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ABSTRACT 

The present study investigates entropy generation on a magnetohydrodynamic flow and heat transfer of a Maxwell 

fluid using a spectral relaxation method. The method is based on simple iteration schemes formed by reduction of the 

order of the momentum equation followed by a rearrangement of the resulting governing nonlinear equation systems 

which are then solved using spectral methods. The velocity and temperature profiles are obtained numerically and 

used to generate the entropy generation number. Entropy generation increased with the Reynolds number, the 

magnetic parameter and the dimensionless group parameter while decreased for higher Prandtl numbers. The effect of 

the flow parameters on the velocity and temperature of the flow were also investigated. The results were validated 

using the bvp4c where the spectral relaxation method was found to be accurate and rapidly convergent to the 

numerical results. 

Keywords: Spectral relaxation method, Chebyshev collocation, MHD flow, Maxwell fluid. 

NOMENCLATURE 

1. INTRODUCTION

The study of non-Newtonian fluid flows over a 

stretching sheet find applications in numerous 

manufacturing processes. These include wire and fibre 

coating, extrusion of molten polymers through a slit die 

for the production of plastic sheets, and foodstuff 

processing amongst others. In a characteristic sheet 

production process, the extrudate starts 

to solidify as soon as it exits from the die. The quality 

of the final product depends on the rate of heat transfer 

and hence the need for the cooling process to be 

controlled effectively (Mamaloukas et al. 2011; Motsa 

et al. 2012; Mukhopadhyay 2012). Flows in porous 
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channels/tubes have received special interest as they 

find a number of applications in mechanical 

engineering and biomedical Hayat et al. (2011). Such 

flows are applicable in the blood dialysis in artificial 

kidney, flow in the capillaries, flow in blood 

oxygenators, the design of filters and design of porous 

pipe. Hydromagnetics has been a subject of interest 

lately because of its applications in geophysics and 

astrophysics. To purify the molten metals from non-

metallic inclusions, hydromagnetic techniques are used 

hence the significance of studies of 

magnetohydrodynamic (MHD) flows of electrically 

conducting fluids (Abel et al. 2012; Mukhopadhyay and 

Gorla 2012). 

 

Amed and Kalita (2013) analyzed the problem of non-

linear MHD flow with heat and mass transfer 

characteristics of an incompressible, viscous, 

electrically conducting and Newtonian fluid over a 

vertical oscillating porous plate embedded in a porous 

medium in presence of homogeneous chemical reaction 

of first order and thermal radiation effects. Kumar 

(2013) recently reported the effects of radiation and 

heat source over a stretching surface subjected to a 

power law heat flux, in the presence of transverse 

magnetic field on two-dimensional boundary layer 

steady flow and heat transfer of a viscous 

incompressible fluid. Muthucumaraswamy et al. (2013) 

presented an exact analysis of rotation effects on 

unsteady flow of an incompressible and electrically 

conducting fluid past a uniformly accelerated infinite 

isothermal vertical plate with variable mass diffusion, 

under the action of transversely applied magnetic field. 

 

Non-Newtonian fluids are mainly classified into three 

types namely differential, rate and integral Hayat et al 

(2012). The Maxwell model is the simplest subclass of 

the rate type fluids. This fluid model has become the 

most popular as it can predict stress relaxation and also 

excludes the complicating effects of shear-dependent 

viscosity Mukhopadhyay 2012. In view of the Maxwell 

model, several researchers have analyzed the MHD 

flow of a Maxwell fluid under various aspects of 

rotation, thermal radiation, heat and mass transfer, 

chemical reaction, suction/injection, thermophoresis 

and heat source/sink (Bataller 2011; Zheng et al. 2013; 

Noor 2012; Vajravelu 2012). 

 

According to the second law of thermodynamics, all 

flow and heat transfer processes undergo changes that 

are irreversible mostly caused by the energy losses 

during the processes (Butt and Ali 2013). Such effects 

cannot be completely eliminated from the system and 

this results in loss of energy. In thermodynamics, such 

irreversibility is quantified by means of entropy 

generation rate (Butt and Ali 2013). The accurate 

estimation of entropy generation is crucial in the design 

and development of thermo-fluid components such as 

pipe networks, energy storage systems, heat 

exchangers, pumps, turbines, and electronic cooling 

devices, Mahian et al (2012). 

 

Since the pioneering work carried out by (Bejan 1979, 

1982) extensive research has been made by researchers 

related to the entropy generation in the flow and heat 

transfer systems. Rashidi and Mehr (2012) investigated 

the entropy generation in the MHD flow over a porous 

rotating disk in the presence of the velocity slip and 

temperature jump conditions by means of the DTM-Padé. 

