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ABSTRACT 

The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible, viscous 

and electrically conducting fluid over a shrinking sheet is studied. The effects of an induced magnetic field and 

thermal radiation are taken into account. Velocity and thermal slip conditions have also been incorporated in 

the study. The nonlinear partial differential equations are transformed into ordinary differential equations via 

the similarity transformation. The transformed boundary layer equations are solved numerically using 

Newton’s linearization method. Computational results for the variation in velocity, temperature, skin-friction 

co-efficient and Nusselt number are presented graphically and in tabular form. Study reveals that the surface 

velocity gradient and heat transfer are enhanced by decreasing magnetic parameter. 

 

Keywords: Shrinking sheet; Stagnation flow, Induced magnetic field; Slip effects; Boundary layer. 

 

1  INTRODUCTION 

A class of flow problems with obvious relevance to 

numerous applications in industrial manufacturing 

processes is the flow induced by the stretching 

motion of a flat elastic sheet. Such flow situations 

are encountered, for example, in aerodynamic 

extrusion of plastic and rubber sheets, melt-spinning, 

hot rolling, wire drawing, glass-fiber production, 

polymer sheets, cooling of a large metallic plate in a 

bath which may be an electrolyte, etc. During its 

manufacturing process, a stretched sheet interacts 

with the ambient fluid both thermally and 

mechanically. The study of heat transfer and flow 

field is necessary for determining the quality of the 

final products of such processes as explained by 

Karwe and Jaluria (1988, 1991). Crane (1970) was 

the first who studied the steady two-dimensional 

incompressible boundary layer flow of a Newtonian 

fluid caused by the stretching of an elastic flat sheet 

which moves in its own plane with a velocity 

varying linearly with the distance from a fixed point 

due to the application of a uniform stress. This 

problem is particularly interesting since an exact 

closed form solution of the two-dimensional 

Navier-Stokes equations has been obtained.  

In recent years, some interest has been given to 

investigate the flow over a shrinking sheet, where 

the sheet is stretched toward a slot and it would cause 

a velocity away from the sheet. However, in certain 

situations, the shrinking sheet solutions do not exist 

since the vorticity can not be confined in a boundary 

layer. A pioneering paper on this problem has been 

published by Miklavcic and Wang (2006). From the 

physical grounds vorticity (rotation or non-potential) 

flow over the shrinking sheet is not confined within a 

boundary layer, and the flow is unlikely to exist 

unless adequate suction on the boundary is imposed 

(Miklavcic and Wang (2006)). Fang and Zhang 

(2009) obtained an analytical solution for the 

thermal boundary layers with suction over shrinking 

sheet. The shrinking sheet problem has also been 

extended to micropolar fluid (Ishak et al. (2008)) as 

well as magnetohydrodynamic fluid (Sajid et al. 

(2008)).  

During the past century,many engineering problems 

of fluid mechanics have been solved by using the 

boundary-layer theory and the results compare well 

with the experimental observations for Newtonian 

fluids (Schlichting and Gersten (2000)). An 

extension of the boundary layer theory to 

non-Newtonian fluids is found to be rather difficult 

(Rajagopal et al. (1980)). This difficulty is caused by 

the diversity of non-Newtonian fluids in their 

constitutive behaviour and simultaneous viscous and 

elastic properties. Consequently, most studies on 

non-Newtonian boundary layers have used simple 

rheological models such that these two effects can be 

taken into account separately. Recently, several 

researchers (Singh et al. (2012), Sharma and Singh 

(2009), Rashidi and Erfani (2010), Erfani et al. 

(2011)) analytically as well as numerically studied 

the boundary layer flow in the stagnation point 

region of a two dimensional body. Hiemenz (1911) 

was the first to study the two-dimensional (2D) 
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stagnation-point flow against an infinite flat plate. 

He found an exact solution to the governing 

Navier-Stokes equations. Mahapatra and Gupta 

(2004) considered the boundary layer flow near the 

stagnation-point on a stretching sheet, where time 

dependence is also taken into account. Recently, Zhu 

et al. (2009) presented the analytical solutions of 

stagnation-point flow over a stretching sheet. These 

are few examples for the problem where the induced 

magnetic field is negligible. 

To date, very little work has been done on the 

boundary layer flow and heat transfer with the 

consideration of the induced magnetic field. Kumari 

et al. (2009) investigated the MHD flow and heat 

transfer over a stretching surface by considering the 

effect of the induced magnetic field. Rashidi et al. 

(2011) investigated the simultaneous effects of 

partial slip and thermal-diffusion and 

diffusion-thermo on MHD flow due to a rotating 

disk.  

