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ABSTRACT 

Flow of a viscoelastic fluid through a channel with stretching walls in the presence of a magnetic field has 

been investigated. The viscosity of the fluid is assumed to vary with temperature. Convective heat transfer is 

considered along with viscous dissipation and Ohmic dissipation. The equations that govern the motion of the 

fluid and heat transfer are coupled and non-linear. The governing partial differential equations are reduced to 

a set of ordinary differential equations by using similarity transformation. The transformed equations subject 

to the boundary conditions are solved by developing a suitable finite difference scheme. Numerical estimates 

of the flow and heat transfer variables are obtained by considering blood as the working fluid. The 

computational values are found to be in good agreement with those of previous studies. 

 

Keywords: MHD flow, Variable viscosity, Visco-elastic fluid, Viscous dissipation, Stretching wall, Heat 

transfer 

NOMENCLATURE 

A     fluid viscosity parameter   

a      channel half width 

b      constant of proportionality (stretching rate)                                                                           

f       non-dimensional stream function   

  
     viscoelastic parameter 

K      thermal conductivity                                                            

M     magnetic parameter  

       Prandlt number                                                                                        

T      temperature of the fluid                                                                             

      wall temperature                                                                                     

      free stream temperature 

       

u     velocity components along x- direction 

v     velocity components along y- direction 

      similarity variable  

      dynamic viscosity 

      reference viscosity     

       kinemetic viscosity 

      non-dimensional temperature 

      density of the fluid    

      mixed convection parameter   

'       denotes differentiation w.r.to                                                   

 

 

1. INTRODUCTION 

Flow of a fluid over a moving continuous solid 

surface has many applications in science and 

engineering. Heated fluid moving between feeding 

rolls and wind up rolls, cooling of polymer 

materials by using  a continuous moving sheet, 

glass and fiber production and manufacturing of 

polymeric sheets are some examples that involves 

flow of a viscoelastic fluid over a stretching sheet. 

Siddappa and Khapate (1976) performed analytical 

study of  the flow of Rivlin-Erickson fluid over a 

moving continuous solid surface. Investigation of 

the heat transfer during steady flow of an 

incompressible viscous fluid when temperature 

difference between the surface and the ambient 

fluid is proportional to some power of the distance 

was conducted by Carragpher et al.(1982).   

Rajagopal et. al (1984) presented a numerical 

solution for small values of the viscoelastic 

parameter. Introducing heat transfer, Dandapat and 

Gupta (1989) extended the problem considered in 

Journal of Applied Fluid Mechanics, Vol. 7, No. 4, pp. 633-640, 2014. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

DOI: 10.36884/jafm.7.04.21385



S. K. Ghosh et al. / JAFM, Vol. 7, No. 4, pp. 633-640, 2014.  

 

634 

 

(Rajagopal et al. (1984)) and found an exact 

solution of the same problem. Convective flow of 

non-Newtonian fluids was considered by Hakiem 

and Abder  (2006). They examined the effect of 

viscosity variation on flow of a micropolar fluid and 

found that it has substantial contribution towards 

change of skin friction and heat transfer. Abel and 

Begum (2008) carried out an analysis on MHD 

viscoelastic fluid flow over a stretching sheet for 

the case of large Prandlt number. They obtained a 

closed form solution by using Rosseland 

approximation and Kummer`s function. Alharbi et 

al. (2010) presented a study on viscoelastic fluid 

flow with heat transfer over a stretching sheet. 