From their simulations they found out that the disk 

surface was a strong source of irreversibility and that 

entropy was minimized when the magnetic interaction, 

Prandtl number, Brinkman number decrease or when the 

Reynolds number and suction parameter increase. 

 

Effects of the magnetic field on the entropy generation 

on the flow and heat transfer of a viscous fluid due to 

the radially stretching sheet were considered by Butt 

and Ali (2013). They carried out their simulations using 

the homotopy analysis method and the shooting method 

and found that the local entropy generation number 

increased with the magnetic field parameter and that the 

fluid friction and the magnetic field irreversibility were 

dominant at the stretching surface. Makinde and 

Gbolagade (2005) analyzed the combined effects of 

viscous dissipation and inclined channel uniform 

temperature on the entropy generation and irreversibility 

ratio on a laminar flow of a viscous incompressible fluid 

through an inclined channel with isothermal walls. The 

problem was solved analytically by means of separation 

of variables. From their results the heat transfer 

irreversibility showed to dominate along the channel 

centerline 

 

Karamallah et al. (2011) carried out a numerical study of 

entropy generation in a vertical square channel packed 

with saturated porous media. The results reviled that as 

Darcy and Reynolds numbers were increasing, the 

irreversibility due to fluid friction dominated, while as 

the Eckert increased, the irreversibility due to heat 

transfer increased. The effect of uncertainties in physical 

properties on entropy generation between two rotating 

cylinders with nanofluids was investigated by Mahian et 

al. (2012). They found analytical expressions of the 

entropy generation number for six different models. 

From their study it was shown that when the contribution 

of viscous effects in entropy generation were adequately 

high for the base fluid, all the models predicted the 

increase of entropy generation with an increase of 

particle loading. 

 

Makinde and Aziz (2011) analytically analyzed entropy 

generation and thermal stability in a long hollow cylinder 

with asymmetry convective cooling. The internal heat 

generation irreversibility was found to dominate almost 

the entire slab. The effect of porous medium permeability 

on the entropy generation and irreversibility ratio in a 

laminar flow through a channel filled with saturated 

porous media was investigated by Makinde and Osalusi 

(2005). The results showed that heat transfer 

irreversibility dominated over fluid friction irreversibility 

and that viscous dissipation had no effect on the entropy 

generation rate at the centerline of the channel. 

 

A numerical study of entropy generation of a 

magnetohydrodynamic (MHD) flow and heat transfer 

over a nonlinear permeable stretching sheet with partial 

slip at constant surface temperature was presented by 

Yazdi et al. (2011). The entropy generation number was 

enhanced by the suction parameter and decreased with 

the injection parameter because of the friction 

irreversibility due to viscous dissipations. Also, the 
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Brinkman and Reynolds number tended to enhance 

entropy generation. Eegunjobi and Makinde (2012) 

carried out a numerical study of the combined effect of 

buoyancy force and Navier slip on entropy generation 

in a vertical porous channel. Buoyancy forces caused a 

slight increase in the entropy generation rate at the 

injection wall and sporadic increases at the suction wall 

and as the slip parameter increased, the entropy 

generation rate at both suction and injection walls 

increased. 

 

In addition to the above mentioned studies more work 

has been carried out on entropy generation to consider 

viscosity and convective cooling (Tshehla et al. 2010; 

Tshehla and Makinde 2011; Torabi and Aziz 2012), 

channel inlet port height Shuja et al. 2008, heat transfer 

and flow in nanofluid suspensions Hassan et al. (2013), 

thermal radiation Chen et al. (2011) and hydrodynamic 

slip Butt et al. (2012), amongst others. 

 

The above studies have focused on entropy generation 

analysis on non-Newtonian fluids and to the best of our 

knowledge none has been reported on the Maxwell 

fluid model. In this study we aim at investigating 

entropy generation on a magnetohydrodynamic flow 

and heat transfer of a Maxwell fluid over a stretching 

sheet in a Darcian porous medium. The velocity and 

temperature profiles will be obtained numerically and 

used to generate the entropy generation number. The 

effects of physical flow parameters on the entropy 

generation number will be investigated. The study will 

be carried out using the spectral relaxation method. It is 

a newly proposed numerical scheme used to solve 

nonlinear systems of boundary value problems. It is 

based on simple iteration schemes formed by reduction 

of the order of the momentum equation followed by a 

rearrangement of the resulting governing nonlinear 

equation systems which are then solved using the 

Chebyshev spectral collocation method Motsa and 

Makukula (2013) and Shateyi and Makinde (2013). In 

the paper, in section 2 we give the model formulation of 

the problem, in section 3 the spectral relaxation method 

is given in detail, in section 4 are the results and 

discussions and section 5 are the conclusions based on 

the findings. 

