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ABSTRACT 

An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with 

heat and mass transfer of an electrically conducting, viscous, incompressible and time dependent heat absorbing fluid 

past an impulsively moving vertical plate in a porous medium taking thermal and mass diffusions into account is 

carried out. Exact solution of the governing equations is obtained in closed form by Laplace Transform technique. 

Exact solution is also obtained in case of unit Prandtl number and unit Schmidt number. Expressions for skin friction 

due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal 

plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid 

velocities and species concentration are displayed graphically whereas that of skin friction and Nusselt number are 

presented in tabular form for various values of pertinent flow parameters. 

Keywords: Hydromagnetic natural convection flow, Heat and mass transfer, Ramped temperature, Hall current, Coriolis force, 

Heat absorption. 

NOMENCLATURE 

0 :uniformmagnetic field,B    : specificheat at constant pressure,pc

: species concentration,C : molecular(mass) diffusivity,D

: accleration due to gravity,g  : thermal Grashof number,rG  

: solutalGrashof number,cG 1 : thermal conductivity,k     

1 : permeability parameter,K 2: rotation parameter,K

: Hall current parameter,m 2 : magneticparameter,M

: Prandtl number,
r

P
0

: characteristic time,t

: fluid temperature,T  : Schmidt number,
c

S

:primary fluid velocity,u :secondary fluid velocity.w

Greek Symbols

:cyclotron frequency,
e

 : electron collison time,
e


: kinematic coefficient of viscosity, :density,

:primaryskin friction,
x

 :secondaryskin friction,
z



: electricalconductivity,
:dimensionlessheatabsorption
 coefficient.


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1. INTRODUCTION 

Natural convection flow induced due to thermal and 

concentration buoyancy forces in a fluid saturated 

porous medium has been extensively studied in the past 

due to its frequent occurrence in nature and for its wide 

applications in industry. Natural phenomena such as 

photosynthesis, calm-day evaporation, vaporization of 

mist and fog, drying of porous solids and sea-wind 

formation (where upward convection is modified by 

Coriolis forces) occur due to differences in temperature 

and concentration or a combination of these two. In 

addition to it, coupled heat and mass transfer can also 

explain the nature of ocean currents driven by 

differential heating and act as freight trains for salt as 

pointed by Bejan (1993) and the role of factory waste 

gas diffusion in a differential heating circulated air. 

Also there are several industrial applications where heat 

and mass transfer take place simultaneously such as in 

heat exchanger devices, cooling of molten metals, 

insulation systems, petroleum reservoirs, filtration, 

chemical catalytic reactors and processes, nuclear waste 

repositories, desert coolers, wet bulb thermometers, 

frost formation in vertical channels (Fossa and Tanda 

2010) etc. Pioneering work on heat and mass transfer 

has been carried out by Eckert and Drake (1972). 

Gebhart et al. (1998) have candidly documented free 

convection boundary layer flow due to simultaneous 

heat and mass transfer with various geometries. Free 

convection flow involving heat and mass transfer from 

different geometries in non-porous and porous media 

are investigated by a number of researchers in the past. 

Mention may be made of research studies of Raptis 

(1982), Bejan and Khair (1985), Jang and Chang 

(1988), Nakayama and Hossain (1995), Yih (1997), 

Chamkha et al. (2001), Abdallah and Zeghmati (2011) 

and Bisht et al. (2011).  

 

Study of magnetohydrodynamic (MHD) natural 

convection flow with heat and mass transfer is of 

considerable importance due to its application in 

astrophysics, geophysics, aeronautics, electronics, 

meteorology, metallurgy, petroleum and chemical 

engineering etc. In addition to it, the thermal physics of 

hydromagnetic problems with mass transfer is of much 

significance in MHD energy generators, MHD flow-

meters, MHD pumps, MHD accelerators, controlled 

thermonuclear reactors etc. Many cross galvano and 

thermo magnetic effects occur in the boundary zone 

between hydraulics and thermal physics and they are 

relevant in the study of semiconductor materials. 