Taking into consideration the effect of chemical 

reaction and thermal stratification, they made an 

observation that with rise in temperature, there is an 

increase in the values of the non-dimensional 

parameters like, Grashof number, Prandlt number 

etc. They also found that due to chemical reaction, 

the temperature and the velocity of the fluid reduce 

considerable. Assuming the viscosity and 

diffusivity as functions of temperature, 

Mukhopadhyay (2009) discussed the unsteady flow 

and heat transfer over a stretching sheet in the 

presence of wall suction. In this study the classical 

Runge-Kutta method was used for solving the non-

linear ordinary differential equations. A numerical 

study was performed by Sharidan et  al. (2006) to 

investigate the unsteady boundary layer flow and 

heat transfer over a stretching sheet, while Char 

(1994) obtained a solution for viscoelastic fluid 

flow over a stretching sheet in the presence of a 

magnetic field with the consideration of thermal 

diffusion term in the energy equation. Sharma and 

Rao (1998), Vajravelu and Roper (1999), as well as 

Cortell (2006a, 2006b) investigated similar 

problems to explore the effects of elastic 

deformation and the work done thereby. In order to 

evaluate the influence of elastic parameter and heat 

transfer characteristics, Cortell (2007) studied the 

flow and heat transfer of a second order viscoelastic 

fluid by considering a non-uniform heat source, 

viscous dissipation and thermal radiation. He 

reported that the said parameters affect quite 

considerable the heat transfer and fluid flow. 

Elbashbeshy and Aldaqwody (2010) analyzed 

numerically the unsteady mixed convective flow 

and heat transfer over a porous stretching surface. 

In this study they investigated the effect of thermal 

radiation and magnetic field on fluid flow. Since 

haemoglobin contains iron oxide, blood flow is 

likely to be affected in the presence of a magnetic 

field. At the time of various diagnostics procedures, 

such as MRI, magnetic therapy of the arthritis 

patients, magnetic therapy of cancer patients, CT 

scan etc. human body is subject to magnetic fields 

of considerable high strength.  Apart from this, 

normal human beings also sometimes have to work 

under the influence of electromagnetic fields when 

they are required to works with machines having 

electromagnetic component. Being motivated 

towards physiological fluid flows, Misra et al. 

(2008) and Misra and Shit (2009a) reported a study 

of the flow and heat transfer in a viscoelastic fluid 

under the action of a transverse magnetic field. 

They considered Walters-B fluid model to depict 

the fluid viscoelasticity. It was not possible to treat 

the problem analytically and so they developed a 

suitable numerical method to solve the problem. 

The flow of biomagnetic fluids in different 

situations was studied extensively by Misra and 

Shit (2009a, 2009b). Both these investigations were 

motivated towards studying the haemodynamical 

flow of blood in arteries. A similar problem was 

studied by Ray Mahapatra and Gupta (2004) that 

concern different types of fluid flow over a vertical 

plate/surface. Sharma and Singh (2009) studied the 

effects of variable thermal conductivity, heat 

source/sink on the flow of electrically conducting 

fluid in the presence of transverse magnetic field. 

They consider the heat transfer in the fluid which is 

passing over a stretching sheet. 

The aforesaid studies are important in the sense that 

no investigation has been made with the 

consideration of viscous as well as Ohmic 

dissipation along with the temperature dependent 

viscosity. In the present paper, considering Walter-

B fluid model of fluid viscoelasticity, we have 

investigated the fluid flow in a parallel plate 

channel under the influence of a transverse 

magnetic field. In order to study the problem from 

more general platform the fluid viscosity has been 

considered as a function of temperature. It has also 

been assumed that velocities of plates of the 

channel are varying linearly with distance from the 

origin and that the channel has a stretching motion. 

To study the heat transfer in the flow region, the 

energy equation is considered   such that it takes 

care of viscous and Ohmic dissipation as well as the 

strain energy arising out of the elastic deformation. 

Boundary layer approximation and similarity 

transformation have been used to treat the coupled 

non-linear partial differential equations. This set of 

equations is solved by the use of perturbation 

technique by taking the viscoelastic parameter as 

the perturbation parameter. The resulting non-linear 

ordinary differential equations are then solved by 

applying Newton’s method with finite difference 

technique. The numerical results for some physical 

variables which are important for having an insight 

to understand the flow physics are presented 

graphically. The study bears the potential of 

multifold applications to different problems of 

engineering and industries as well as physiology 
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and medicine. Hope, this model will help the 

medical practitioners for the diagnosis of the people 

suffering from fever (with high temperature) and 

have to undergo some scanning in the presence of 

high strength magnetic field such as in MRI. 

