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ABSTRACT 

This paper deals with the dynamic analysis and simulation of Pipeline Inspection Gage (PIG) through the two and 

three dimensional gas pipelines. Continuity, momentum and the state equations are employed to achieve the gas flow 

parameters like density, velocity and pressure along the pipeline since the dynamic behavior of the pig depends on the 

flow field characteristics. Also, a differential equation which governs the dynamic behavior of the pig is derived. The 

pig is assumed to be a small rigid body with a bypass hole in its body.  The variation of the diameter of the bypass 

port, which is controlled by a valve, is considered in this research. The path of the pig or geometry of the pipeline is 

assumed to be 2D and 3D curve. 2D and 3D simulations of the pig motion are performed individually using Rung-

Kutta method and a case has been solved and discussed for each of them. The simulation results show that the derived 

equations are valid and effective for online estimating of the position, velocity and forces acting on the pig in gas 

pipelines at any time of the motion. 

Keywords: Pig, Dynamic, Simulation, Gas pipeline. 

NOMENCLATURE 

1. INTRODUCTION

Various kinds of petroleum products are yet transported 

in worldwide using pipelines. During these 

transportation, the pipeline will deposit debris or 

residual products such as scale, wax, and gas hydrates 

as well as exposed to physical damages such as dent 

and internal corrosion. Pipeline engineers have to know 

the internal status of these pipelines because after 

sometimes, they loose their healthy and may explode. 

Pigging operation is a standard and accepted method to 

deal with these emerging challenges. Thus, the 

pipelines have to be cleaned and inspected periodically 

using the suitable pigs. The smart or intelligent pigs are 

those advanced pigs used in this area. They are 

equipped with a number of transducers which are 

installed on them circumferentially for detection of 

surface defects such as cracks and corrosions. 

Engineers have to consider many parameters for 

designing a pigging operation such as the effects of 

velocity, upstream pressure, temperature and etc. 

The dynamic analysis of a pig in an arbitrary 2 and 

A area cross section of the pipeline 

D pipeline diameter 

hD  hydraulic diameter

g acceleration of gravity 

f(x) function of centerline of the pipe in 2D 

sgn(x) sign function of x 

F    dry friction force 

pig
L length of the pig  

m   mass of the pig 

N  normal force acting on the pig 

SC
K , VK , SEK   coefficients of pressure losses

fF  friction force    

 f    coefficient of friction loss in pipeline 

tailP       pressure at the tail of the pig 

I   noseP     pressure at the nose of the pig

hA  area cross section of the valve 

hV    velocity of fluid at the valve 

 p  wet pipeline perimeter 

 a time dependent parameter in 3D
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3-dimensional pipelines can estimate these important 

parameters for the designers. This analysis can also 

specify the required injected pressure for pigging 

operations and approximate the total time of it. The 

dynamic behavior of the pig depends on the 

difference pressure across its body and height 

variations of its center of gravity. Determination of 

kinematics parameters of a pig and acting forces on 

it can be obtained by solving the governing 

equations of fluid flow together with the pig 

dynamic equations.  

 

Results of research on the motion of the pig in 

pipeline are scarcely found in the literatures. Most of 

results are commercially based on field experience. 

It seems that the first research in modeling of the pig 

motion has been introduced by McDonal et. al. 

(1964). The computation errors were generated in 

this work due to the used assumption and numerical 

approach. This modeling was modified and improved 

by removing some limitations by Barua (1982). The 

first pigging model was based on full two-phase 

transient flow formulation proposed by Kohda et. al. 

(1988). This model is composed of correlations for 

pressure drop across the pig, slug holdup, pigging 

efficiency, pig velocity model and a gas and liquid 

mass flow boundary condition applied to the slug 

front. Some other complementary researches for 

pigging simulation in two-phase flow straight 

pipelines were also reported by (Minami and 

Shoham 1991; Taitel et. al. 1989;Scoggins and M. 