Keeping in view the importance of such study, Hossain 

and Mandal (1985) studied mass transfer effects on 

unsteady hydromagnetic free convection flow past an 

accelerated vertical porous plate. Jha (1991) discussed 

hydromagnetic free convection and mass transfer flow 

past a uniformly accelerated vertical plate through a 

porous medium when magnetic field is fixed with the 

moving plate. Elbashbeshy (1997) studied heat and 

mass transfer along a vertical plate in presence of 

magnetic field. Chen (2004) analyzed combined heat 

and mass transfer in MHD free convection flow from a 

vertical surface with Ohmic heating and viscous 

dissipation. Ibhrahim et al. (2004) considered unsteady 

magnetohydrodynamic micropolar fluid flow and heat 

transfer past a vertical porous plate through a porous 

medium in the presence of thermal and mass diffusions 

with a constant heat source. Makinde and Sibanda 

(2008) investigated magnetohydrodynamic mixed 

convective flow with heat and mass transfer past a 

vertical plate embedded in a uniform porous medium 

with constant wall suction in the presence of uniform 

transverse magnetic field. Makinde (2009) studied 

MHD mixed convection flow and mass transfer past a 

vertical porous plate embedded in a porous medium 

with constant heat flux. Eldabe et al. (2011) studied 

unsteady MHD flow of a viscous and incompressible 

fluid with heat and mass transfer in a porous medium 

near a moving vertical plate with time dependent 

velocity. Sharma et al. (2012) discussed steady mixed 

convection flow of water at 4oC along a non-isothermal 

vertical moving plate with transverse magnetic field. 

 

It is noticed that there may be significant temperature 

difference between ambient fluid and surface of the 

solid in a number of fluid flow problems of physical 

interest. Therefore, it is appropriate to consider 

temperature dependent heat source and/or sink which 

may have strong influence on heat and mass transfer 

characteristics. Sparrow and Cess (1961) were the first 

to investigate temperature dependent heat absorption on 

steady stagnation point flow and heat transfer. Several 

physical problems exist for possible application in 

industry where heat generation and absorption take 

place viz. fire and combustion modeling, fluids 

undergoing exothermic and/or endothermic chemical 

reaction, development of metal waste from spent 

nuclear fuel, applications in the field of nuclear energy 

etc. Keeping in view the importance of such study 

Chamkha and Khaled (2000) investigated 

hydromagnetic combined heat and mass transfer by 

natural convection from a permeable vertical plate 

embedded in a fluid saturated porous medium in the 

presence of heat generation or absorption. Kamel 

(2001) considered unsteady hydromagnetic convection 

flow due to heat and mass transfer through a porous 

medium bounded by an infinite vertical porous plate 

with temperature dependent heat sources and sinks. 

Chamkha (2004) discussed unsteady two dimensional 

convective heat and mass transfer flow of a viscous, 

incompressible, electrically conducting and 

temperature-dependent heat absorbing fluid past a semi-

infinite vertical permeable moving plate with thermal 

and concentration buoyancy effects. Reddy and Reddy 

(2011) studied steady two-dimensional MHD free 

convection and mass transfer flow past an inclined 

semi-infinite vertical surface embedded in a porous 

medium in the presence of heat generation. They found 

numerical solution of the problem using shooting 

technique. Reddy et al. (2012) investigated radiation 

effects on unsteady MHD flow of a viscous, 

incompressible and electrically conducting fluid past an 

exponentially accelerated infinite isothermal vertical 

plate with uniform mass diffusion in the presence of 

heat source. They obtained numerical solution of the 

problem using Crank-Nicolson finite difference 

scheme.  

 

Investigation of hydromagnetic natural convection flow 

in a rotating medium is of considerable importance due 

to its application in various areas of geophysics, 

astrophysics and fluid engineering viz. maintenance and 
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secular variations of Earth’s magnetic field due to 

motion of Earth’s liquid core, internal rotation rate of 

the Sun, structure of the magnetic stars, solar and 

planetary dynamo problems, turbo machines, rotating 

MHD generators, rotating drum separators for liquid 

metal MHD applications etc. It may be noted that 

Coriolis and magnetic forces are comparable in 

magnitude and Coriolis force induces secondary flow in 

the flow-field. Taking into consideration the importance 

of such study, unsteady hydromagnetic natural 

convection flow past an infinite isothermal moving 

plate in a rotating medium is studied by a number of 

researchers. Mention may be made of research studies 

of Raptis and Singh (1985), Kyth and Puri (1988), 

Tokis (1988), Nanousis (1992) and Singh et al. (2009). 