2. PROBLEMFORMULATION 

We consider a steady MHD flow of a Maxwell fluid 

over stretching sheet in a Darcian porous medium. A 

uniform magnetic field    is applied normal to the flow 

direction and there is no applied electric field. As 

depicted in Figure 1, the    axis is taken in the 

direction of the main flow along the plate and the   
 axis is normal to the plate with velocity components 

u,v in these directions. The boundary layer 

approximations for the flow under consideration are  
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Fig. 1. Physical configuration and coordinate system 

for the flow 
 

The suitable boundary conditions are 

                       
   

  
 

                                              (4) 
 

    
  

  
                                 (5) 

 

2.1 Similarity transformation  

The governing equations (2) - (5) can be transformed to 

a set of nonlinear ordinary differential equations by 

introducing the following non-dimensional variables: 
 

  √
 

 
    √             

    

     
 

           (6) 
 

where  is the stream function that satisfies the 

continuity equation (1) with  
 

  
  

  
            

  

  
 √      

      (7) 
 

Using equations (6) and (7) in the governing equations 

we obtain the following set of non-linear ordinary 

differential equations, 
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where        is the Deborah number,   
   

 

  
 

is the magnetic parameter,   
 

  
 is the porosity 

parameter,   
 

    
 is the heat source/sink 

parameter,    
   

 
 is the Prandtl number,    

 

   
is the Eckert number. 

 

The boundary conditions become:  
 

                            (10) 

                      (11) 

2.2 Entropy generation analysis  

We consider the entropy generation related to MHD 

flow of a Maxwell fluid over a stretching surface. 

Entropy generation in a fluid is caused by the exchange 

of momentum and energy within the fluid and at the 

boundary. Heat transfer in the direction of finite 

temperature gradients generates one part of the entropy 

generation while the other part is due to fluid friction 

irreversibility. The local volumetric rate of entropy 

generation in the presence of a magnetic field is given 

by (Woods 1985): 
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The first term on the right-hand side of equation (12) is 

the entropy generation due to heat transfer across a 

finite temperature gradient; the second term is the local 

entropy generation due to viscous dissipation, while the 

third term is the local entropy generation due to the 

effect of the magnetic field. We get the dimensionless 

number for the entropy generation rate   by dividing 

the local volumetric entropy generation rate    by a 

characteristic entropy rate     
 

For prescribed boundary condition the characteristic 

entropy generation rate is:  
 

             
      

    
           (13) 

 

where ΔT is the temperature difference, l is the 

characteristic length. Therefore, the entropy generation 

number is  

     
  

   
                      (14) 

Using the expressions of the dimensionless velocity and 

temperature, the entropy generation number is then 

given by: 

   
 

  
        

   

 
  

 
          

            
(15) 

 

where     
   

 
 is Reynolds number based on the 

characteristic length,    
   

 

   
 is the Brinkman 

number,       √
 

 
 is the Hartmann number, 

      is the non-dimensional surface length and 

  
  

  
 is the dimensionless temperature difference.  

 

The rate of entropy generation will then be obtained 

from the previous solutions of the boundary layers for 

the fluid velocity and temperature. 

3. METHOD of SOLUTION 

In this section we present the development of the 

spectral relaxation method (SRM) for the solution of 

the governing equations and its implementation on the 

governing equations (8 - 9). Before applying the SRM, 

it is convenient to reduce the order of the momentum 

equation by introducing the transformation 

          . The transformed equations become  

 

                   

                        ,   (16)

      (17) 
 

  
                             

 , 
     (18) 

and the boundary conditions are   

                                   (19) 

                                 (20) 

 

To develop the SRM algorithm, we consider equations 

(16 - 18) in the order in which they are listed and label 

them as equations for g , f  and θ  respectively. The 

labelling strategy is guided by the highest order 

derivatives in each particular equation. In the equations 

for g , at a particular iteration level (denoted by  γ+1), 

the functions f  and θ are assumed to be known from 

the previous iteration level (denoted by  γ). It is also 

assumed that all nonlinear terms in g  are evaluated at 

the previous iteration. In addition, it is also assumed 

that all derivative terms in g  which appear 
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The boundary conditions are the same as (19) and (20) 

but are now evaluated at the current iteration (r+1). 

