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ABSTRACT 

In this paper, we propose a model designed to describe a strongly sheared compressible homogeneous turbulent 

flows. Such flows  are far from equilibrium and are well represented by the A3 and A4 cases of the DNS of Sarkar. 

Speziale and Xu developed a relaxation model in incompressible turbulence able to take into account significant 

departures from equilibrium. In a previous paper, Radhia et al. proposed a relaxation model similar to that of Speziale 

and Xu .This model is based on an algebraic representation of the Reynolds stress tensor, much simpler than that of 

Speziale and Xu and it gave a good result for rapid axisymetric contraction. In this work, we propose to extend the 

Radhia et al’s. model to compressible homogenous turbulence. This model is based on the pressure-strain model of 

Launder et al., where we incorporate turbulent Mach number in order to take into account compressibility effects. To 

assess this model, two numerical simulations were performed  which  are similar  to the cases A3 and A4 of the DNS 

of Sarkar. 

Keywords: Turbulence, Homogeneous shear flow, Compressible effects, Relaxation model. 

1. INTRODUCTION

The principal effects of compressibility on turbulence are 

observed in the works of Blaisdell et al. (1993) and 

Sarkar (1995) for homogeneous turbulent shear flows 

and in the works of Goebel and Dutton (1991) and 

Vreman et al. (1996) for turbulent mixing layer. These 

effects appear clearly  in  the reduction of the temporal 

growth rate of the turbulent kinetic energy and in that of  

the mixing layer  thickness. To express these effects, the 

first theoretical approaches are focused on the 

assessment of turbulent kinetic energy.  Sarkar et al. 

(1991,1992) and Zeman (1990,1991) proposed algebraic 

models to explain the explicit dilatational terms such as 

the pressure-dilatation ' 'p d
d

  and the dilatational 

dissipation 
d
 .These models perform well in predicting, 

at  low turbulent Mach number, the compressibility 

effects  on turbulence. However when compressibility is 

higher, Sarkar (1995) and Vreman et al. (1996) 

confirmed that these terms can not be regarded as 

essential in causing the reduced growth rate. They also 

pointed out that compressibility was found to affect the 

production term via the pressure-strain correlations. 

Consequently,  the compressibility effects must be 

required in these terms . Today, no model for the 

pressure-strain correlation based on the integration of the 

complete Poisson's equation has been  published. 

Nevertheless, proposed extensions of incompressible 

models were made in particular configurations. We quote 

here the works of Cambon et al. (1993), Vreman et al. 

(1996), Marzougui et al. (2005) and Huang et al. (2008). 

The application of Marzougui et al.’s model shows a 

good agreement with DNS results of Sarkar (1995) for 

cases 
1

A  and 
2

A  which correspond to a moderate mean 

shear rate so that nonlinear effects are important. 

However, notable deviations have been observed in cases 

3
A  and 

4
A . Using the turbulent length scale defined by 

Blaisdell, Simone et al. (1997) showed that the initial 

shear number /Sk
s
  for cases

3
A  and 

4
A  takes 

respectively the following values: 8.25 and 16.5. They  

noted that these cases  could be treated within the 

framework of rapid distortion theory. It is shown that 

second-order closure models- as they have commonly 

been formulated since Launder et al.- perform poorly in 

the prediction of such flows, because these models  are 

based on strong assumptions such as equilibrium 

isotropic turbulence. To describe better the turbulent 

flows presenting a localized regions of large shear rates , 

it is important to develop models having satisfactory 

performances for significant departures from 

equilibrium. The incompressible model suggested by 

Speziale and Xu (1996) seems to meet these needs. 