Moreover, any ailment persist in a physic which is 

surrounded by applied magnetic field may also be 

investigated in tune of this paper and under the 

context of investigated results.  

2. FORMULATION AND 

ANALYSIS 

Let us consider the steady laminar flow and heat 

transfer of an incompressible viscoelastic fluid 

through a channel having stretching motion, which 

is bounded by two parallel plates.  Taking the axis 

of the channel as reference to x -axis, the upper and 

lower walls of the channel is designated as y a  .   

     Y      
0B  

 

 

 

                                                     

 

              2a            O                              

X          

                                       

 

 

Fig.1. A sketch of the physical problem 

The viscosity is considered to be temperature-

dependent with Ohmic dissipation and the surface 

velocity of each wall to vary directly with distance 

from the channel axis. The motion of the fluid is 

driven by the stretching motion of the channel. Let 

us denote 
0B  the strength of the applied magnetic 

field and   the electrical conductivity of the fluid.   

We shall consider here the steady two-dimensional 

motion of the fluid. 

Taking into account heat transfer, the boundary 

layer equation with Boussinesq approximation can 

be presented as (cf. Misra et al (2008)), 

0
u v

x y

 
 

 
                                                         (1)     

0

0

22

2

2 3

2 3

1
( )

2
( )

B uu u u u
u v

x y y yy

k u u v u
u v

x y x yy y




  



    
   

   

     
   
      

                 (2)                                                                                 

and 

 
22

2
`p

T T K T u
C u v

x y yy




       
             

0 0
2

2k Bu u u
u v u

y y x y



 

      
     

      

                        (3) 

where the Eq.(1) represents the mass conservation 

of fluid passing  over any cross-section of the 

channel, the second term on the right hand side of 

(2) appears to represent the effect of variable 

viscosity  while the second and third terms bear the 

effect of magnetic field force and viscoelasticity of 

the fluid. The second, third and  fourth term on the 

right hand side of (3) are introduced to investigate 

the flow behavior due to the contribution of  the 

viscous, viscoelastic and Ohmic dissipation 

respectively. Also, ,u v  are the components of 

velocity of fluid along x - and y - directions, 0k  

the viscoelastic parameter,   the density of the 

fluid and
ATe   ,   being the coefficient of 

kinematic viscosity.  

Considering the flow to be symmetric about the axis 

of the channel our study can be restricted to the 

region 0 y a   only. Hence the boundary 

conditions may be listed as 

bxu  , 0v  ,   T Tw  at  ay  , 0b              (4) 

and 

0
u

y






, 0v  ,  0




y

T  at      0y                     (5) 

 

where b represents the stretching rate of the channel 

walls. 

Let us introduce the similarity variables and non-

dimensional variables as follows 

)(fbxu  ; )(bafv   

1 2
2( ) ( )       , 

in which, 

,   
a

y
 ,  

ab

u
u  ,   

ab

v
v  ;     

wT

T
 . 

Using these similarity variables in terms of the non-

dimensional variables in (1) - (3) we have 
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             (9) 

Equations (6) to (9) constitute a system of coupled 

non-linear ordinary  differential equations. 

a

x

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Considering the viscoelastic parameter 0k  to be 

small, we shall use the perturbation method, by 

taking 0k  as the perturbation parameter. 

Thus we write 
2

0 0 1 0 2
( ) ( ) ( ) ( ) . . .f f k f k f                    (10) 

Using (10) in Eqs. (6) to (9), equating the 

coefficients of like powers of 0k  from both sides 

and neglecting squares and higher powers of 
0k , we 

derive the following set of equations. 
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where dimensionless parameters appearing in the 

Eqs. (10) to (13) are defined as  

b

B
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

 2
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, 

wkT

b





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
,  

K

C
P

p

r


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

bk
K 0

0 
,  

wTAA 1 ,  3,2,1,01 A .    