 

The equations for the algorithm (21 - 23) form a system 

of decoupled linear differential equations with variable 

coefficients which can be solved using standard 

numerical methods for solving differential equations. In 

this work, we use the Chebyshev spectral collocation 

method. It is for this reason that the solution method is 

referred to as the spectral relaxation method. For 

brevity, we omit the details of the spectral methods, and 

refer interested readers to (Canuto 1988; Fornberg 

1996; Trefethen 2000). Spectral methods are well 

known to give remarkably good accuracy with 

relatively few grid points compared to other methods 

such as finite differences and finite element methods. 

This is particularly true for problems with smooth 

solutions. 

 

To allow for the numerical implementation of the 

pseudo-spectral method, the physical region       is 

truncated to        where    is chosen to be 

sufficiently large. The truncated region is further 

transformed to the space [-1,1] using the transformation 

  
 

  
   .  

The spatial domain is then discretized using the popular 

Gauss-Lobatto collocation points (see for example 

Canuto 1988; Trefethen 2000) to define the nodes in [-

1,1] as   
 

      (
  

 
)                            (24) 

Where (N+1) is the number of collocation points. The 

basic idea behind the Chebyshev spectral collocation 

method is the introduction of a differentiation matrix  D 

which maps a vector of the function values   
                 at the collocation points to a 

vector    defined as 

   ∑   
                 

    (25) 
 

In general, the derivative of order p  for the function 

     can be expressed by   

                   (26) 

where        . The matrix D is of size    
         and its entries are defined (Canuto 

1988; Trefethen 2000) as 
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With 

   {
      
                   

                    (28) 

Thus, applying the spectral method, with derivative 

matrices on the iteration (21 - 23) and the 

corresponding boundary conditions yield 

                                     
  

                                                        
  
 

                                    
  

Where 

 

                       
          

     

                                
                     

(32) 
 
 

                         (33) 
 

                                  
            

     
                                       (34) 

with I  being an identity matrix of size       
     , G , F  and  are the values of functions f , 

g  and  θ respectively, when evaluated at the 

collocation points. Equations (32 - 34) constitute the 

SRM iteration scheme. The initial approximations 

required to start the iteration process are       

   
,         

 and       
 which are 

convenient functions that satisfy all the boundary 

conditions. Starting from         , the SRM scheme 

is implemented repeatedly for          until the 

difference between successive solutions is less than a 

given tolerance level. In this work, convergence of the 

SRM scheme was defined in terms of the infinity 

norm as 

                            

                                    

If the iteration scheme converges, the error 
r
E is 

expected to decrease with an increase in the number of 

iterations. Accuracy of the scheme was established by 

increasing the number of collocation points N until the 

solutions are consistent and further increase does not 

change the value of the solutions. 

 

The convergence of the SRM can be improved by 

employing successive over-relaxation (SOR) like 

methods which are widely used to accelerate the 

convergence rates of the Gauss-Seidel method in the 

solution of linear systems of equation. If the SRM 

scheme for obtaining the function X at the ( r +1) th 

iteration is 
 

                                                                                    
 

then the modified version of the SRM is defined as 

 

                                                  
    
 

where A, B are matrices and ω is the convergence 

controlling relaxation parameter. It must be noted that 
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when  ω = 1 equation (37) reduces to the original SRM 

method. For some parameters of  ωnear 1, it will be 

demonstrated in the next section that the convergence 

of the SRM is improved. 

4.  RESULTS AND DISCUSSION 

The magnetohydrodynamic flow and heat transfer in a 

Maxwell fluid over a stretching sheet in a porous 

medium has been solved numerically using a spectral 

relaxation method (SRM). Numeric expressions of the 

velocity and temperature have been used to compute 

the entropy generation. The results are displayed in 

this section showing a comparison between the SRM 

solutions with those generated using the       and 

effects of selected flow parameters on the velocity, 

temperature and entropy generation number. The 

comparison was made to validate the accuracy of the 

SRM solutions. The       is an in-built MATLAB 

solver for boundary value problems based on the 

fourth order Runge-Kutta schemes. The tolerance 

level for both methods was set to be      . The 

figures were generated using  

     and       unless specified. 

 
 

Table 1 Comparison of SRM solutions for         against those of the       for different values of      

and   when      obtained at different values of   . 

 SRM With SOR  

       iter.    iter.                