Despite  the improvements made by this model, this one 

is few used by the researchers. This is due to the 

complexity of the algebraic representation of the 

Reynolds stress tensor adopted by these authors in their 

model.  In order to stress the effectiveness of this type of 

mailto:hamed_merzougui@yahoo.com


H. Marzougui et al. / JAFM, Vol. 8, No. 1, pp. 113-121, 2015.  

 

114 

 

model, Radhia et al. (2010) proposed a relaxation model  

similar to that of Speziale and Xu. This model is based 

on an algebraic representation of the Reynolds stress 

tensor which is much simpler than that proposed by 

Speziale and Xu. In the present work, we propose to 

extend the Radhia et al.’s model on compressible 

homogeneous turbulent flows. We start by presenting, 

briefly, the relaxation model for compressible 

homogeneous turbulent flows. In this model, the 

dilatational terms are given by the Sarkar’s models.  For 

the pressure-stain correlation, we propose a compressible 

correction parameterized according to the turbulent Mach 

number. To evaluate the proposed model, we take  the 

two cases 
3

A  and  
4

A  of  the DNS of Sarkar (1995).  

2. PRESENTATION of the RELAXATION 

MODEL  

2.1. Governing equations 

The homogeneity hypothesis with a constant mean 

velocity gradient for compressible fluid appears as an 

additional condition that the average density remains 

constant in space and time and the statistical average of 

Reynolds and Favre are identical. This allows the 

extension of the incompressible models on compressible 

turbulent flows. Thus, the model that we are proposing 

results from a simple transposition of the incompressible 

model of Radhia et al. This model expresses the b
ij

 

components of the anisotropy tensor as follows:  

( )
d esb C b b

ij r ij ijdt k


                            (1) 

C
r

 is the relaxation coefficient, it is given by:   

1/ 21 0.9 ( )
k

C S S
r ij ij

s


                          (2) 

k and 
s
  represent the turbulent kinetic energy and its 

solenoidal dissipation rate, respectively. These quantities 

are given by the following equations : 

2 ( / 3)
,

d
k k b u

ij ij i j sdt
       

         

' '

( )
p d

d



                             (3) 

2 ( / 3)
,

1

d
C b u

s s ij ij i jdt
  


     

             

2

2

sC
k




            (4) 

''p d and 
d
  represent the dilatational terms. In the 

present work, these terms are given by the Sarkar’s 

models (1991,1992): 

 

2M
d t s
                                                                   (5) 

' ' 2
2 3

p d PM M
t s t

                                 (6) 

1

C


 and 
2

C


are constants that are taken to be 1.44 and 

1.95, respectively. 

eb
ij

 are the equilibrium values of  the components of the 

anisotropy tensor which are given by the following 

algebraic representation: 

1
eb S
ij ij

 ( )
2

S S
ik kj ik kj

    

      
1

( )
3 3

S S S S
ik kj mn mn ij

                            (7) 

S
ij

 and 
ij

  denote the mean strain and the mean 

vorticity, respectively  

1
( )

, ,2
S u u

ij i j j i
  , 

1
( )

, ,2
u u

ij i j j i
      

the terms 
i
  (i=1,2,3) are scalar functions of the 

invariants
1

S S
ij ij

   and 
2 ij ij

   . 

( )( 4 / 3)
1 2

1
( , )

1 2

dk sC C
kdt k

D




 

 

          (8) 

( 2 )( 4 / 3)
4 2

2
( , )

1 2

C C

D


 

 
           (9) 

2( 2)( 4 / 3)
3 2

3
( , )

1 2

C C

D


 

 
                          (10) 

22 2( , ) ( ) ( 2)
1 2 1 3 13

dk sD C C
kdt k


       

           22( 2)
4 2

C                                                  (11) 

the C
i

 (i=1,2,3,4)  are the constants of the modified 

model for the pressure strain correlation. The general 

form of this model is : 

1 2
C b C k S

ij ij ij
      

2
[ ]

3 3
C k b S b S b S

ik jk jk ik mn mn ij
   

[ ]
4

C k b b
ik jk jk ik

                          (12) 

2.2. Modeling of compressibility effects on pressure-

strain correlation.  

 

The compressibility effects on homogeneous turbulence 

are parameterized by two parameters: the turbulent Mach 

number M
t

 and the gradient Mach number gM . The 

turbulent Mach number is the ratio of the acoustic time 
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scale to the turn-over time : /M
t a t

  . The gradient 

Mach number is defined by Sarkar (1995), Durbin et al. 

