fluid, Viscosity.  

                                                                 NOMENCLATURE 

max
G  ratio of growth rate     non-Newtonian Parameter.  

g gravitational  acceleration     bond number 

k  permeability parameter   Surface tension 

l  wave number    elevation of the interface 

M  magnetic parameter   couple stress parameter 
n frequency (growth rate )   plastic dynamic viscosity   

p pressure   coefficient of  viscosity 

py  yield stress   kinematic viscosity   

qi  velocity   density of the fluid 

T  characteristic time scale ij  stress tensor 

1. INTRODUCTION 

Chandrasekhar (1981) has discussed the instability 

of a plane interface between two incompressible 

viscous fluids with different densities, when the 

lighter one is accelerated into the heavier one. 

Bhatia (1974) studied the influence of the viscosity 

on stability of a plane interface separating two 

incompressible superposed conducting fluids of 

uniform density, when the whole system is stressed 

by a uniform Magnetic field. He has carried out the 

stability analysis for two highly viscous fluids of 
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equal kinematic Viscosity and different uniform 

densities. The Rayleigh-Taylor instability of two 

viscoelastic superposed Fluids has been studied by 

Sharma and Sharma (1978).  Kent (1966) 

investigated the effect of horizontal Magnetic field, 

which varies in vertical direction, on the stability of 

parallel flows. He has shown that the system is 

unstable under certain conditions, while in the 

absence of a magnetic field the System is known to 

be stable. In all above studies, the medium field has 

been considered non-porous. Sunil (2002) discussed 

the Rayleigh-Taylor instability of two superposed 

Couple-stress fluids of uniform Densities in a 

porous medium in the presence of a uniform 

horizontal magnetic field. Sunil has carried out the 

stability analysis for two highly viscous fluids of 

equal kinematic viscosity and equal Couple-stress 

Kinematic Viscosity. Rudraiah (2010) shown the 

effects of couple stress fluid on the control of 

Rayleigh-Taylor instability at the interface between 

dense fluids accelerated by a lighter fluid. He used 

approximations to derive the growth rate of 

Rayleigh-Taylor instability. Dash (1996) introduced 

the flow characteristics of Casson fluid in a tube 

filled with homogeneous porous medium, by 

employing Brinkman model to account Darcy 

resistance offered by porous medium. This analysis 

can model the pathological situation of blood flow 

when fatty plaques of cholesterol and Artery- 

clogging blood clots are formed in the lumen of the 

coronary artery. Two cases of permeability porous 

medium are considered. He studied the effect of 

permeability factor and yield stress of the fluid on 

shear stress distribution, wall shear stress, plug flow 

radius, flow rates and frictional Resistance . A. 

Mohamed and ELDabe (1978) discussed the 

electrohydrodynamic stability of a hollow jet under 

the influence of axial electric field. They show the 

relation between the electric field strength and the 

various parameters of the system.ElDabe (1988) 

studied the electro- hydrodynamic stability of two 

stratified power low liquids in couette flow under 

the influence of normal electric field. ElDabe 

(1988) investigated the electro hydrodynamic 

stability of two superposed elastic viscous liquids in 

plane couette flow. ElDabe (1989) has given the 

effect of tangential electric field on Rayleigh-Taylor 

instability. Elhefnawy (2001) investigated the 

nonlinear analysis of the electrohydrodynamic 

Rayleigh-Taylor instability of a cylindrical interface 

separating two conducting fluids of circular cross 

section in the absence of gravity. The main aim of 

this study is to generalize the work of Rudraiah 

(2010) to include the flow of non-Newtonian fluids 

through porous medium in the presence of external 

magnetic field and to discuss the effects of couple 

stress, normal Magnetic field, and Permeability 

parameter on the Rayleigh-Taylor instability of the 

Casson fluid flow in Porous medium.  