Owing to the above mentioned studies, in this paper, 

we have investigated a numerical solution on a MHD 

stagnation-point flow with heat transfer over a 

shrinking sheet in the presence of magnetic field 

having interest to the engineering community and to 

the investigators dealing with the problem in 

geophysics, astrophysics, electrochemistry and 

polymer processing. The effects of an induced 

magnetic field and thermal radiation are taken into 

account. In this paper, we have investigated the 

effects of slip velocity and thermal slip on an 

electrically conducting viscous incompressible fluid. 

Boundary layer theory is applied to simplify the 

equations that govern the fluid motion, induced 

magnetic field and energy. Computational results 

presented through graphs put forward theoretical 

estimates of the influence of various parameters 

involved in the study. The results reported here are 

applicable to a variety of bioengineering problems.  

2  MATHEMATICAL ANALYSIS 

Let us Consider a steady, two-dimensional flow and 

heat transfer of an incompressible electrically 

conducting fluid near the stagnation point on a 

heated shrinking sheet in the presence of a free 

stream ( )u xe  and uniform ambient temperature 

T . The x-axis runs along the shrinking surface in 

the direction of motion and the y-axis is 

perpendicular to it, as shown in Fig. 1. The wall 

shrinking sheet velocity ( )u xw  and the wall 

temperature ( )T xw  are are proportional to the 

distance (x) from the stagnation point, where 

( )=u x axe  and ( ) = ( / )
0

T x T T x lw  , 

where a  is a constant, 0
T  is the reference 

temperature. It is also assumed that an induced 

magnetic field of strength 0
H  (say) acts in the 

direction normal to the surface. It is supposed that at 

the wall, the normal component of the induced 

magnetic field 2
H  has a vanishing value, while the 

parallel component 1
H  assumes the value 0

H .  

 
 

Fig. 1. Physical sketch of the problem 

According to the boundary layer approximations, the 

basic equations of the problem can be written as 

follows (Datti et al. (2004), Sharma and Singh 

(2009), Singh et al. (2012))  

= 0
u v

x y

 


 
                             (1) 

1 2 = 0
H H

x y

 


 
                           (2) 
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1 24
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
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



  
   

   






      (3) 

2
1 1 1=

1 2 0 2

H H Hu u
u v H H

x y x y y


   
  

    
         (4) 

2 1
=

2

qT T k T ru v
x y c c yyp p 

  
 

  
        (5) 

Where   is the coefficient of viscosity,   is the 

fluid density,   being the kinematic coefficient of 

viscosity, 0  represents magnetic diffusivity, k  

being the thermal conductivity, pc  is the specific 

heat at constant pressure and e  is the Magnetic 

permeability. 

The boundary conditions for the present problem can 

be written as  

1
2= ,    = 0,    = = 0,   

 =            = 0

w s

w s

H
u u u v H

y

T T T at y








          (6) 

                                   

                                       

and  

1 0= ( ) = , = ( ) = ( / ),    

=              

e eu u x ax H H x H x l

T T at y            (7)
 

 

in which =u cxw  , =
u

u Ns
y





, 

0= ( / )wT T T x l   and =
T

T Ks
y




, 

a  an c  being positive constants. N  is the 

velocity slip factor and K  is the thermal slip 

factor. 

The radiative heat flux term by using the Rosseland 
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approximation (Singh et al. (2012)) is given by  

44
=

3

T
qr

yk

 




*

*
                        

(8) 

where *  is the Stefan-Boltzmann constant and 

*k  being the mean absorption coefficient. 

Assuming that the differences in temperature within 

the flow are such that 4T  can be expressed as a 

linear combination of the temperature, we expand 

4T  in Taylor’s series about T  as follows 

4 4 3 2 2= 4 ( ) 6 ( )T T T T T T T T           

and neglecting higher order terms beyond the first 

degree in ( )T T  , we get  

4 3 4= 4 3T T T T                          (9)                       

Let us introduce the following dimensionless 

variables:  

 

1/2 1/2= ( ) ( ),   = ,   = ( )
T T c

c xf y
T Tw

    


 

 
 

 

1/2= ( / ) ( ),   = ( ) ( )
1 0 2 02

H H x l g H H g
l c


         (10) 

The velocity components u  and v  can be 

obtained from the stream function   as =u
y




 

and =v
x





. 

It may be noted that the continuity Eq.(1) is 

automatically satisfied. 