(1992) and Cambon et al. (1993) as being the ratio of the 

acoustic time scale to the mean distortion time scale : 

/
sk

M M
g a d t

  


  . The direct numerical 

simulations of Sarkar (1995) for homogeneous 

turbulent shear flows and those of Vreman et al. 

(1996) for turbulent mixing layer show that the 

structural effects of compressibility must be modeled 

in the pressure-strain correlation.  This result was 

confirmed in several studies thereafter. We have just 

mentioned in the introduction that there is no trace  

of modeling of the pressure-strain correlation  

in compressible turbulence based on the  

complete Poisson's equation and the existing of 

compressible models are extensions of models 

established already in incompressible mode. We 

quote, for example, the works of Cambon et al. 

(1993),  Vreman et al. (1996), Marzougui et al. (2005) 

and Huang et al. (2008) 

 Cambon et al.’s model. (1993) 

The obtained results from the RDT of Cambon et al. for 

an axial compression show that the correlations between 

the turbulent pressure field and the turbulent velocity 

field decrease in a monotonous way according to the 

distortion Mach number. This observation led Cambon et 

al. to develop a compressible correction to the standard 

model of Launder et al. (1975). 

( ) exp ( / )r M C
ij ij inc d dm

    ,                      (13) 

the slow terms are neglected by Cambon et al. because it 

is about a rapid deformation. 

 Vreman et al.’s model. (1996) 

The direct numerical simulations of Vreman et al. for 

turbulent mixing layer show that the contribution of the 

pressure-stain correlation decreases with the increase of 

compressibility. These simulations enable them to 

propose a compressible correction of the axial 

component of the rapid part of pressure-strain 

correlation. Their model is written:   

( ) ( ) ( )
11 11 11

r sf M
inc r inc

     ,                    (14)  

where ( )f M
r

 is a related  function. It is a function of 

the relative Mach number.   

 Marzougui et al.’s model (2005) 

The contribution of Marzougui et al. appears in the 

correction of the C
i

 coefficients, which became in 

compressible turbulence functions of the turbulent 

Mach number. The suggested method is based on 

proportionality relations between the ratio of 

compressible and incompressible components of the 

pressure-strain correlation and the ratio relating the 

compressible and incompressible growth rate of the  

 

turbulent kinetic energy. This method generates a 

pressure strain model parameterized according to the 

turbulent Mach number.  

 

2 2(1 0.44 )

1 22(1 )

M
I ItC b C k S

ij s ij ij
M

t

  



   



2(1 1.5 ) (
3
IC M k b S b S

t ik jk jk ik
    

  
2

)
3

b S
mn mn ij

                                             

(1 0.5 ) ( )
4
IC M k b b

t ik jk jk ik
            (15) 

 Huang and Fu’s model (2008) 

The compressible model proposed by Huang and Fu for 

the pressure-strain correlations is as follow: 

1
( )

1 2 3
C b C k S S

ij ij ij kk
    

2
( )

3 3
C k b S b S b S

il lj jl li lk kl ij
    

( )
4

C k b b
il lj il lj

                           (16) 

The coefficients of this model are: 
 

3.6
1

C  , 0.8
2

C  , 1.2 2 ( )
3

C f M
t

  , 

1.2 2 ( )
4

C f M
t

   

Where ( )f M
t

 is a function of the turbulent Mach 

number: 3( ) 0.25exp( 0.05 / )f M M
t t

   

It is clear when ( ) 0f M
t

 , the model is the same as 

the Gibson and Launder’s model (1978).   is the total 

turbulent dissipation. The Huang and Fu’s model (2008) 

for the dilatational part of turbulent dissipation is 

algebraic and takes the following form: 

20.1(1 exp( 5 ))M
d t
                                              (17)  

These works gave us the idea to introduce a damping 

function into the incompressible model of Launder et 

al. The compressibility parameter used is the turbulent 

Mach number. Our proposal is based on the work of 

Pantano and Sarkar (2002). These authors, by direct 

numerical simulations for  shear layers, proposed a 

damping function into the deviatoric part of the 

pressure-strain correlation of the form:   

2 2( , , ) 1
1 2 3

f M M M b M b M b M M
c g t g t g t

     

3
b M M

g t
 ,   low  M

c
                                      (18) 

 

( , , ) (1 )f M M M c c
c g t

    
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2 21 exp (2 0.5 )

21

aM M
c c

b M
c

  


,    large M

c
        (19) 

 

In the present study, we are interested in the turbulent 

flows where the compressibility is significant. 