1 1 1 18 0.90 12 1.96971626 1.96971626 

2 1 1 17 0.90 12 2.28778217 2.28778217 

3 1 1 16 0.95 10 2.56666187 2.56666187 

1 0.5 1 17 0.90 12 1.85307105 1.85307105 

1 1 1 18 0.90 12 1.96971626 1.96971626 

1 2 1 22 0.95 17 2.18931579 2.18931579 

1 1 0.5 21 0.90 12 1.84034071 1.84034071 

1 1 1 18 0.90 12 1.96971626 1.96971626 

1 1 2 16 0.95 11 2.20681301 2.20681301 

 

Table 2 Comparison of SRM solutions for        against those of the       for different values of       

and   when      obtained at different values of   . 

 SRM With SOR  

        iter   iter              

3 0.2 1 18 0.90 12 2.09594309 2.09594309 

5 0.2 1 18 0.90 12 2.72342818 2.72342818 

7 0.2 1 18 0.90 12 3.21999625 3.21999625 

5 0.5 1 18 0.90 12 1.59114632 1.59114632 

5 1 1 18 0.90 12 -0.29599013 -0.29599013 

5 1.5 1 18 0.90 12 -2.18312657 -2.18312657 

5 0.2 1 18 0.90 12 2.72342818 2.72342818 

5 0.2 2 17 0.90 12 2.38301961 2.38301961 

5 0.2 3 16 0.95 10 2.08191143 2.08191143 

 

A plot of the error of the norm, as defined in equation 

(35), against the number of iterations has been used in 

Figure 2 to illustrate how the SRM error reduces with 

increased number of iterations. The plot has been 

generated for different values of the magnetic 

parameter. A steep decrease of the error is being 

observed for all values of M The decrease in the error is 

an indication that the method is convergent and gives 

stable solutions. The convergence rate is taken to be the 

number of iterations the solution takes to reach a 

specified accuracy level. For example, in the figure it 

shows that when  M=4 the solution will converge after 

fourteen iterations for the given accuracy level 

compared to sixteen when  M=2 

  

Fig. 2.The SRM error curve illustrating the 

convergence criteria of the method 

In Table 1 is a comparison of the SRM solutions of the 

shear stress         against those of the       
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generated at selected values of the magnetic parameter, 

the Deborah number and the porosity parameter. The 

Table also displays the advantage of accelerating the 

convergence rate. An improvement in the convergence 

rate is observed for all cases. The effect of the magnetic 

parameter, Deborah number and porosity parameter is 

to increase the shear stress. A very good agreement 

between the two solutions for up to eight decimal places 

is being observed. 

The heat transfer rate        for selected values of the 

Prandtl number, Eckert number and the magnetic 

parameter is shown in Table 2. The comparison 

between the SRM and       results shows a very 

good agreement for up to eight decimal places. Heat 

transfer rate increases with increase in    while 

decreases with increase in    and  . In the Table the 

advantage of accelerating the convergence is again 

shown. The convergence rates improve for all cases 

with relaxation. 

The variation of the transverse velocity      for 

different values of the magnetic parameter   is shown 

in Fig. 3. For any  ,      increases with   

asymptotically. Applying a magnetic field decreases the 

momentum boundary layer thickness and increase the 

power required to stretch the sheet. This in turn 

decreases      with increase in the magnetic 

parameter. While      increases asymptotically with 

 , the longitudinal velocity,       is seen to decrease 

with  
 

 

Fig. 3.Effect of the magnetic parameter on the 

transverse velocity (     and    ). 

 

Fig. 5.Effect of the Deborah number on the 

transverse velocity (    and    ). 

 
Fig. 7.Effect of the porosity parameter on the 

transverse velocity (    and     ). 

  in Fig. 4. For the same justification as in Fig. 3 the 

longitudinal velocity is seen to decrease with increase 

in the magnetic parameter. Application of the transverse 

magnetic field produces a drag force known as Lorentz 

force thereby decreasing the magnitude of the flow 

velocity. 
 

The effect of the Deborah number is shown to decrease 

the transverse velocity      of the flow in Fig. 5. In 

Fig. 6 the longitudinal velocity       is seen to also 

decrease with increase in the Deborah number. 

 

Fig. 4.Effect of the magnetic parameter on the 

longitudinal velocity (     and    ). 

 
Fig. 6. Effect of the Deborah number on the 

longitudinal velocity (    and    ). 
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Fig. 8. Effect of the porosity parameter on the 

longitudinal velocity (    and     ). 