Recently, Ghosh et al. (2013) considered the effects of 

rotation on unsteady hydromagnetic free and forced 

convection in a channel subject to forced oscillation 

under an oblique magnetic field. 

 

In all these investigations, analytical/numerical solution 

is obtained by considering conditions for the velocity 

and temperature at the plate as continuous and well 

defined. However, there exist several problems of 

physical interest which may require non-uniform or 

arbitrary conditions at the boundary. Keeping in view 

this fact, several researchers investigated fluid flow 

problems of free convection from a vertical plate with 

step discontinuities in the surface temperature. Schetz 

(1963) attempted initially to develop an approximate 

model for free convection flow from a vertical plate 

with discontinuous thermal boundary conditions. Later, 

several investigations on such fluid flow problems are 

carried out by using an experimental technique (Schetz 

and Eichhorn, 1964), by numerical methods (Hayday et 

al. 1967) and by series expansion methods (Kelleher 

1971; Kao 1975). Lee and Yovanovich (1991) 

developed a new analytical model for laminar natural 

convection flow past a vertical plate with step change in 

wall temperature. Chandran et al. (2005) analyzed 

unsteady natural convective flow of a viscous and 

incompressible fluid near a vertical plate with ramped 

temperature. Seth and Ansari (2010) investigated 

unsteady hydromagnetic natural convection flow past 

an impulsively moving vertical plate with ramped 

temperature in the presence of thermal diffusion and 

heat absorption. Saha et al. (2010) presented a scaling 

analysis for unsteady natural convection boundary layer 

flow adjacent to an inclined flat plate with ramp cooling 

boundary condition.  Narhari (2012) discussed unsteady 

free convection flow between two vertical plates with 

ramped temperature within one of the plates in the 

presence of thermal radiation and mass diffusion. 

Recently, Seth et al. (2013b) considered the effects of 

rotation on unsteady hydromagnetic free convection 

flow of a viscous, incompressible and optically thick 

radiating fluid past an impulsively moving vertical plate 

with ramped temperature in a porous medium. 

 

It is noticed that when the density of an electrically 

conducting fluid is low and/or applied magnetic field is 

strong, Hall current is produced in the flow-field which 

plays an important role in determining flow-features of 

the fluid-flow problems because it induces secondary 

flow in the flow-field. Keeping in view this fact, 

significant contributions on hydromagnetic free 

convection flow past a flat plate with Hall effects under 

different thermal conditions are made by a number of 

researchers in the past. Mention may be made of the 

research studies of Abo-Eldahab and Elbarbary (2001) 

and Takhar et al. (2003). It may be noted that Hall 

current induces secondary flow in the flow-field which 

is also characteristics of Coriolis force. Therefore, it 

seems to be important to compare and contrast the 

effects of these two agencies and also study their 

combined effects on such fluid flow problems. 

Recently, Seth et al. (2013a) investigated effects of Hall 

current and rotation on unsteady hydromagnetic natural 

convection flow of a viscous, incompressible, 

electrically conducting and heat absorbing fluid past an 

impulsively moving vertical plate with ramped 

temperature in a porous medium taking into account the 

effects of thermal diffusion. 

 

Aim of the present investigation is to study the effects 

of Hall current and rotation on unsteady hydromagnetic 

natural convection flow with heat and mass transfer of a 

viscous, incompressible, electrically conducting and 

heat absorbing fluid past an impulsively moving 

vertical plate embedded in a fluid saturated porous 

medium taking into account the effects of thermal and 

mass diffusions when temperature of the plate has a 

temporarily ramped profile. Natural convection flow 

resulting from such ramped temperature profile of a 

plate may have influence on several engineering 

problems specially where initial temperature profiles 

are of much significance in designing of 

electromagnetic devices and so many natural 

phenomena which occur due to natural convection flow 

with heat and mass transfer and heat generation/ 

absorption. 