Consequently our choice falls on the exponential form of 

( )f M
c

. Let us recall that the analogies established by 

Sarkar between homogeneous turbulent shear flow and 

the range around the mid-plane of mixing layer lead to 

the relation: ~ 0.46M M
c g

, where  ~
Sk

M M
g t

. 

The parameters M
g

and M
t

 are proportional when we 

admit the assumption that, for large times, the shear 

number /Sk
s
  reaches an asymptotic value. This 

assumption leads us to rewrite the damping function 

using the turbulent Mach number.   

2 21 exp (3 0.5)
1( )

21
2

a M M
t tH M

t
a M

t

  



        (20) 

1
a  and 

2
a  are constants which take respectively the 

following values : 8.4, 3.8. According to the writing 

( ) ( )H M
ij t ij inc

   , the C
i

 Constants in the 

relations (8,9,10) take the  form: ( )incC C H M
i i t
 . 

incC
i

 are the constants of the incompressible model of 

Launder et al. (1975). 

3. APPLICATION OF THE PRESENT MODEL 

FOR COMPRESSIBLE HOMOGENEOUS  

      TURBULENT SHEAR FLOW 
The transport equations (1), (3) and (4) incorporating 

our model were solved numerically for compressible 

homogeneous turbulent shear flow using a fourth-

order accurate Runge-Kutta numerical integration 

scheme. Comparisons will be made with Hung and 

Fu’s model and with the DNS of Sarkar. The direct 

numerical simulations of Sarkar show that the 

influence of the gradient Mach number on the 

reduction of the temporal growth rate of the turbulent 

kinetic energy is more significant than that of the 

turbulent Mach number. These results led Sarkar as 

well as other researchers to consider that Mg is the 

good parameter in order to study the compressibility 

effects on turbulence. In the direct numerical 

simulations of Sarkar (1995), the definition of the 

gradient Mach number is built on the integral length 

scale in the transverse direction. This choice leads to 

low values of the gradient Mach number (table 1).  

 

Table 1 Initial conditions 
 

Case (
,0

M
g

) Sarkar (
,0

M
g

) Simone et al 

A3 0.66 6.6 

A4 1.32 13.2 
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d
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

d


p
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 Present model, case A
4

 DNS, case A
3

 DNS, case A
4

 

Fig. 1. the evolution of the dilatational terms 

 

The two simulations 
3

A  and 
4

A  are taken again by 

Simone et al. (1997). They defined the gradient Mach 

number using the length scale 3 / 2(2 ) /l k
s
 , which 

conducts to large values of M
g

 and /Sk
s
  (table1). 

From these values they emphasized that 
3

A  and 
4

A  

must be studied with the rapid distortion theory.  

 

First, we shall consider model predictions when the 

damping function ( ) 0H M
t

  in order to assess the 

performance of the proposed correction to the L.R.R’s 

model for the pressure-strain correlation. Figure 2 to Fig 

7 show that the Radhia et al’s model with the dilatational 

dissipation and the pressure-dilatation models of sarkar is 

unable to predict the dramatic change in the anisotropy 

of turbulence that arises from compressibility. This 

means that for high turbulent Mach number, the 

dilatational terms are smaller to explain the 

compressibility effects on the turbulence. This is can be 

seen clearly in Fig 1, which represents the time evolution 

of the dilatational terms normalized by the production 

term 2
12

P kb S  .  

 

This implies that the dilatational terms cannot be 

regarded as essential in causing the reduced growth rate 

of the turbulent kinetic energy observed in DNS results. 