Moreover, the boundary conditions (4) and (5) 

reduce to 

,1f  0f , 1    at       1         (14) 

                                                                         

and     

0f , 0f ,  0      at     0                    (15)   

In order to determine the flow field and the 

temperature field, we need to solve the Eqs.(8), (9) 

and (11) to (13) subject to the boundary conditions 

(14) and (15). It may be noted that the equations in 

question are highly non-linear. So we have to 

develop a suitable numerical procedure, describe in 

the section that follows. 

3. COMPUTATIONAL RESULTS 

AND DISCUSSION 

We develop a finite difference scheme which is 

stable, more accurate, efficient and relatively 

simple. This method consists of an iteration 

procedure and use of Thomas Algorithm. Thus it is 

very much sensitive to the initial guess. However, 

the problem under consideration has advantage for 

making an appropriate initial guess. Using 

Newton’s linearization technique, we now proceed 

to solve the Eqs.(11), (12) and (13) subject to the 

boundary conditions (14) and (15). Using central 

difference scheme for the derivatives with respect 

to  , we can write ))((0
2

)( 211 





  ii

i

VV
V   

and ))((0
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2
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2

11 
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


  iii

i

VVV
V  

where V stands for different variables; i is the grid-

index in  -direction with *i i  ; i =0, 1, 

2,….,m and  is the step size along the  -axis.  

Iterations are performed with the following relation 

 n

i

n

i

n

i VVV )(1  , 

where n

iV )(  represents the error at the n-th   

iteration, i = 0, 1, 2, m. The stability of the 

numerical model is checked by reducing the step 

size and converges for the accuracy level of O(10-

5). For the numerical computation we have used 

step length  =0.025, further decrease in   does 

not bring about any significant change. A detailed 

description of the method can also be found in 

Misra et. al. (2008, 2009a, 2009b). 

Here we consider an illustrative example of blood 

flow in arteries, by taking the values of different 

parameters as reported in the previous literatures. In 

order to get a physical insight of the problem, we 

intend to study the effects of various parameters 

like A ϵ (0.0, 1.5), a parameter related to the 

variable viscosity, M ϵ (0, 300) the magnetic 

parameter, the Prandlt number 
rP ϵ (5.0, 150), 

0K

ϵ (0.0, 0.2) the viscosity parameter  and  ϵ (0.0, 

15) the mixed convection parameter on the 

viscosity, its gradient and temperature. In the first 

bracket, range of the parameters appear in the 

present investigation are articulated. The 

computational results are presented graphically. 
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A=0.8

A=0.5
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

 Fig. 2. The variation of stream function for 

different A with  =1.0, M=10.0, Pr =10.0  

0K =0.05 

Figure. 2 gives the distribution of the fluid velocity 

in the channel for different values of the parameter 

A  associated with the temperature dependent 

viscosity. Plots corresponding to Newtonian 

viscosity and viscoelasticity have been shown in 

this figure. Taking into consideration that blood is a 

viscoelastic fluid one may use the results to observe 
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the change in viscosity as the body temperature 

raised. It is seen that 0<A<1 produce negative 

values of the stream function but in contrast for 

A>1it is positive and slowly increase as the values 

of A increases. Thus the coefficient appears in the 

expression of temperature dependent variable 

viscosity can control the flow phenomenon 

following a certain rule in a regular pattern. So, the 

parameter A decelerates the motion by enhancing 

the frictional resistance between the fluid layers. By 

collecting different blood samples from different 

people working in hot/moderate/cold environment 

and meaning the viscosity of the blood samples one 

can have an idea of the temperature dependence of 

blood viscosity. The external force (Lorentz force) 

that creates retardation in the motion of the fluid 

because of its characteristics of attracting 

electrically conducting liquid. Hemoglobin in blood 

having iron gets attracted by magnetic field which 

results to the slow movement of fluid along the 

stretching sheet. Figure. 3 shows the significant 

effect of magnetic parameter on the function that 

evokes the velocity.   

It is further seen that blood encounter back flow for

1M . The presence of a magnetic field can affect 

the fluid considerably.  From this figure it is seen 

that the tendency of the back flow is enhanced as 

the strength of the magnetic field is increased. A 

comparison between the results of the present study 

are in good agreement with those of  Misra et al. 