2. FORMULATION OF THE PROBLEM AND 

ITS SOLUTION 

Consider natural convection flow with heat and mass 

transfer of a viscous, incompressible, electrically 

conducting and heat absorbing fluid past an infinite 

vertical plate embedded in a uniform porous medium 

taking Hall current into account. Coordinate system is 

chosen in such a way that x - axis is considered along 

the plate in upward direction and y - axis normal to 

plane of the plate in the fluid. A uniform transverse 

magnetic field 0B  is applied in a direction which is 

parallel to y - axis. The fluid and plate rotate in unison 

with uniform angular velocity   about y - axis. 

Initially i.e. at time 0t  , both the fluid and plate are 

at rest and are maintained at a uniform temperature T
 . 

Also species concentration within the fluid is 

maintained at uniform concentration C
 . At time 

0t  , plate starts moving in x - direction with 

uniform velocity 0U  in its own plane. The temperature 

of plate is raised or lowered to   0/wT T T t t       

when 00 t t   , and it is maintained at uniform 

temperature wT   when 0t t 
  

 ( 0t being characteristic 

time). Also, at time 0,t   species concentration at the  
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Fig 1. Geometry of the Problem 

surface of the plate is raised to uniform species 

concentration 
wC  and is maintained thereafter. The 

geometry of the problem is presented in Fig. 1.  

 

Since plate is of infinite extent in x  and z  directions 

and is electrically non-conducting, all physical 

quantities except pressure, depend on y  and t  only. 

Also no applied or polarized voltages exist so the effect 

of polarization of fluid is negligible. This corresponds 

to the case where no energy is added or extracted from 

the fluid by electrical means (Cramer and Pai, 1973). It 

is assumed that the induced magnetic field generated by 

fluid motion is negligible in comparison to the applied 

one. This assumption is justified because magnetic 

Reynolds number is very small for liquid metals and 

partially ionized fluids which are commonly used in 

industrial applications (Cramer and Pai, 1973). 

 

Keeping in view the assumptions made above, 

governing equations for natural convection flow with 

heat and mass transfer of a viscous, incompressible, 

electrically conducting and heat absorbing fluid in a 

uniform porous medium in a rotating frame of 

reference, under Boussinesq approximation, taking Hall 

current into account are given by 

 
 

22
0

2 2

1

2
1

Bu u
w u mw u

t y m K

 




  
        

   
  

   * ,g T T g C C  
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(2) 

 
2
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2
p p

QT k T
T T

t c cy 


  
   

  
,       (3) 

2

2

C C
D

t y

  


  
,         (4) 

where *

1, , , , , , , , , , , ,u w K g T C D          

1, , , ,e e e e pm k c   
 
and 0Q  are, respectively, fluid 

velocity in x - direction, fluid velocity in z - direction, 

kinematic coefficient of viscosity, electrical 

conductivity, density, permeability of porous medium, 

acceleration due to gravity, coefficient of thermal 

expansion, coefficient of expansion for species 

concentration, fluid temperature, species concentration, 

molecular(mass) diffusivity, Hall current parameter, 

cyclotron frequency, electron collision time, thermal 

conductivity, specific heat at constant pressure and heat 

absorption coefficient. 

 

Initial and boundary conditions for the problem are 

specified as 

0, ,  for 0 and  0,u w T T C C y t 
            

     
(5a) 

0, 0 at 0   for 0,u U w y t             (5b) 

  0 0 at 0  for 0 ,wT T T T t t y t t 
           

      
(5c) 

0   at  0   for ,wT T y t t            (5d) 

at  0   for 0,wC C y t                                       (5e) 

, 0,  ,    
as     for 0.

u w T T C C
y t

 
       

  
      

(5f) 

 

Equations (1) to (4), in non-dimensional form, assume 

the following forms 
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2
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 
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2

2

1

c
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t S y
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where  

0 0 0 0 0, , , ,y y U t u u U w w U t t t         

2 2 2 2 2 2 2

0 0 0 1 1 0, , ,M B U K U K K U       

       , ,w wT T T T T C C C C C   
            

  3

0 1, ,r w r pG g T T U P c k  
    

 * 3 2

0 0 0,c w pG g C C U Q c U    
   

and .cS D                    
2 2

1, , , , , ,r c rM K K G G P   

and cS are, respectively, magnetic parameter, rotation 

parameter, permeability parameter, thermal Grashof 

number, solutal Grashof number, Prandtl number, 

dimensionless heat absorption coefficient and Schmidt 

number. 
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Characteristic time 0t is defined according to the non-

dimensional process mentioned above as 2

0 0t U . 