The time variation of the Reynolds stress anisotropies 

11
b , 

22
b  and 

12
b  are plotted in Fig 1, Fig 2, Fig 3 and 

Fig 4 respectively. It is clear, from these results, that the 

agreement between our model predictions and the DNS 

of Sarkar is good. The Hung and Fu’s model does a 

reasonably good job in predicting the time evolution of 

12
b .However, it yields considerably different results for 

the normal components 
11

b  and 
22

b . About the 

compressibility effects on the anisotropy of the Reynolds 

stress tensor, we observe that an increase in the gradient 

Mach number involves an increase in the normal 

components 
11

b , 
22

b  and a reduction in the tangential  
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component 
12

b  at the end of simulations. These figures 

show also that after a transitional phase, the components 

b
ij

 of the anisotropy tensor converge towards 

asymptotic states which depend on the initial conditions. 

This point is the subject of the last part of this section.  

 

Figures 5, 6 and 7 show the time evolution of the 

components 
11

 ,
22

  and 
12

  of the  pressure-stain 

tensor. In comparison with the DNS results of Sarkar, the 

proposed model reproduces in a correct way the action 

which compressibility exerts on the pressure-strain 

correlations.  This action appears by the inhibition of the 

pressure fluctuating field when the gradient Mach 

number increases. The Hung and Fu’s model predicts the 

11
  and 

22
  components reasonably. For the 

12
 ,  

Fig. 4. The evolution of Reynolds shear stress anisotropy 
12

b : (a) case 
3

A ,  (b) case 
4

A  

Fig. 3. The evolution of transverse Reynolds stress anisotropy 
22

b :(a) case 
3

A ,  (b) case 
4

A  

Fig. 2. The evolution of streamwise Reynolds stress anisotropy 
11

b :(a) case 
3

A ,  (b) case 
4

A  
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this model over-predicts the DNS. We know that the 

principal role of these correlations is the redistribution of 

the energy produced in the principal direction of the flow 

on the components of the Reynolds tensor.  These terms 

are strongly reduced with the increase in gM . 

Consequently, a significant quantity of the kinetic energy 

remains stored in the flow direction. This makes it 

possible to explain the strong amplification of 
11

b  

observed in the DNS of Sarkar when Mg increases. The 

time evolution of the turbulent Mach number M
t

 

predicted by our model is shown in Fig 8 along with the 

predictions of the Hung and Fu’s model and the DNS of 

Sarkar. It is clearly seen that both models appear to be 

able to predict the increase of the turbulent Mach number  

Fig. 5. The evolution of pressure-strain 
11

 : (a) case 
3

A , (b) case 
4

A  

Fig. 6. The evolution of pressure-strain 
22

 : (a)  case 
3

A ,  (b) case 
4

A  

Fig. 7. The evolution of pressure-strain 
12

 :(a) case 
3

A , (b) case 
4

A  
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with increasing gradient Mach number. It is also 

observed that our model gives slightly better result than 

the Hung and Fu’s model. In Fig 9, we plot the time 

evolution of the temporal growth rate of the turbulent 

kinetic energy 
1 dk

Sk dt
  for cases 

3
A  and 

4
A  In this 

evolution, two phases are distinguished. The first 

( 5St  ) is characterized by a destabilizing effect of a 

rapid distortion-for large initial values of shear number 

the turbulence develops to become strongly anisotropic 

and the turbulent kinetic energy grows rapidly. This 

behavior is seen in rapidly distorted incompressible 

homogeneous shear flow. This trend is reversed at 

5St  . Indeed, we observe for large times the 

stabilizing effect of compressibility that appears clearly 

in the reduction of   with the increase in the gradient 

Mach number. This phenomenon which has often been 

observed in DNS results for compressible turbulent shear 

flows is predicted by both models (our model and the 

Hung et Fu’s model) 
 

Now, we will discuss the equilibrium states in 

compressible homogeneous shear flow. Several works 

concerning the incompressible homogeneous turbulent 

shear flows have shown that the quantities b
ij

, 
ij

   

and   evolve, for large times, to “universal” asymptotic 

values which do not depend on the initial conditions.  

The question of the existence of asymptotic values arises 

with the works of Blaisdell et al. on compressible 

homogeneous turbulent flows.  