Then substituting Eqs. (8) to (10) into Eqs. (3) to (5) 

yields the following dimensionless equations: 

                                               2
2 2( 1) = 0

2

a
f ff f g gg

c
            (11) 

= 0g fg f g                          (12) 

 and  

(1 )
=0

Nr
f

Pr

 


                        (13)    

In the above equations, primes denote differentiation 

with respect to  . The non-dimensional parameters 

appeared in Eqs (11) to (13) are defined as 

20= ( )
4

H
e

lc





 is the magnetic parameter, 

0=





 is the reciprocal magnetic Prandtl number, 

kk

T
Nr

å

å

3

16
=

3


 is radiation parameter and 

=
c p

Pr
k


 is Prandtl number. 

The boundary conditions (6) and (7) give rise to  

(0) = 0,    (0) = 1 (0),   (0) =

(0) = 0,  (0) =1 (0)

f f S f g
f

g St 

  

 
       (14) 

( ) = ,    ( ) = 1,  

 ( ) = 0

a
f g

c



  



                               

(15(                

                                                                               

 

The non-dimensional velocity slip factor 
fS  and 

non-dimensional thermal slip factor tS  are given 

by =S N c
f

   and =
c

S Kt 
. 

The magnetic parameter  , which gives the order 

of the ratio of the magnetic energy and the kinetic 

energy per unit volume, is related to the Hartman 

number Ha  (Hartmann (1937)) and the flow 

Reynolds number Re  and the magnetic Reynolds 

number Rem  as  

 

2
1/2= ,  = ( ) ,  =

0

( ) ( )
 = 4 =

Ha
Ha H l Re

ReRem

cl l cl l
and Re U lm

e


 



 
 



 (16) 

where l  is the characteristic length of the shrinking 

surface comparable with the dimensions of the field.  

3   NUMERICAL PROCEDURE 

Several authors such as Andersson et al. (1992) and 

Afify (2004) used numerical techniques for the 

solution of two-point boundary value problems in 

terms of the Runge-Kutta integration scheme along 

with the shooting method. Although this method 

provides satisfactory results, it may fail when 

applied to problems in which the differential 

equations are very sensitive to the choice of its 

missing initial conditions. Moreover, difficulty 

arises in the case in which one end of the range of 

integration is at infinity. The end point of integration 

is usually approximated by replacing a finite 

representation to this point and it is obtained by 

estimating a value at which the solution will reach its 

asymptotic state. On the contrary to the above 

mentioned numerical method, we used in the present 

paper that has better stability, simple, accurate and 

more efficient. The essential features of this 

technique is that it is based on a finite difference 

scheme with central differencing and based on the 

iterative procedure. 

We substitute =f F  and =g G  in (11) and 

(12), we get  

 

2
2 2( 1) = 0

2

a
F fF F G gG

c
           (17) 

 and  

= 0G fG Fg                          (18) 

while the boundary conditions (14) and (15) assume 

the form  
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(0) = 0,   (0) = 1 (0),   (0) = (0) = 0, f F S F g G
f

  

 ( ) = ,    ( ) = 1
a

F G
c

                     (19) 

Now using the central difference scheme for 

derivatives with respect to  , we write  

21 1( ) = (( ) )
2

P P
i iP O

i





              (20) 

and  

2 21 1( ) = (( ) ) ,
2( )

P P P
i i iP O

i




 
        (21) 

where P  stands for F , G  and  ; i is the grid 

index in  -direction with = *i
i

  ;    

i=0,1,......m and   is the increment along the 

-axis. Newton’s linearization method can then be 

applied to linearize the discretized equations as 

follows. 

When the values of the dependent variables at the n  

th iteration are known, the corresponding values of 

these variables at the next iteration can be obtained 

by using the equation  

1 = ( )  ,n n nP P P
i i i
                     (22) 

in which ( )nP
i

  represents the error at the n  th 

iteration, = 0,1,2,......,i n . It is worthwhile to 

mention here that the error ( )nP
i

  at the boundary 

is zero, because the values of P
i

 at the boundary 

are known. Using (22) in (17) and dropping the 

quadratic terms in ( )nP
i

 , we get a system of 

block tri-diagonal equations. To solve this 

tri-diagonal system of equations, we have used the 

"Tri-diagonal matrix algorithm", usually referred as 

"Thomas algorithm". It may be mentioned here that 

instead of this, one could use Gauss elimination 

method. But in that case, the number of operations 

would be 
3m , while in the method that we have 

employed here, the number of operations is m, where 

m is the number of unknowns. Thus the error 

committed in our method is much less than that in 

the method of Gauss elimination. In the process of 

determination of the distribution of the function 

( )f  , the accuracy can be defined as the difference 

between the calculated values of ( )f   at two 

successive operations, say ( 1)n  th and nth. In the 

present case, the error is equal to  

1=| ( ) ( ) |n nf f      

and is estimated to be less than 610 .  