W. 1977; Xiao-Xuan and Gong 2005).Transient pig 

motion through gas and liquid pipelines was 

presented by Nieckele et. al. (2001). Modeling and 

simulation for pig flow control in natural gas 

pipeline was studied by Nguyen et. al. (2001). One 

type of pig using bypass flow in natural gas pipeline 

was considered by some investigators such as 

Nguyen et. al.(2001). They proposed a simple 

nonlinear controller for controlling the pig velocity 

when it flows in natural gas straight pipeline. Also, 

to provide an efficient tool to assist in the control 

and design of pig operations through pipelines, a 

numerical code has been developed by Esmaeilzadeh 

et. al.(2009). The results obtained with the code in 

this research were compared with experimental 

results and a good agreement between the two was 

obtained. 

 

In all the mentioned studies, researchers assumed that 

the pig moves in a straight line in the plane. 

Simulation of small pig in space pipeline was studied 

firstly by Saeidbakhsh et. al.(2009). This study was 

based on some simplifying assumptions such as: the 

pig is small, the pig/wall friction coefficient is 

constant and the driving force is time-dependent. In 

this research, the influence of the flow field is 

modeled only by time dependent driving force acting 

on the pig. This assumption was made only for 

simplicity. The effect of flow field was considered by 

Lesani et. al. (2012) for a bypass flow pig through two 

and three dimensional liquid pipeline. This extension 

is based on some simplifying assumptions such as: the 

pig is small, the pig/ wall friction coefficient is 

constant and fluid is incompressible. Speed control of 

the bypass flow pig using the QFT method was done 

by Mirshamsi and Rafeeyan (2012) to keep the pig 

velocity near a constant value. In this study fluid was 

considered incompressible and the pipeline is two 

dimensional. Considering the influence of flow field 

on the pig’s trajectory through gas pipelines can be a 

logical extension for further work. 

 

The objective of the present work is the dynamic 

analysis of a pig motion in the two and three 

dimensional gas pipelines. In this study, fluid is 

assumed compressible. The differential equations of the 

pig in pipelines are derived by Newton’s second law for 

pig and momentum, continuity and state equation for 

fluid. Two differential equations are solved. First, the 

differential equation of fluid is solved to get fluid 

properties such as velocity, pressure and density along 

the pipelines. Then, the differential equation of pig 

motion is solved to get the pig velocity and position in 

pipeline. Rung-Kutta method is used for solving both 

equations. The 2D and 3D test cases are chosen to 

illustrate the application of this new formulation for 

these cases. 

1. MODELING 

2.1 Case 1: Two-Dimensional Path  

2.1.1 Pig dynamics in 2-D pipeline 

 

Figure 1 shows a typical small pig moving inside a two-

dimensional pipeline and its free body diagram. The 

dynamic equations of the pig, derived from Newton’s 

second law along the tangential and normal directions, 

are as follows: 

nmamgN  cos                                                   (1) 

tmaFxmgFF   )sgn(sin21
               (2) 

Where   is the angle of the tangent to the centerline 

curve of the pipeline with respect to the x -axis at any 

point; i.e. if )(xf  is assumed to be the function of the 

centerline of the pig, thus we can write 

),(tan 1 xf           

,
2

)(1/)(sin xfxf                              (3) 

2cos 1/ 1 ( )f x                                         

If s  measures along the pig’s path and the radius of 

curvature of the path is R , then we can derive both 

accelerations of the pig as follows: 

21 ( )V s f x x
pig

                                   (4) 

2

2
)(1

)(
2

x

xf

xf

R

pigV

na 





                            (5) 

2 ( ) ( ) 2 2 21 ( )
2 21 ( )

d s f x f x
a x x f x
t
dt f x

        (6) 
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Fig. 1. Schematic view of a pig inside a planer pipeline. 

To derive the term 
21 FF  in the left side of equation 

(2), one can combine the momentum and energy 

equations of the fluid. To determine the term
21 FF  , 

two control volumes are employed as shown in Figs. 2 

and 3; one behind the pig and the other in front of it. 

Also it is assumed that the lengths of control volumes 

are the same and equals to pigL2 , where pigL  is the 

length of the pig. 

 

Equation (7) shows the momentum equation for an 

inertial control volume. 





 CVCSBS dVV

t
AdVVFFF 


.      (7) 

In this equation, surface forces, body forces and 

velocity are denoted by 
SF


, BF


and V respectively. 