2. MATHEMATICAL 

FORMULATION 

Consider two fluids one above the other, the lower 

consists of thin film of an unperturbed thickness 2a 

filled with an incompressible non-Newtonian 

couple stress fluid of constant density 1    

bounded below by a rigid surface and above by 

another incompressible non-Newtonian couple 

stress  fluid of constant density 2  ( where 

1 2  )  with thickness d ( where 2a d ), the 

interface between them is at ay  . A magnetic 

field of strength B is applied perpendicular to the 

interface (in y-direction) see Fig.1. The basic 

equations governing the motion of an 

incompressible, non-Newtonian couple stress fluid 

through porous medium are  given by the following 

equations:                     

  The continuity equation  

0q                                                                     (1)                                                                                  

The momentum equation 

2[ ( ) ]

4 ( )

q
q q p q

t

q q J B
k

 


 


     



     


                      (2)               

where                                                    

[ ] ,

, ( ( ), ,0)

J E q B qe

B B j q u y v

     


  

                                    (3)                                   

( )ij   is the stress tensor containing the bi-

viscosity casson effect, Nakamura (1988). The bi-

viscosity model is constitutive equation of blood. It 

may be present as follows:   

2( ) ,
2

2( ) ,
2

py
eij c

ij py
eij c

c

  




  



 


 
  



                          (4)         

where  
ij ji

e e       and   
ij

e   is the (i, j)the.  

Components of the deformation rate given by, 

1
( ) ,

2

qq jieij
x xj j


 

 
                                           (5)                                                                                        

c
  is a critical value of   based on the Nakamura- 

Sawada model (1988), 


  is plastic dynamic 

viscosity of the Non-Newtonian fluid, 
y

p  is yield 
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stress of Slurry fluid. This model allows a relatively 

easy incorporation into the Navier-Stokes 

framework, as does the porous media formulation in 

Equation. (2). q   is the velocity,  p  is the pressure,  

  is the density of the fluid, t  is the time,   is the 

coefficient of  viscosity,  


 is the couple stress 

coefficient,  k


 is the permeability of porous 

medium,  B  is the magnetic  field,    is the 

electrical conductivity,  E  is the electric field 

strength, J  is the electric current density and 
e

  is 

the density of charge. According to the 

simplification assumptions in Rudraiah (2010)  we 

shall assume that the Strouhal number, S, which is 

the measure of local acceleration to the inertial 

acceleration, is 1
L

S
UT


  , whereU

L





 is the 

characteristic velocity,  





 is the kinematic 

viscosity, L





    is the characteristic length,  

is the surface tension,  ( )1 2g     , g is the 

gravitational  acceleration and   
3 2

T
a




   is the 

characteristic time scale. The assumption  1S    

enabled us to neglect the local acceleration term  

u

t




   also we can let   0

v

t





, also we can neglect 

the inertial acceleration term  ( )
u

v
y




  Comparing 

with the high viscous couple stress fluid.  The 

interface elevation,   , is assumed to be  Small 

compared with film thickness  2a  that is  1
a


 , 

These assumptions enabled us to use the creeping 

flow approximation, which allows us to neglect 

certain terms in the perturbation equation to obtain 

linear equations for the interface elevation. Under 

these assumptions Eq. (1) and Eq. (2), using Eq. (3) 

, Eq. (4) and Eq. (5) become: 

0
u v

x y

 
 

 
                                                            (6)                                                                                                                         

2

0 ( )
2

4
2

4

p d u

x dy

d u
u B u

dy k

 



 


   




  



                                    (7) 

0
p

v
y k


 


                                                       (8)                                           

According to Rudraiah (2010) the boundary 

conditions appropriate for the problem under study 

is the no-slip condition at the rigid surface:  

, 0u v at y a                                                (9) 

0
u

at y a
y


 


                                                   (10)  

2
0

2

u
at y a

y


 


                                              (11) 

2
,

2
p at y a

x


 


  


,                                  (12) 

,v u at y a
t x

  
  
 

                                      (13’) 

For linear case Eq. (13') reduces to                                  

,v at y a
t


 


                                           (13)                                                

Introducing the non- dimensional variables  

2 2
, , ,

2 2
, , , ,

2 2, ,

a a
v v u u p ap a

B a
t t x ax y ay M

a

k a k a

 
  

 

 

 


   




       





      



    



                       (14)   

Equation. (7) and Eq. (8) in dimensionless form 

become: 

4 2
(1 )

1
( )

D u D u

p
M u

k x

  


   



                                         (15) 

And 

1p
v

y k


 


                                                           (16) 

With the boundary conditions: 

, 0 1 ,

0 1 ,

2
0 1,

2

21
1 ,

2

1

u v at y

du
at y

dy

d u
at y

dy

p at y
x

v at y
t











  

 




  




   
 


  
 

                                   (17) 

Where    (couple stress coefficient),   k   

(permeability of the porous medium),  M  

(Magnetic parameter), 
2a




   is the Bond 
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number and   is the non-Newtonian Parameter. 