4.  NUMERICAL ESTIMATES AND 

DISCUSSION 

The system of ordinary differential Eqs (11) to (13) 

subject to the boundary conditions (14) and (15) are 

solved numerically by employing a finite difference 

scheme with Newton’s linearization method 

described in the previous section. In order to achieve 

the numerical solution, it is necessary to assign 

following values of the dimensionless parameters 

involved in the present problem under consideration.  

= 0.5,0.8,1.5,2.0,2.5;
a

c

= 0.0,0.5,2.0,2.5,4.0,8.0;  

=1.0,5.0,10.0,20.0;  

= 0.0,0.25,0.5,1.0,2.0;S
f

  

= 0.0,0.5,1.0,1.5;St   

= 0.3,0.5,0.72,1.0,1.5;Pr  

= 0.0,1.0,2.0,3.0,4.0Nr . 

Numerical computation has been carried out by 

taking = 0.0125  with 401 gird points. The 

results computed have been presented graphically in 

Figs. 2 to 14. In order to perform grid independent 

test for the choice of 321 grid points, we repeated the 

computational procedure by considering a number of 

mesh sizes by altering the values of  . If we take 

= 0.008  (mess size=501) or = 0.01  (mess 

size=401) then the figures will be unaltered. It has 

also been ascertained that for any mesh size less than 

321, the results are inaccurate. 

Figures 2 to 4 respectively display the effects of 

magnetic parameter on axial velocity, induced 

magnetic field and temperature profiles when 

=1.0 , = 0.72Pr , = 2.0Nr , = 2.5
a

c
, 

= 0.25S
f

 and = 1.0St . Fig. 2 reveals that axial 

velocity ( f  ) decreases when the magnetic 

parameter   increases. This is due to the fact that 

an increase in the value of   signifies the increase 

of Lorentz force and thereby magnitude of velocity 

reduces. It is also seen from this figure that for large 

value of magnetic parameter, axial velocity vanishes 

to a certain point. This point is called point of 

inflexion. From Fig. 3, it is seen that the induced 

magnetic field strength decreases as   increases. It 

may be noted from this figure that for any value of 

 , induced magnetic field strength increases with 

the height of the channel. It is noticed from Fig.4 that 

the magnetic parameter bears the potential to 

increase the temperature   in the boundary layer. 

This is because of the fact that the induced magnetic 

field to an electrically conducting fluid gives rise to a 

resistive type of force known as Lorentz force. This 

force has the tendency to increase the fluid 

temperature. 
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Fig. 2. Axial velocity distribution for different 

values of   

 
Fig. 3. Variation of induced magnetic field in x

-direction for different values of   

The variation of axial velocity, induced magnetic 

field and temperature profiles for different values of 

the ratio /a c  is shown in the Figs. 5 to 7 

respectively. 

  
Fig. 4. Temperature distribution for different 

values of    

                                 

 
Fig. 5. Axial velocity distribution for different 

values of /a c  
It can be seen from Fig. 5 that the boundary layer 

thickness decreases as /a c  increases when we 

consider / >1a c . Physically this phenomenon can 

be explained as follows: for fixed value of c  

corresponding to the shrinking of the surface, the 

increase in a  in relation to c implies the increase in 

the straining motion near the stagnation region that 

can increase the acceleration of the external stream. 

Therefore, an increase in /a c  has the effect of 

thinning the boundary layer. From Fig. 6, it can be 

seen that all the g   profiles increase with the 

increase in /a c . Fig. 7 shows that the the 

temperature profile decreases in the boundary layer 

with increasing value of /a c . This is because of the 

fact that the thermal boundary layer decreases with 

increase in straining motion near the stagnation 

region.  

   
Fig. 6. Variation of induced magnetic field in x

-direction for different values of /a c   

 
Fig. 7. Temperature distribution for different 

values of /a c    

Figures. 8 and 9 illustrate the effects of the velocity 

slip factor on the velocity and the induced magnetic 

field profiles when / = 2.5a c  and = 0.5 . Fig. 8 

reveals that velocity in the axial direction 

monotonically increases as slip velocity increases. 