Initial and boundary conditions presented by Eqs. (5a) 

to (5f), in non-dimensional form, become 

 

0, 0, 0    for 0 and 0u w T C y t      ,        (10a) 

1, 0 at 0   for 0u w y t    ,                  (10b) 

  at 0   for 0 1T t y t    ,                   (10c) 

1 at  0   for  1T y t   ,                   (10d) 

1 at  =0 for >0C y t ,                    (10e) 

0, 0; 0; 0u w T C   
 

                
as for 0y t                 (10f)  

Equations (6) and (7) are presented, in compact form, as 

2

2 r c

F F
F G T G C

t y


 
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 
,     (11) 

where  

   2 2 2

1and 1 1 1/ 2 .F u iw M im m K iK      

 

Initial and boundary conditions presented by Eqs. (10a) 

to (10f), in compact form, are given by 

0, 0, 0    for 0 and 0F T C y t     ,             (12a) 

1, at 0   for 0F y t   ,                    (12b) 

  at 0   for 0 1T t y t    ,                                  (12c) 

1 at  0   for  1T y t   ,                                  (12d) 

1 at  =0 for  > 0C y t ,                                   (12e) 

0,   0, 0, as for 0F T C y t     .      (12f) 

Equations (8), (9) and (11) after taking Laplace 

transform and using initial conditions presented by Eq. 

(12a) reduce to 

 
2

2
0r

d T
P s T

dy
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2

2
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where 
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0

, , and 0stF y s F y t e dt s


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( s being the Laplace transform parameter). 

Boundary conditions presented by Eqs. (12b) to (12f), 

after taking Laplace transform, become 

  21 ,   1 , 1 at 0,

0,   0, 0 as  .

sF s T e s C s y
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(16) 

Solution of Eqs. (13) to (15) subject to the boundary 

conditions (16) are given by 
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Where 

 1 1r rG G P  ,  2 1c cG G S  , 

   1 1r rP P     ,  2 1 cS   . 

Exact solution for the fluid temperature  , ,T y t  

species concentration ( , )C y t and fluid velocity 

 ,F y t  is obtained by taking inverse Laplace 

transform of solution (17) to (19) which is expressed in 

the following form 
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 1H t   and  erfc x  are, respectively, the unit step 

function and complementary error function. 

2.1 Solution in case of unit Prandtl number and 

unit Schmidt number 

It is noticed that solution (22) for the fluid velocity is 

not valid for the fluids with unit Prandtl number and 

unit Schmidt number. Prandtl number is a measure of 

the relative strength of viscosity and thermal diffusivity 

of fluid whereas Schmidt number is a measure of the 

relative strength of viscosity and molecular (mass) 

diffusivity of fluid. Therefore, fluid flow problem with 

1rP   corresponds to those fluids for which both 

viscous and thermal boundary layer thicknesses are of 

same order of magnitude and 1cS  corresponds to 

those fluids for which both viscous and concentration 

boundary layer thicknesses are of same order of 

magnitude. There are some fluids of practical interest 

which belong to this category (Chen, 2004).  

Substituting 1rP   and 1cS  in equations (8) and (9) 

and following the same procedure as before, exact 

solution for fluid temperature  , ,T y t  species 

concentration  ,C y t and fluid velocity  ,F y t  is 

obtained and is presented in the following form 
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It is noticed from the solutions (20) and (21) that the 

solutions (23) and (24) for fluid temperature and 

species concentration can also be deduced directly by 

setting 1rP  and 1cS  in the solutions (20) and (21). 

2.2  Solution in case of Isothermal plate 

Solutions (20) and (22) represent the analytical solution 

for fluid temperature and fluid velocity for the flow of a 

viscous, incompressible, electrically conducting and 

heat absorbing fluid past an impulsively moving 

vertical plate with ramped temperature taking Hall 

current and rotation into account. In order to highlight 

the influence of ramped temperature distribution within 

the plate on the flow-field, it may be justified to 

compare such a flow with the one past an impulsively 

moving vertical plate with uniform temperature. 