(2008). 

0.0 0.2 0.4 0.6 0.8 1.0

-0.09

-0.06

-0.03

0.00

0.03

M=10,100,150,200,250

M=1

f 



 
Fig. 3. The variation  of stream function for 

different M   when  =1.0, A =0.5, 
rP =10.0  

0K =0.05 

The graphical presentation of the results of the 

present study indicates that owing to the influence 

of the magnetic field retards the flow.  From above 

two figures we conceive the idea that the flow may 

be retarded due to the some range of values of A 

and M.   However, the values for A<0, fluid 

particles displacement rate get enhanced. Hence, the 

parameter A has a crucial role in the movement of 

fluid over a stretching sheet and the motion of fluid 

for A<0 is faster than A>0 because for the values of 

A<0, viscosity decrease i.e. frictional resistance 

decrease.     

 
Fig. 4. Axial velocity distribution when A<0   

( =1.0, M=10.0, 
rP =10.0 

0K =0.05) 

Figure. 4 gives the distribution of velocity at 

different locations of the channel for different 

values of the viscosity parameter whose value 

changes with the change in fluid temperature. When 

the fluid viscosity is low, the fluid is faster. This 

may be attributed to the fact that the less the 

viscosity of the fluid, the less is the frictional force 

acting on the channel walls. This causes 

enhancement of the flow rate. 

This is a novel observation in the case of 

viscoelastic fluids over a stretching surface. It is 

interesting to note from Fig. 4 that though the fluid 

is viscoelastic the negative values of the parameter 

A  significantly affects the flow behavior and the 

parabolic profile of Newtonian viscous flow is 

greatly disturbed. It may be observed further that 

the viscous effect suppresses the stretching effect 

on the flow. This suggests that the flow of industrial 

fluids that possess viscoelastic behavior can be 

changed to Newtonian flow by applying heat to the 

fluid in the flow regime. This mechanism can also 

be used to control the flow region in situations 

when the fluid has a tendency to coagulate leading 

to form a dense fluid region.   
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Fig. 5. Axial velocity distribution for different 

values of 
0K (  =1.0, M=10.0, 

rP =10.0 A =0.5) 

Figure. 5 depicts the variation of axial velocity 

along with the height of the channel for different 
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values of the viscoelastic parameter
0K . 

Viscoelasticity is a property of the fluid which 

comes to the momentum equation from the 

constitutive equation of the fluid and to identify the 

effect of this property. It shows that the velocity of 

fluid increases as the values of the visco-elastic 

parameter 
0K  increases. The tendency of backward 

flow may be attributed to the stretching motion of 

the surface on which the flow takes place. The 

appreciable change in velocity at different axial 

stations for each
0K is highly sensitive as long as 

the non-Newtonian behavior of the fluid is 

dominant. 

Upto this discussion we studied the appreciable 

change of a function which is not the axial velocity. 

Now  Figs. 6 and 7 illustrate the variation of axial 

velocity  f’ along with the height of the channel for 

different values of the viscosity parameter A as well 

as the magnetic parameter M. Fig. 6 depicts the 

effects of viscosity parameter A on the gradient of 

stream function. We observe that this figure has a 

non-rhythmic behavior in contrast to the stream 

function found in Fig. 2. It shows that the gradient 

of velocity in y-direction diminished with the 

increasing values of A . Moreover, for the values of 

A  1.8 the velocity in y-direction is near about 

zero. 
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Fig. 6.  Graphical representation of f   for 

different values of  A  (  =1.0, M=10.0, Pr =10.0 

0K =0.05) 
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Fig.7.  Graphical representation of f   versus M  

 ( =1.0, 
0K =0.05, 

rP =10.0 A =0.5) 

It may be pointed out that for higher values of the 

viscosity parameter leads to the potential flow, 

where the   acceleration term contribution in the 

computation is negligibly small.  The effect of 

magnetic field strength on the velocity gradient in 

y-direction is shown in Fig. 7.  From this figure we 

observe that as the magnetic parameter M increases 

the axial velocity near the wall decreases gradually. 