Solutions of Eq. (15) and Eq. (16), using boundary 

conditions Eq. (17)  is: 

1

2 3 4

( ) [( )( )]
1

Ay

Ay by by

k p
u y c e

kM x

c e c e c e
 

 
 

 

  

                       (18)                        

Where: 

1 1
( )( ) /

1

k p
c

kM x


  

 
    ,  

2 2
( )( ) /

1

k p
c

kM x

 
  

 
 ,     

3 3
( )( ) /

1

k p
c
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
  

 
, 

4 4
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1
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c
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 
  

 
  ,    

1

2 2 2

2 2 2
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bA e b e b e

A e b e b e

 

 



 
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2

2 2 2

2 2 2
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A b

A b b

Ae be be

bA e b e b e

A e b e b e




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
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3

2 2 2
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 

 


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4

2 2 2
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A A b
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A e A e b e

A e A e b e




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
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2 2 2 2

2 2 2 2

A A b b
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e e e e
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 

 
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2 2 2

1 1
{ ([ 4 ( 1)

2
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A k kM

k k k




 

 
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1 1

2 2 2

1 1
{ ([ 4 ( 1)

2
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b k kM

k k k




 

 

    

 

                  (19) 

By using Eq. (18) and Eq. (19), we can write:  

2 3 4

1( ) [( )( )]{ 1
1

}

Ay

Ay by by

k p
u y e

kM x

e e e
 

 
  

  

  
  
  

              (20) 

3. DISPERSION  RELATION: 

According to Rudraiah (2010), solving the 

continuity Eq. (6) by integrate it with respect to y   

from   1y     to  1y     we get:     

1 2

3 4

2

2

2
(1) ( )( ){ 1 ( ) sinh

1

( ) sinh }

k p
v A

kM Ax

b
b

  
  

 

 




   (21) 

Using the boundary conditions Eq. (17) and let   

ilx nte    , hence substituting in Eq. (21) we 

obtain the following dispersion relation: 

1 2

3 4

2 22
( )(1 )[1 ( ) sinh

1

( ) sinh ]

kl l
n A

kM A

b
b



 
  

 

 




        (22) 

Where l  the wave number and n is the frequency 

represents the growth rate of the interface as a 

function of couple stress parameters ( ) , the non-

Newtonian parameter ( ) , the magnetic Parameter 

( )M  and the permeability of the porous 

medium ( )k .In the absence of couple stress 

parameter (  ) the growth rate Eq. (22) takes the 

following form: 

2 22
( )(1 )

1b

kl l
n

kM 
 


                                       (23) 

 Which depends only on the magnetic 

parameter ( )M , the permeability of the porous 

medium ( )k , wave number ( )l and Bond 

number ( )   which is the reciprocal of surface 

tension.  

4. RESULTS AND DISCUSSION: 

The analytical solution obtained in the present 

investigation by using normal mode technique. The 

critical cut-off wave number obtained from the 

dispersion relation Eq. (22) when we equate it by 

zero as in the following Eq. (24) 

lct                                                                (24)   
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However, at  0
n

l





   , the maximum wave number 

can be written as  

max 2

ctl
l                                                            (25) 

We can found the maximum growth rate in the form 

1 2

max

3 4

[ 1 ( ) sinh
2( 1)

( ) sinh ]

k
n A

kM A

b
b

  
  

 

 




           (26)                                   

And 

max 2( 1)b

k
n

kM





                                            (27)                 

The ratio of the growth rates maxG , can be 

obtained from Eq. (26) and Eq. (27) as: 

 

max 1 2

max
max

3 4

[1 ( ) sinh

( ) sinh ]

b

n
G A

n A

b
b

 
  



 




              (28) 