The different terms of the above equation in the 

tangential direction (t-direction) for the two control 

volumes are as follows: 

( ) ,
1 1

F P x A F P A
St tail h

   

,2))(()(2)(.1 pigVxVAxpigVhVhAhAdVtVCS  


 



1 0CV dVtV

t
                                               (8) 

 

,
2

)cos5(
2 h

A
nose

PFAθ
pig

LxPF
St

  

 2
2

)(.CS pigVhVhAhAdVtV 


2
))cos5(()cos5( pigVpigLxVApigLx  

02, 



CV dVtV

t
                                           (9) 

2 ( cos ) sin ,
1

F x L gL A
Bt pig pig

  

2 ( 4 cos ) sin
2

F x L gL A
Bt pig pig

        (10) 

 
 

Fig. 2. The control volume No. 1 

Where )(xV , )(x  and )(xP  are the velocity, 

density and pressure of the fluid in position , 

respectively that will be obtained in part 2.1.2,  
2

,
1

FF   

are reactions of the pig on the control volumes 

(
11

FF  , 2 2 F F ), 
tail

P  and 
nose

P  are 

pressures of the fluid in behind and in front of the pig,  

h
A  is the area cross section of the valve, 

h
  is the 

density of fluid at the valve. Substituting (8)-(10) in (7) 

for each control volumes, it leads to 

2))cos5((

])cos5(

2)cos5(2

[

2))(]()(
2)(2

[

sin)]cos4(

)cos([2)(

)]()cos5(21

pig
V

pig
LxV

A
pig

Lx

h
A

h

A
pig

Lx

pig
VxVAx

h
A

h

Ax

A
pig

gL
pig

Lx

pig
LxA

nose
P

tail
P

AxP
pig

LxPFF

h



































        (11) 

In general, the pressure difference between the tail and 

the nose of the bypass hole in the pig 

)( noseP
tail

P   is established from three parts; i.e.  

pressure losses from a sudden contraction at the tail 

(
SCK ), the valve inside the hole (

VK ) and a sudden 

expansion at the nose (
SEK ). The following relations 

are suggested for the pressure difference and the loss 

coefficients in the fluid mechanics books and papers, 

e.g. Nguyen et al. (2001): 

2

2
)( pigVhVtotalK

nosePtailP





             (12) 
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Fig. 3. The control volume No. 2 

 

where  

SEKVKSCKtotalK   

2

0.42(1 )
2

d
valveK

SC
d

 

( )
h

K f
V d

valve

  ,                                                   (13) 

2

(1 )
2

d
valveK

SE
D

2 2

min( ) (1 )(1.42 )
2 2

d d
valve valveK

total
D D

    

The normal force N is obtained if one substitutes Eqs. 

(3) and (5) in Eq. (1) 

]
)(1

1

)(1

)(
[

2

2

2
g

xf
x

xf

xf
mN







    

(14) 

The final equation of the pig can be derived by 

substituting all the terms in Eq. (2). This equation is a 

second order ordinary differential equation that can be 

solved numerically. 

2.1.2 Gas Flow Model in 2-D Pipeline 

 

To determine )(xV , )(x and )(xP , the velocity, 

density and pressure of the fluid in position  

respectively, the following assumptions are employed: 

1. The fluid flow is steady-state. 

2. The fluid flow is isothermal along the pipeline. 

3. The coefficient of friction losses along the path is 
constant. 

Gas flow in long constant-area ducts, such as natural  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The differential control volume in 2-D pipeline 

 

gas pipelines, is essentially isothermal. Mach numbers 

in such flows are generally low, but significant pressure 

changes can occur as a result of frictional effects acting 

over long duct lengths. Hence, such flows cannot be 

treated as incompressible. The assumption of isothermal 

flow is much more appropriate Fox et. al. (2004). 

 

The flow dynamics can be modeled based on three 

fundamental fluid equations: Continuity equation, 

Momentum equation and State equation. To determine 

the fluid equation, a differential control volume is 

employed as shown in Fig. 4. 