The results found in this figure are good agreement 

with the previous studies. 
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Fig. 8. Temperature distribution for different 

values of A  when ( =1.0, M=10.0, 
rP =10.0  

0K =0.05) 

As in the present investigation the heat transfer 

takes place in the fluid, we interestingly taken up 

the venture to study the profile due to some 

parameters associated with the energy equation as 

well as in the momentum equation. Figs. 8 to 12 

represent the temperature distribution along the 

height of the channel for different values of the 

parameters involved in the present study under 

consideration. An arbitrary distribution of 

temperature is observed for various values of the 

viscosity parameter A as shown in Fig. 8. It is 

interesting to note from this figure that for the 

higher values of A  temperature variation is 

insignificant. The heat transfer associated with the 

various values of  is depicted in Fig. 9. It shows 

that the parameter  has significant response on the 

temperature distribution and hence we observed that 

the temperature decreases with the decreasing 

values of  .  With a careful observation it is found 

that the values of   bears same magnitude for all 

 1.    
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 Fig. 9. Temperature distribution for different 

values   ( A =0.5, M=10.0, 
rP =10.0 

0K =0.05) 
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Fig. 10. Distribution of temperature   for 

different values of M ( =1.0, 
0K =0.05, 

rP =10.0 

A =0.5) 

Figure 10 gives the temperature distribution along 

the height of the channel for different magnetic 

field strength in terms of magnetic parameter M. 

We observed that the temperature gradually 

increases with the increase of the magnetic 

parameter M.  For higher values of M, maximum 

temperature occurs at the central line of the 

channel.  It may be pointed out that the temperature 

difference between M=150 and M=100 is large, 

however between M=100 and M=10 the difference 

is negligible in compare to the higher values of M.   
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Fig. 11.  Prandtl numbers effect on temperature 

variation ( =1.0, 
0K =0.05, M=10.0 A =0.5) 

In Fig. 11 we present the temperature distribution 

for different values of the Prandatl number Pr, an 

important parameter appears in the problem of fluid 

flow and heat transfer. We observed that the 

temperature decreases significantly in the central 

line of the channel with the increase of the Prandatl 

number Pr. However, the temperature variation 

with Prandatl number Pr in the vicinity of the wall 

is insignificant. 

The temperature distribution in the channel with the 

viscoelastic parameter 
0K  is shown in Fig. 12. It 

has been shown that the temperature distribution 

varies in appreciable manner and moderate 

magnitude for different 
0K .  It is also found that 

this change in   is significant only for small values 

of 
0K . It may be mentioned here  that the values of 

0K >0.1 absorbs heat and at different channel 

positions the temperature remains same. It may 

point out that the results found in the above figures 

are interesting due to its integrity in response of 

temperature to each values of
0K  
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Fig. 12. Temperature profile for different values 

of the  viscoelastic parameter 
0K  ( =1.0, 

0K

=0.05, 
rP =10.0 M =0.5) 

4. CONCLUDING REMARKS  

In this paper, we have studied the effect of variable 

viscosity coefficient, Prandlt number, magnetic 

parameter and visco-elastic parameter on the fluid 

velocity as well as heat transfer for a visco-elastic 

fluid flow over a stretching sheet. The governing 

non-linear differential equations are solved by 

developing a numerical scheme, which is stable and 

converges for a suitable choice of initial values. 

There is a significant change in the velocity as well 

as velocity gradient for parameters like variable 

viscosity coefficient, magnetic parameter and visco-

elastic parameter. Axial velocity of fluid increases 

with the decreasing values of the parameter A  and 

the magnetic parameter recede the flow with its 

increasing values. The similar characteristic 

perpetuated through the velocity gradient also. The 

interesting and significant results found in heat 

transfer are for parameters like
0K , ,

rP  etc.  The 

most important conclusion is that the higher values 

of the parameter
0K  made stagnant the heat flow in 

the fluid and it kept the temperature same 

everywhere in the channel space; however, this 

property is not synonymous for  . 
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