Keeping in view the assumptions made in this paper, 

solution for the fluid temperature and fluid velocity for 

the flow past an impulsively moving isothermal vertical 

plate is obtained and is presented in the following form 
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where 

  11r rG P   . 

The solutions for fluid temperature presented by (20), 

(23) and (26) are already obtained by Seth et al. (2013). 

2.3  Skin Friction and Nusselt Number 

The expressions for primary skin friction x , secondary 

skin friction z  and Nusselt number Nu , which are 

measures of shear stress at the plate due to primary 

flow, shear stress at the plate due to secondary flow and 

rate of heat transfer at the plate respectively, are 

presented in the following form for ramped temperature 

and isothermal plates. 

(i) For ramped temperature plate 
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(ii) For isothermal plate 
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2.4 Sherwood Number 

The expression for Sherwood number Sh, which is a 

measure of rate of mass transfer at the plate, is given by  

.cS
Sh

t
                         (32) 

It may be noted from (32) that Sherwood number Sh 

increases on increasing Schmidt number cS  and 

decreases on increasing time t. Since Schmidt number 

Sc is a measure of relative strength of viscosity and 

molecular (mass) diffusivity of fluid, Sc decreases on 

increasing molecular (mass) diffusivity of fluid. Thus 

we conclude from (32) that mass diffusion tends to 

reduce the rate of mass transfer at the plate and there is 

reduction in rate of mass transfer at the plate with the 

progress of time. 

 

3. RESULTS AND DISCUSSION 

In order to analyze the effects of Hall current, rotation, 

thermal buoyancy force, concentration buoyancy force, 

mass diffusion and time on the flow-field, numerical 

values of the primary and secondary fluid velocities in 

the boundary layer region, computed from the 

analytical solutions (22) and (27), are displayed 

graphically versus boundary layer coordinate y in Figs. 

2 to 13 for various values of Hall current parameter m, 

rotation parameter 2K , thermal Grashof number rG , 

solutal Grashof number cG , Schmidt number cS  and 

time t taking magnetic parameter
2 15,M  permeability 

parameter 1 0.4,K 
 

heat absorption coefficient 

5  and Prandtl number 0.71rP  . It is revealed 

from Figs. 2 to 13 that, for both ramped temperature 

and isothermal plates, primary velocity u and secondary 

velocity w attain a distinctive maximum value near 

surface of the plate and then decrease properly on 

increasing boundary layer coordinate y  to approach 

free stream value. It is also noticed that the primary and 

secondary fluid velocities are slower in the case of 

ramped temperature plate than that of isothermal plate. 

It is evident from Figs. 2 and 3 that, for both ramped 

temperature and isothermal plates, u increases on 

increasing m in the region near the plate and it 

decreases on increasing m in the region away from the 

plate whereas w increases on increasing m throughout 

the boundary layer region. This implies that, for both  
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ramped temperature and isothermal plates, Hall current 

tends to accelerate secondary fluid velocity throughout 

the boundary layer region. Hall current tends to 

accelerate primary fluid velocity in the region near the 

plate whereas it has a reverse effect on primary fluid 

velocity in the region away from the plate. It is 

perceived from Figs. 4 and 5 that, for both ramped 

temperature and isothermal plates, u decreases on 

increasing 2K  whereas w increases on increasing 2K  

in the region near the plate and it decreases on 

increasing 
2K  in the region away from the plate. This 

implies that, for both ramped temperature and 

isothermal plates, rotation tends to retard primary fluid 

velocity throughout the boundary layer region whereas 

it tends to accelerate secondary fluid velocity in the 

region near the plate. It has a reverse effect on 

secondary fluid velocity in the region away from the 
plate. It is revealed from Figs. 6 to 9 that, for both 

ramped temperature and isothermal plates, u and w 

increase on increasing andr cG G . rG represents the 

relative strength of thermal buoyancy force to viscous 

force and cG
 

represents the relative strength of 

concentration buoyancy force to viscous force. 