 

Continuity and momentum equations can be written 

respectively as: 

0dV Vd                                                        (15)  

( / 2) sin

( ) ( )

dF d gAds PA
f

P dP A mV dV mV
            (16) 

If   is measured along the pipeline then  can be 

written as follows: 

21 ( )
cos

dx
ds f x dx                      (17) 

So Eq. (16) can be simplified to: 

VdVdPdxxfg
A

f
dF

  )(      (18) 

Friction force  is known as: 

dF dA pds
f w w w

                                     (19) 

Shear stress  can be written as: 

CV 

 

ds 

T           

P         

 
   V   

T+dT                  

P+dP                

 
      V+dV    

 

x 

y 
s

s 

n 

g 
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8

2

2

Vf

dx

dPf
dF

w


                                       (20) 

where  is the coefficient of friction loss in pipeline. 

Using hydraulic diameter   ,  can be described as: 

hDAp /4                                                          (21) 

Combining Eqs (17), (19)-(21) we have: 

dxxf
V

h
D

fA

f
dF 2)(1

2

2



                     (22) 

Substituting Eq.(22) in Eq.(18) and dividing by  , we 

get: 

2
21 ( )

2

( )

dP f V
f x dx

P D P
h

g VdV
f x dx

P P

       (23) 

Noting that 2/ /P RT c k , 2( / 2)VdV dV  

we can write: 

2
21 ( )

2

2
2( ) ( / 2)

2 2

dP f kM
f x dx

P D
h

kg kM
f x dx d V

c

       (24) 

Where /M V c  is the Mach number. For deleting 

2( /2)dV  and 
P

dP
, equations below can be used: 

2 2( ) 1 ( )
,

2 2 2 2

,

d V dT dM d d V

TV M V
dP d dT

P T

 

    (25)

 

Since flow is assumed to be isothermal, so 0
dT

T
. 

Substituting Eq. (25) in Eq. (24) results in 

)](
2

2)(1
2

2
[

21

22)2(

xf

c

kg

xf
kM

h
D

f

kM

M

dx

Md









 

  (26) 

The equation is a one-order ordinary differential 

equation that can be solved numerically to obtain the 

flow Mach number (velocity) along the pipeline. The 

flow density and pressure along the pipeline can be 

achieved from continuity and state equation 

respectively, having flow velocity. 

 

Continuity equation in any section of pipeline can be 

written as: 

( ) ( )
0 0
V xV x                                        (27) 

Where  and  are initial density and velocity of 

flow. State equation is as follows: 

0

)(

0

)(



 x

P

xP
                                                          (28) 

Where 
0

P   is initial flow pressure. 

 

2.2 Case 2: Three-Dimensional Path 

2.2.1 Pig Dynamics in 3-D pipeline 
 

Figure 5 shows the free body diagram of a typical small 

pig inside a three-dimensional pipeline. The weight of 

the pig, dry friction force, normal force of the pipe wall 

and driving force are W, f, N, P, respectively. These 

forces, as shown in the Fig. 5, are three dimensional 

vectors in general. The position vector of the C.G. of 

the pig is denoted with )(r  where λ is a time 

dependent parameter. We can write it with respect to its 

components, i.e. 

kzjyixr )()()()(                         (29) 

It is assumed that the gravitational force acts in the y-

direction, then the weighting force of the pig is 

represented as mgjW  . A frame of mutually 

orthogonal unit vectors is defined that it always travels 

along with a body moving in space (Thomas 

1996).There are three vectors in the frame. One of them 

is the unit tangent vector τ. Another one is n vector that 

gives the direction of dτ/ds. The third is b=τ ×n . These 

vectors and their derivatives are called as Serret-Frenet 

formulas (Sokolnikoff 1964), when available, give 

useful information about moving vehicles and paths 

they trace. The magnitude of the derivative dτ/ds tells 

us how much a pig’s path turns to the left or right as it 

moves along; it is called the curvature of the path. The 

number dsdb /  tells us how much a pig’s path rotates 

or twists as the pig moves along; it is called the torsion 

of the pig’s path. 
 

Although there are experimental data that indicate that 

the dynamic contact force (friction) might be a function 

of the pig velocity, however as Hopkins (1992), it is 

considered that it is independent of the pig velocity. 