The effects of couple stress parameter  , magnetic 

parameter M , permeability parameter k , non-

Newtonian parameter  ,  and Bond number    on 

the growth rate (frequency) n  and the ratio of 

growth rate  maxG  are illustrated graphically 

through a set of Figures. Figure  2 is used to show 

the influence of the couple-stress parameter   on 

the frequency n . It is clear that the  frequency 

parameter n  decreases with increasing  the value of  

couple-stress parameter  .  Fig.  3  illustrates  the 

dependence of the frequency parameter n  on the 

magnetic parameter M . It is clear that n  decreases  

when M  increases, while  in Fig.  4  we can 

conclude that the frequency  n  increases when the  

permeability parameter k  increases. Fig.  5  depicts 

that the frequency parameter n   decreases with 

increasing of the Bond number    .  From Figs. 6  

and 7  we found that the increase in the non- 

Newtonian parameter  causes decreasing in the  

frequency parameter n . Figs.  8  and  9   represent 

the effect of   couple-stress  parameter   on the 

ratio of growth rate  maxG . The  ratio of growth 

rate  maxG  decreases  up to ( 2.8  )  then 

increases up to ( 5.5  )with increasing the couple 

stress parameter   . A study of Figs.  10  and  11  

reveals that the  ratio of growth rate  

maxG increases with the magnetic  

parameter M increasing. From Figs.  12  and  13   

we found that the increases of  the  permeability 

parameter k implying increases in  the  ratio of 

growth rate  maxG . Figs.  14  is used to show the 

influence of the non- Newtonian parameter  on 

the  ratio of growth rate  maxG .  The ratio  maxG  

increases with increasing the  non- Newtonian 

parameter  .  

5. CONCLUSION 

A theoretical study of the Rayleigh-Tayler 

instability of the flow of Casson fluids with couple 

stresses through porous medium under the effect of 

a magnetic field is investigated. This problem is 

modulated mathematically by a system of 

differential equations which governing the motion 

of the fluids with appropriate boundary conditions. 

The system of equations are solved under some 

assumptions to obtain the dispersion relation. The 

effects of the physical parameters of the problem 

such as couple stress parameter  , magnetic 

parameter M , non-Newtonian parameter  , 

permeability parameter k   , and Bond number    

on the regions of  stability are discussed 

numerically and illustrated graphically through a set 

of figures. It is clear that the effect of these 

parameter is to stabilize the interface between the 

two fluids, while the permeability parameter k  

have destabilizing effect. 

 

Fig. 1. Magnetic field of strength B applied 

perpendicular to the interface 
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Fig. 2. Frequency is plotted  against wave 

number for different  values of   when 

5, 2.5, 3, 4k M      
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Fig. 3. Frequency is plotted against wave 

number for different values of M  when 

5, 2.5, 2, 4k       
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                                              Fig. 4. Frequency is plotted against wave 

number for different values of  k  when 

M   5, 2, 2, 4    
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Fig. 5. Frequency is plotted against wave 

number for different values of    when 

5, 2.5, 2, 2k M      
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 Fig. 6. Frequency is plotted against wave 

number for different values of    when 

2, 2.5, 2, 4k M      

1

1.5

2 4 6 8

0

100

200

300

400

Wave number

fr
eq

u
en

cy

 
Fig. 7. Frequency is plotted against wave 

number for different values of    when 

2, 2.5, 2, 4k M      
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Fig. 8. Ratio of growth rate is plotted 

against   when 

5, 2.5, 3, 2k M l      
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Fig. 9. Ratio of growth rate is plotted 

against   when 

5, 2.5, 3, 2k M l      
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Fig. 10. Ratio of growth rate is plotted 

against M when 

5, 2.5, 3, 2k l      
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Fig. 11. Ratio of growth rate is plotted 

against  M when 

5, 2.5, 3, 2k l      
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Fig. 12. Ratio of growth rate is plotted 

against  k  

When 5, 2.5, 3, 2M l      
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Fig. 13. Ratio of growth rate is plotted 

against  k  when 

5, 2.5, 3, 2M l      
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Fig. 14. Ratio of growth rate is plotted 

against   when 

5, 2.5, 3, 2k M l     
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