Therefore,
 

andr cG G increase on increasing the 

strengths of thermal and concentration buoyancy forces 

respectively. This implies that thermal and 

concentration buoyancy forces tend to accelerate 

primary and secondary fluid velocities for both ramped 

temperature and isothermal plates It is noticed from 

Figs. 10 and 11 that, for both ramped temperature and 

isothermal plates, u and w decrease on increasing cS .  
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Fig. 10:Primary velocity profiles when 0.5, 5,
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Fig. 12.Primary velocity profiles when 0.5, 5,
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Fig. 9. Secondary velocity profiles when 0.5, 5,
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Fig. 11. Secondary velocity profiles when 0.5, 5,
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Fig. 13.Secondary velocity profiles when 0.5, 5,
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cS is the measure of relative strength of viscosity to 

molecular (mass) diffusivity of the fluid, cS
 
decreases 

on increasing mass diffusivity. This implies that mass 

diffusion tends to accelerate primary and secondary 

fluid velocities for both ramped temperature and 

isothermal plates. It is evident from Figs. 12 and 13 

that, for both ramped temperature and isothermal plates, 

u and w increase on increasing t. This implies that 

primary and secondary fluid velocities are getting 

accelerated with the passage of time for both ramped 

temperature and isothermal plates. 

 

The numerical values of species concentration C, 

computed from analytical solution (21), are presented 

graphically versus boundary layer coordinate y  in 

Figs.14 and 15 for various values of Schmidt number Sc 

and time t. It is evident from Figs. 14 and 15 that 

species concentration C decreases on increasing Sc 

whereas it increases on increasing t. This implies that 

mass diffusion tends to enhance species concentration 

and there is an enhancement in species concentration 

with passage of time. 
 

The numerical values of primary skin friction x , 

secondary skin friction ,z computed from analytical 

expressions (28) and (30), are presented in tabular form 

in Tables 1 to 6 for various values of m, 
2 , , , andr c cK G G S t

 
taking 

2

115, 0.4, 5M K     

and 0.71rP  . It is evident from Tables 1 to 6 that 

primary skin friction x decreases on increasing 

m, , andr cG G t whereas it increases on increasing  
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Fig.14. Concentration profiles when 0.5t 
 

 

t 0.3, 0.5, 0.7

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

y

C

 

Fig.15. Concentration profiles when 0.6
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Table 1 Skin Friction for ramped temperature plate when 6, 5, 0.6 and 0.5
r c c

G G S t     

 
K

2
→ m ↓ 

x  z  

5 7 9 5 7 9 
0.5 3.0119 3.2593 3.5083 2.2441 2.6637 3.0359 
1 2.6220 2.9332 3.2257 2.7228 3.1183 3.4622 
1.5 2.2614 2.6265 2.9525 2.9085 3.3013 3.6277 

 

Table 2 Skin Friction for isothermal plate when 6, 5, 0.6 and 0.5
r c c

G G S t   
 

 
K

2
→ m ↓ 

x  z  

5 7 9 5 7 9 
0.5 2.5352 2.8141 3.0909 2.4077 2.8406 3.2204 
1 2.1446 2.4925 2.8157 2.9329 3.3335 3.6782 
1.5 1.7737 2.1804 2.5402 3.149 3.5420 3.865 

 

Table 3 Skin Friction for ramped temperature plate when 
20.5,  5,  0.6 and 0.5

c
m K S t   

 

cG
 

   
→ 

rG ↓ 

x  z  

2 5 8 2 5 8 

 4 3.6426 3.1507 2.6587 2.0566 2.208 2.359 
6 3.5039 3.0120 2.52 2.0927 2.2441 2.3953 
8 3.3652 2.8732 2.3813 2.1291 2.2804 2.4316 

 

Table 4 Skin Friction for isothermal plate when 
20.5,  5,  0.6 and 0.5

c
m K S t   

 

cG
 

   
→ 

rG ↓ 

x  z  

2 5 8 2 5 8 

 4 3.3248 2.8327 2.3409 2.1656 2.3168 2.4681 
6 3.0272 2.5352 2.0433 2.2564 2.4077 2.5589 
8 2.7295 2.2376 1.7456 2.3472 2.4985 2.6497 

 

Table 5 Skin Friction for ramped temperature plate when
20.5,  5,  6 and 5

r c
m K G G   

 
t → 

cS ↓
 

x  z  

0.3 0.5 0.7 0.3 0.5 0.7 
0.22 3.0913 2.898 2.7119 2.2991 2.3689 2.4338 
0.32 3.1389 2.934 2.7423 2.2472 2.3291 2.4001 
0.6 3.2404 3.012 2.8081 2.1367 2.2441 2.328 