This force acts in the direction of the pipe axis and in 

the opposite of the pig’s motion. The direction of the 

normal force N is unknown; however it does not have 

any component in the tangential direction of the pig's 

path. The driving force P acts in the direction of the 

pipe axis. This force depends on the pressure difference 

between the nose and the tail of the pig and other 

variables in a complex problem. The dynamic equations 

of the pig derived from the Newton's Second Law along 

n, τ and b directions are as follow; 

2
( ) sgn( )

2

d s
P V f mg m

dt
                       (30) 

2 /
1
N mg mV R

n
                                      (31) 
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Fig. 5. Schematic view of a pig inside a 3D pipeline 

 

0
2
N mg

b
                                                      (32) 

where, 

1 2
N N n N b  

W mg mg n mg b
n b

 

And s is measured along the pig’s path. If we use the 

chain rule and differentiate from Eq. (29) for obtaining 

the n, τ and b at all points and denote )(/ dtd  and 

)(/ dd  , then the following relation will be 

obtained; 

222 zyx

kzjyix




                                              (33) 

Based on the first Serret-Frenet formula, we have, 

ndsd  /  where κ is the curvature and will be 

determined from; 

.
1 2 3

d d dt
a i a j a k

ds dt ds
                            

2 2 2( )/
1
a x y z x x y y x z z          

2/)22(
2

 zzyxxyzyyxa  

2 2 2( )/
3
a y z x z z x x z y y  

2222 zyx                                               (34) 

2
3

2
2

2
1

1
aaa

ds

d

R



                    (35) 

Also the normal unit vector n can be obtained from Eq. 

(34), i.e. 

( )/
1 2 3

n a i a j a k                                       (36) 

The second normal unit vector is derived from the outer 

cross product of τ and n, i.e. 

])
12

()
13

()
23

[(

)2
3

2
2

2
1

(

kzaxajzaxaizaya

aaa

nb
















 

(37) 

Since the projection of the vector V1 on V2 is  

equal to V1.V2 /V2 then 
n

g , 
b

g  and 
g  can be 

obtained as: 

2
3

2
2

2
1

2

aaa

ga

n
g



                                          (38) 

)
2

3
2

2
2

1
(

)
13

(

aaa

zaxag

b
g









                                   (39) 

222 zyx

yg

n
g









                                       (40) 

Now, one needs to calculate the remaining unknown 

terms in Eqs. (30) to (32) i.e., 

( ) ( )V r x i y j z k                                  (41) 

If one substitutes Eqs. (37), (38) and the magnitude of 

Eq.(41) in Eqs. (31) and (32), the components of 

normal forces are determined as: 

2 2 2 2[
1 1 2 3

2 ]
2 2 2
1 2 3

N m a a a

ga

a a a

 

                     (42)

 

 

)2
3

2
2

2
1(

)13(

2
aaa

zaxamg
N









                       (43) 

2
2

2
1 NNN      ,    Nf                        (44) 

Finally, substituting Eqs. (44) and (41) in Eq. (30) 

results in: 

( ) sgn( )
2 2 2

2 2 2 2( ) ( )
[

2 2 2 2 2 2
]

gy
p V N m

x y z

x x y y z z x y z
m

x y z x y z

  

(45) 

The term )(p can be obtained from momentum and 

energy equations in pipeline direction as follows 
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2
))

222

1
5((

])
222

1
5(

2
)

222

1
5(

2

[

222
)](

)
222

1
5([2

2
))((

])(

2
)(

2

)1
2

[()](

)
222

1
5([)(

pig
V

zyx
pig

LV

A

zyx
pig

L

h
A

h

A

zyx
pig

L

zyx

y
A

pig
gL

zyx
pig

L
pig

VV

A

h
A

h

Atotal
k

AP

zyx
pig

LPp































































 

(46) 

Where )(V , )(  and )(P  are the velocity, 

density and pressure of the fluid, respectively that will 

be obtained in part 2.2.2. Substituting Eq. (46) in Eq. 

(45) and rearranging it with respect to λ results in the 

final differential equation of the pig. This will be a 

nonlinear differential equation with respect to λ, which 

can be solved by a numerical technique such as Runge-

Kutta based on initial conditions. When parameter λ is 

determined in each time instant t, then the position and 

the velocity of the pig can be calculated. 