In Fig. 7 is the effect of the porosity parameter on  

the transverse velocity of the flow. Increasing the 

porosity of the surface tends to decrease the transverse 

velocity of the flow. The longitudinal velocity       is 

also seen to decrease with increase in the porosity 

parameter in Fig. 8. 

 
The temperature profiles for different values of the 
magnetic parameter are shown in Fig. 9. Thermal 
boundary layer increases in the presence of a magnetic 
field, thus increasing the magnetic parameter results in  

 

Fig. 9.Effect of the magnetic parameter on the 

temperature (                 ). 

 
Fig. 11.Effect of the Eckert number on the 

temperature (              ). 

an increase of the temperature. The presence of a 

transverse magnetic field slows down the fluid flow 

thereby heating up the fluid. This in turn reduces the 

heat transfer from the wall which then leads to the 

thickening of the thermal boundary layer. 

 

The effect of the Prandtl number on the temperature is 

shown in Fig. 10. The temperature decreases with an 

increase in Prandtl number which implies that the 

thermal boundary layer becomes thinner with large 

Prandtl number. 

 

Figure 11 shows the effect of the Eckert number on the 

temperature profile. High    numbers implies highheat 

levels produced by friction hence increased 

temperatures on the system. Temperature profiles as 

functions of   for various values of the heat source 

parameter are shown in Fig. 12. The temperature 

increases with the heat source parameter for a fixed 

value of  . This happens because increasing the heat 

source/sink parameter means increased heat generated 

inside the boundary layer leading to higher temperature 

profile. 

 

The effect of the magnetic parameter on the entropy 

generation number is shown on Fig. 13. The entropy 

generation number increases with the magnetic 

parameter. This happens because the magnetic field 

supports entropy in the fluid. Physically the presence of  

 

Fig. 10. Effect of the Prandtl number on the 

temperature (                ).. 

 

Fig. 12. Effect of the heat source on the  

temperature (               ). 
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the magnetic field creates more entropy generation in 

the fluid as the fluid as fluid flow velocity is reduced. 

Figure 14 presents the effect of the Prandtl number    

on the entropy generation number. The entropy 

generation number is higher for lower Prandtl number. 

Increasing values of the Prandtl number reduces the 

fluid temperature as highlighted in Figure 10. This 

sharp decrease of the temperature profiles leads to sharp 

decrease in the entropy generation in the flow system. 

For a given value of   , the entropy generation number 

increases with increase in the Reynolds number. This is 

shown in Fig. 15. At high Reynolds numbers fluid 

friction and heat transfer take place in the boundary 

layer increasing the contribution of the entropy 

generation number as the fluid becomes more viscous. 

The effect of the dimensionless group parameter 

      on the entropy generation number    is shown 

in Fig. 16. The relative importance of the viscous effect 

on the flow is determined by this parameter. In the 

figure, for a given value of   the entropy generation 

number is higher for higher dimensionless group. This 

is caused by the fact that for higher dimensionless 

group, the entropy generation numbers due to the fluid 

friction are increased. 

5. CONCLUSION 

A spectral relaxation method (SRM) has been 

successfully used to solve numerically the 

 
Fig. 13.Effect of the magnetic parameter on the 

entropy generation number (            
                             

                ). 

 
Fig. 15.Effect of the Reynolds number on the 

entropy generation number (         
                            

                ). 

magnetohydrodynamic flow and heat transfer in a 

Maxwell fluid over a stretching surface in a porous 

medium. The entropy generation number was computed 

using numeric expressions of the velocity and 

temperature. Effects of the magnetic parameter, Prandtl 

number, Reynolds number and dimensionless group 

parameter on the entropy generation number have been 

investigated and discussed. Discussed also was the 

effect of the Deborah number, the magnetic parameter 

and the porosity parameter on the velocity of the flow 

and that of the Prandtl number, Eckert number, 

magnetic parameter and heat source/sink parameter on 

the temperature of the flow. It was found that velocities 

depend strongly on the magnetic and the viscoelastic 

parameters while the temperature varied significantly 

with the Prandlt number, the magnetic parameter, the 

Eckert number and the heat source parameter. Entropy 

 

Fig. 14.Effect of the Prandtl number on the entropy 

generation number (               
                         

                ).. 

 

Fig. 16.Effect of the dimensionless group on the 

entropy generation number (            
                         

             ). 

generation increased with the Reynolds number, the 

magnetic parameter and the dimensionless group 

parameter while decreased for higher Prandtl numbers. 

The spectral relaxation method was found to be 

accurate and rapidly convergent to the numerical 

results. 
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