 

Table 6 Skin Friction for isothermal plate when 
20.5,  5,  6and 5

r c
m K G G     

t → 

cS ↓
 

x  z  

0.3 0.5 0.7 0.3 0.5 0.7 
0.22 2.4403 2.4213 2.413 2.5081 2.5325 2.5443 
0.32 2.4879 2.4572 2.4434 2.4562 2.4927 2.5106 
0.6 2.5894 2.5352 2.5092 2.3457 2.4077 2.4385 

 

Table 7 Nusselt number -Nu when 
r

P =0.71 

 → 

t ↓          
 

Ramped Temperature Plate Isothermal Plate
 

1 5 9 1 5 9 

0.3 0.5713 0.749 0.8981 1.1160 1.9209 2.5352 

0.5 0.7791 1.1294 1.4043 0.9830 1.8915 2.5284 

0.7 0.9692 1.507 1.9099 0.9253 1.8859 2.5279 
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2 and cK S  for both ramped temperature and isothermal 

plates. Secondary skin friction z increases on 

increasing m,
2 , , andr cK G G t whereas it decreases on 

increasing cS  for both ramped temperature and 

isothermal plates. This implies that, for both ramped 

temperature and isothermal plates, Hall current, thermal 

buoyancy force, concentration buoyancy force and mass 

diffusion have tendency to reduce primary skin friction 

whereas these physical quantities have reverse effect on 

secondary skin friction. Rotation tends to enhance both 

the primary and secondary skin frictions for both 

ramped temperature and isothermal plates. As time 

progresses, primary skin friction is getting reduced 

whereas secondary skin friction is getting enhanced for 

both ramped temperature and isothermal plates. 

 

The numerical values of Nusselt number Nu, calculated 

from analytical expressions (29) and (31), are presented 

in tabular form in Table 7 for various values of and t  

taking 0.71rP  . It is evident from Table 7 that, for 

both ramped temperature and isothermal plates, Nusselt 

number Nu increases on increasing  . Nu increases on 

increasing t for ramped temperature plate but it 

decreases on increasing t for isothermal plate. This 

implies that, for both ramped temperature and 

isothermal plates, heat absorption tends to enhance rate 

of heat transfer at the plate. As time progresses, rate of 

heat transfer at the plate is getting enhanced for ramped 

temperature plate whereas it is getting reduced for 

isothermal plate. 

4. CONCLUSIONS 

An investigation of the effects of Hall current and 

rotation on unsteady hydromagnetic natural convection 

flow with heat and mass transfer of an electrically 

conducting, viscous, incompressible and heat absorbing 

fluid past an impulsively moving vertical plate with 

ramped temperature embedded in a porous medium has 

been carried out. Significant findings are as follows: 

For both ramped temperature and isothermal plates: 

 Hall current tends to accelerate secondary fluid 

velocity throughout the boundary layer region. It 

tends to accelerate primary fluid velocity in the 

region near the plate whereas it has a reverse effect 

on primary fluid velocity in the region away from 

the plate. 

 Rotation tends to retard primary fluid velocity 

throughout the boundary layer region whereas it 

tends to accelerate secondary fluid velocity in the 

region near the plate. It has a reverse effect on 

secondary fluid velocity in the region away from 

the plate. 

 Thermal and concentration buoyancy forces and 

mass diffusion tend to accelerate primary and 

secondary fluid velocities throughout the boundary 

layer region. 

 Primary and secondary fluid velocities are getting 

accelerated with the passage of time throughout the 

boundary layer region. 

 Hall current, thermal buoyancy force, concentration 

buoyancy force and mass diffusion have tendency 

to reduce primary skin friction whereas these 

physical quantities have reverse effect on secondary 

skin friction.  

 Rotation tends to enhance both the primary and 

secondary skin frictions.  

 As time progresses, primary skin friction is getting 

reduced whereas secondary skin friction is getting 

enhanced. 

 

Rate of heat transfer at the plate is getting enhanced for 

ramped temperature plate whereas it is getting reduced 

for isothermal plate with the progress of time. 
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