2.2.1 Gas Flow Model in 3-D Pipeline 

To determine the fluid equation, a differential control 

volume is employed as shown in Figure 6. 
Continuity and momentum equations can be written 
respectively as: 

0dV Vd                                                        (47) 

( / 2)
2 2 2

( ) ( )

gy
dF d gAds
f

x y z

PA P dP A mV dV mV

 

 (48) 

 

As s is measured along the pig’s path we can write 

2 2 2ds x y z d                                         (49) 

Substituting Eqs (49) and (20)-(21) in Eq. (19), one can 

obtain 

2
2 2 2

2

fA V
dF x y z d
f D

h
                      (50) 

 

Fig. 6. The differential control volume in 3-D 
pipeline 

Using the same sequence as in part 2.2.1 differential 

equation of Mach number changes can be achieved as; 

]
2

222

2

2
[

21

22)2(

y

c

kg

zyx
kM

h
D

f

kM

M

dx

Md









  

The equation is a one-order ordinary differential 

equation that can be solved numerically to obtain the 

flow Mach number (velocity) along the pipeline. The 

flow density and pressure along the pipeline can be 

achieved from continuity and state equation i. e. 

equations (27) and (28), respectively. 

3. NUMERICAL EXAMPLES 

To show the efficiency of the developed model, some 
numerical studies are designed and solved for two and 
three dimensional pipelines. In all examples, Runge-
Kutta-Fehlberg method is used to solve the differential 
equations by writing a program in Matlab software. 

3.1 Example 1 

For the first case study, let us assume a 2D pipeline 

with the curve equation as ( ) 0.5( sin )y x x x  . 

Figure 7 shows the pipeline curve. The numerical 

values for the mass of the pig, length of the pig, pipe 

diameter and the bypass diameter are assumed to be 

400kg, 1.4 m, 0.7366 m and 0.57 m, respectively. 

n


 

b


 

)(p




 

Y 

Z 

X 

ds 

T 
P 

V 

 
T+dT 

P+dP 

V+dV 

CV 

(51) 
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Fig. 7. The pipeline curve in 2D for example 1 
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Fig. 9. Normal force exerted on the pig for example 1. 

 
The numerical values for fluid that used in all numerical 

examples are given in table 1.The dynamic and static 

coefficients of friction are assumed to be 0.2 and 0.3, 

respectively. The pig position at initial time is at the 

point x(0) =y(0) =0 and its velocity is zero. The aim of 

this example is to test the validation of the formulations 

for the simpler case, i.e. two-dimensional path. The 

geometric curvilinear periodic nature of this pipeline 

can help this examination. Figure 8 shows the velocity 

of the pig with respect to time. This figure shows the 

periodic variations of the pig’s velocity. Figure 9 also 

shows the periodic nature of the normal force acting on 

the pig. 

Table 1 The Numerical values for simulations 

Temperature (T) 278 K 

Gas constant (R) 287   J/kg K 

k 1.4 

Inlet pressure of gas( 0P ) 51059  Pa 

Inlet flow of gas ( 0Q ) 1.37   sm /3
 

Inlet density of gas ( 0 ) 105.44  
3/ mkg  

coefficient of friction loss (f ) 0.038 

 

3.2 Example 2 

The geometry of the selected pipeline for the third test 

case is shown in Fig. 10. It is similar to a well- known  
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Fig. 8. Velocity of the pig for example 1. 

 

 
 

Fig. 10. Selected geometry of pipeline for example 2. 

 

space curve such as helix with the following parametric 

equations 

 cos6)(,6)(,sin6)(  zyx  

The numerical values for the mass of the pig, length of 

the pig, pipe diameter and the bypass diameter are 

assumed to be 400 kg , 1.4 m, 0.7366 m and 0.67 m , 

respectively. Initial conditions for solving dynamic 

equation are 1.0,0     thus 

6)0(,0)0(,0)0(  zyx m and 

0)0(,6.0)0(,6.0)0(  zyx  m/s. The numerical 

values for fluid that used in all numerical examples are 

given in table 1. 

 
This example shows the validation of the above 

formulation for three dimensional path, where its 

geometric is curvilinear periodic nature. Figures 11a to 

11f show the position and velocities of the pig in the x, 

y and z-directions with respect to time. The positions of 

the pig in the x and y-directions have a periodic nature. 