 

The numerical simulations carried out by these authors 

showed that, when the compressibility is low, the 

turbulent Mach number continues to grow with time. 

This work led several authors to consider that 

compressible turbulence cannot evolve to an asymptotic 

state. The direct numerical simulations of Sarkar (1995) 

show that if compressibility is significant, the evolution 

curves of the statistical quantities b
ij

, 
ij

  and   have 

a trend to be flattened for large times. This work leads 

several researchers to start again the debate about the 

existence of asymptotic states for homogeneous 

compressible turbulent flows. Zeman (1992) already 

postulated an asymptotic value for the turbulent Mach 

number. He supposes that an equilibrium between 

fluctuations speed and speed of sound is established due 

to the formation of eddy shocklets. The turbulent Mach 

number equation developed by Zeman (1997) shows that 

the evolution of this number is controlled by 
12

b  and 

Y
p

 (energetic terms). This equation is written :  

[ ( 1)
12

d
M M b Y

t t pdt
   

2( 1) / 2]M
t

                                            (21) 

Fig. 8. The evolution of turbulent Mach number: (a) case 
3

A ,  (b) case 

4
A  

Fig. 9. The evolution of the turbulent energy growth rate: (a) case 
3

A ,  (b) case 
4

A  
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Table 2 Comparison of the present model predictions for the asymptotic values of 

the anisotropy tensor for cases 
3

A  and 
4

A  

Asymptotic values Present Model Hung and Fu’s model DNS Formulas of Stefan 

11,
b


 

0.499;     0.54 0.239;     0.244 0.5;       0.58 0.504;     0.589 

22,
b


 

-0.296;   -0.31 -0.166;   -0.171 -0.266;  -0.3 -0.264;   -0.3 

12,
b


 

-0.11;    -0.07 -0.078;   -0.0648 -0.09;   -0.06 -0.093;   -0.056 

 

 

The asymptotic solutions of this equation are: 

0 ,
,

M
t




     

1
2 1/ 22[ ( )( 1)]

( 1 1

1

C

M
t C



 




 
  

        (22) 

The first solution corresponds to the incompressible 

limit. The solution in compressible mode is constant. 

These observations indicate that the asymptotic value of 

M
t

 does not depend on the initial conditions. This point 

is in agreement with the assumptions of Zeman (1992) 

and Sarkar (1995) and with the results obtained by our 

model. Fig 8 shows that after transitional phase, M
t

 

converges independently of the initial conditions towards 

an asymptotic value of about 0.62. However, the 

quantities such as b
ij

, 
ij

  and   calculated by the 

proposed model converge towards asymptotic values. 

These values depend on the initial conditions. These 

trends are in agreement with the numerical simulations of 

Sarkar. This behavior is already confirmed by Stefan 

(2003). This author shows that the asymptotic values of 

the components 
11

b ,
22

b  and  
12

b  of the anisotropy 

tensor are clarified according to the gradient Mach 

number. 

2
0.4 exp( 0.3 )

11 3
b M

g
           (23) 

1
0.17 exp( 0.3 )

22 3
b M

g
           (24) 

0.17exp( 0.2 )
12

b M
g

                         (25) 

The long-time values of b
ij

 obtained by the present 

model, the DNS of Sarkar, the Hung and Fu’s model and 

the formulas of Stefan are summarized in Table 2. As 

one can remark that the proposed model gives better 

results for the prediction of the equilibrium states in 

homogeneous turbulent shear flows. 

4. CONCLUSION 

In this paper, we proposed a second-order model for 

strongly sheared compressible turbulence. In order to 

include the compressibility effects, a same damping 

function is introduced into the slow part and the rapid 

part of the Launder et al.’s model for the pressure-strain 

correlation. It should be noted that this is one of the most 

important assumptions used to derive this model. The 

proposed model is applied to simulate compressible 

homogeneous turbulent shear flow. Our results are 

compared with the DNS of Sarkar and with those 

obtained by the Hung and Fu’s model.  From the above 

comparisons, we note that on the overall our model 

works better than the Hung and Fu’s model. More 

detailed tests of the present model are currently 

underway. 
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