This figure further indicates that for large values of 

slip velocity factor ( S
f

), the frictional resistance 

between the viscous fluid and the surface is 

eliminated and shrinking of the sheet does no longer 

impose any motion of the fluid. It is also seen that for 

no slip condition i,e, for = 0.0S
f

, flow separation 

is observed adjacent to the lower wall. We have a 

similar observation in respect of the variation of the 

induced magnetic field with the increase in slip 

factor (cf. Fig. 9). 
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Fig. 8. Nature of axial velocity distribution for 

different values of fS  

 
Fig. 9. Variation of induced magnetic field in x

-direction for different values of fS  

Figures. 10 to 12 give some characteristic 

temperature profiles for different values of Prandtl 

number ( Pr ), radiation parameter ( Nr ) and 

thermal slip factor St  respectively. Fig. 10 

demonstrates the effect of Prandtl number ( Pr ) on 

temperature profile in the boundary layer. It is seen 

that the effect of Prandtl number is to decrease the 

temperature profile in The boundary layer. This can 

be attributed to the fact that the thermal boundary 

thickness decreases with increase in Prandtl number. 

Fig. 11 shows the effect of thermal radiation on 

temperature  . It is observed that the increase in 

thermal radiation parameter ( Nr ) produces a 

significant increase in the thickness of the thermal 

boundary layer of the fluid and so the temperature 

  increases. Fig. 12 gives the temperature 

distribution for different values of thermal slip factor 

( St ). This figure shows that temperature decreases 

as the thermal slip increases. 

  
Fig. 10. Temperature distribution for different 

values of Pr  

 

Fig. 11. Temperature distribution for different 

values of Nr   

  

Fig. 12. Temperature distribution for different 

values of St  

 

Fig. 13. Variation of skin-friction with   for 

different values of   

The skin-friction coefficient, defined as: 

1

2
2

1
= = (0)

2/2

w

f x
w

C Re f
U






  

where =0= ( )w y

u

y
 




  

is an important physical quantity that bears the 

potential to explore some vital information regarding 

problems such as the one under our present 

consideration. 

Figure. 13 gives the variation of skin-friction with 

magnetic parameter   for different values of the 

reciprocal magnetic Prandtl number  . It is seen 

that skin-friction increases as   increases. It is also 
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seen that skin-friction decreases as   increases. 

Another important characteristic of the present study 

is the local Nusselt number Nux , defined as 

1

2= = (0)
( )

w

x x
w

xq
Nu Re

k T T







  

where = ( )
=0

T
q kw yy





 

The values of (0)  on the stretching wall, 

computed on the basis of the present study are 

presented in tabular form. 

 

Table 1 Values of -θ (0) for different values of 

 , /a c , Pr , Nr  when λ =1.0 , fS = 0.25  

and tS =1.0  

  /a c  Pr   Nr -θ(0) 

2.0 2.5 0.7 2.0 0.32513349 

2.0 2.5 0.7 4.0 0.28118201 

2.0 2.5 1.0 2.0 0.35795494 

2.0 3.5 0.7 2.0 0.37871776 

2.5 2.5 0.7 2.0 0.32070163 

From Table 1, one can have an idea of the variation 

in local Nusselt number for different values of 

magnetic parameter (  ), /a c , radiation parameter 

( Nr ) and Prandtl number ( Pr ). This table shows 

that increase in /a c  or Pr , enhances the local 

Nusselt number, while increase in magnetic 

parameter or radiation parameter leads to a reduction 

in local Nusselt number. 

With an aim to validate our numerical model, we 

have compared our results for the axial velocity 

distribution with those reported recently by Nadeem 

and Hussain (2009) who carried out a similar study 

under some simplifying assumptions and obtained 

analytical solution by using the homotopy analysis 

method (HAM). We notice that the results of our 

numerical model are in excellent agreement with 

those reported by Nadeem and Hussain (2009) (cf. 

Fig. 14).  

 
Fig. 14. Axial velocity distribution in the absence 

of induced magnetic field and velocity slip (when 

a / c = 0 ). (Comparison of the results of the 

present study with the analytical solution of 

Nadeem and Hussain (2009))  

5.  SUMMARY AND CONCLUSION 

We have obtained an exact similarity solution of a 

steady two-dimensional magnetohydrodynamic 

stagnation-point flow of an incompressible 

electrically conducting fluid viscous fluid over a 

shrinking sheet in the presence of an induced 

magnetic field. The numerical analysis of a problem 

that deals with the investigation of the influence of 

velocity slip, thermal slip and thermal radiation on 

the flow field. The following conclusions can be 

drawn as a result of the numerical computations: 

(1) In the presence of a magnetic field, the fluid 

velocity decreases. This is accompanied by a 

reduction in the velocity gradient at the wall, and 

thus the local skin-friction coefficient decreases. 

(2) As Prandtl number increases, the local Nusselt 

number increases and thus the temperature gradient 

at the surface reduces. This implies that the ambient 

fluid gains temperature from the stretching sheet. 

(3) As thermal radiation increases, thermal boundary 

layer thickness increase. 
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