The velocities in these directions have the same sorts of 

trends. However, the velocity of the pig increases up to 

a certain level and then remains constant. This is true 

because of the special geometry of the pipeline. Since 

there is no difference between any two points of the 
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a) Position of the pig in x direction. 

 

c) Position of the pig in y direction. 

 
e) Position of the pig in z direction. 

 
g)  Distance from inlet of the pipe. 

 
 

 
b)  Velocity of the pig in x direction. 

 
d)  Velocity of the pig in y direction. 

 
f) Velocity of the pig in z direction. 

 
h)  Velocity of the pig in tangential direction. 

 
Fig. 11. Simulation results of pipeline of the example 3 
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Fig. 12. Selected geometry of pipeline for example 3. 

 

path and also the area of hole is constant, the pig’s 

velocity reaches a constant value. These results 

validate the modeling and formulation of the present 

research. Also, these results are very similar to the 

case 2 of Lesani et. al. (2012) qualitatively.  

3.3 Example 3 

The geometry of the selected pipeline for the third test 

case is shown in Fig. 12. The parametric equations of 

this path are 

 cos)(,sin)(,)( 222  zyx  

The numerical values for the mass of the pig,  

length of the pig, pipe diameter and the bypass 

diameter are assumed to be 400 kg, 1.4 m, 0.7366 m 

and 0.67 m, respectively. Initial conditions for 

solving dynamic equation are 
5,1   

 thus 

1cos)1(,1sin)1(,1)1(  zyx
 m and 

2.1)1(,12.11)1(,10)1(  zyx 
m/s. The pig does  

not move from origin at t=0 and its motion is 

recorded up to 15 seconds. The numerical values  

for fluid that used in all numerical examples are 

given in table 1. 

 

The results are shown in Fig. 13. The geometry of the 

pipeline for this test case is arbitrary. All figures show 

that the pig stops after 6 seconds, where the equilibrium 

conditions establish for pig in the pipeline at this 

moment. In this case, the direction of the friction force 

and also its type (static or dynamic) varies in some 

times of motion. Also, the gravity force of the pig and 

the fluid driving force frequently vary. This example 

shows the ability of the formulation for pigging 

estimation. The best pig can be select for a special 

pipeline based on the formulation in this research. Also, 

sticking of a pig in a special pipeline can be estimated 

by this formulation. 
 

4. DISCUSSION 

Since this is a theoretical research and there is no 

experimental data for comparison, some numerical  

 

 
a) Position of the pig in x direction. 

 
b)  Velocity of the pig in x direction. 

 
c)  Position of the pig in y direction. 
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d) Velocity of the pig in y direction.  
 

 

e)  Position of the pig in z direction. 

 

g)  Velocity of the pig in z direction. 

 

f)  Distance from inlet of the pipe. 

 

h)  Velocity of the pig in tangential direction. 

 

Fig. 13. Simulation results of pipeline of the example 3. 

 

examples with special geometry were selected to 

approve the derived model. The results can easily show 

the ability of the present model to estimate the position 

and velocity of the pig in any time and any pipeline. 

This model can predict the sticking of a pig in a 

pipeline as in example 3. This is an important problem 

in pigging operation. Using this model can help the 

selection of pigging operation such as required 

upstream pressure and coefficient of friction. Time 

duration of pipeline pigging and length of the pipeline 

can be determined using the present equations, for 

instance in example 2, it takes 15 seconds for pig to 

move 280 m in the pipeline. This model can be 

extended to transient pig motion, large pigs and non-

continues pipelines.      

5. CONCLUSION 

This research extends the dynamic analysis of pipeline 

pigs which run in the gas pipelines. In other words, in 

this paper, fluid in the pipeline is assumed to be 

compressible. This assumption is new comparing to 

previous work of the authors. Three numerical case 

studies are selected to validate the derived equations. 

The results from these three examples are in agreement 

with the physical nature of the problem. The third 

example clearly shows that these equations can estimate 

the stop time of the pig. This is an important prediction, 

because knowing this will be helpful in pigging 

operations. The derived equations of this research can 

be applied to speed control of the pigs in gas pipelines. 

It is expected that the present equations also are 

validated experimentally in future studies. 
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