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ABSTRACT 

In the present note, we have considered the problem of the onset of convection in a couple-stress fluid with variable 

gravity to include the effects of suspended particles and vertical magnetic field through a porous medium. Following 

the normal mode method, dispersion relation is obtained in the presence of various parameters like porosity, 

permeability, suspended particle, couple-stress and magnetic field. For the case of stationary convection, it is found 

that the parameters like porosity, permeability and suspended particles have a destabilizing effect on the system 

whereas couple-stress and magnetic field have a stabilizing effect on the onset of convection. The dispersion relation 

is analyzed numerically and the results are also shown graphically. The necessary condition for the onset of 

instability and the sufficient condition for the non-existence of convection at the marginal state in the absence and 

presence of couple-stress parameter have also been obtained by using Rayleigh-Ritz and Cauchy-Schwartz inequality. 

Keywords: Couple-Stress fluid, Suspended particles, Magnetic field, Porous medium. 

1. INTRODUCTION

Thermal convective instability of a layer of fluid 

heated from below has extensive applications in many 

branches of fluid dynamics like geophysics, earth’s 

science, oceanography and heat transfer mechanism. 

The problem of thermal instability in a horizontal 

layer of Newtonian fluid heated from below has been 

discussed in detail by Chandrasekhar (1981). Rayleigh 

(1916) laid the foundation of the linear theory of the 

hydrodynamic stability and was the first to apply the 

method of small perturbations. The growing 

importance of non-Newtonian fluids in several 

scientific and engineering problems has attracted 

researchers for the study on such fluids. Stokes (1966) 

proposed and formulated the theory of couple-stresses 

in fluids. One of the important application of couple-

stresses in fluid is its use in the study of the 

mechanism of lubrication of synovial joints, which 

has become the objective of the scientific research 

because of its importance in human locomotion. 

Normal synovial fluid is clear or yellowish and is a 

viscous non-Newtonian fluid. The two important parts 

of synovial joints are cartilage and rheological nature 

of synovial fluid. The cartilage forms the covering on 

the bone ends in synovial joints and plays a significant 

role in normal joints functioning. The most important 

aspect of synovial joints is to understand different 

lubrication mechanisms during human locomotion. 

Any degenerative changes in the synovial joints can 

directly affect the normal physiological functioning of 

an individual. These degenerative changes can cause 

arthritis. Lin (1997) theoretically investigated the 

rheological effects of couple stress fluids on the static 

and dynamic behaviours of pure squeeze films in 

journal-bearing systems and concluded that the effects 

of couple stresses significantly improves the squeeze 

film characteristics and also results in a longer bearing 

life. Sunil et al. (2004) have studied the effect of 

suspended particles in a layer of couple-stress fluid 

heated and soluted from below in a porous medium 

and depicted the stabilizing effect of couple-stress and 

solute gradient parameters and destabilizing effects of 

suspended particles and medium permeability for the 

case of stationary convection. Sharma and Sharma 

(2001) have studied the problem of thermal 

convection of a couple-stress fluid heated from below 

saturating a porous medium.  

In many branches of sanitary work, notably in the 

study of factory conditions, the enumeration of the 

actual number of dust particles present are quite 

important for the determination of the total weight of 

dust. Dust is a generic term used to describe fine 

particles that are suspended in the atmosphere. Dust 
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comes from a wide variety of sources, including soil, 

vegetation (pollens and fungi), sea salt, fossil fuel 

combustion, burning of biomass, and industrial 

activities. It is formed when fine particles are taken up 

into the atmosphere by the action of wind or other 

physical disturbances or through the release of 

particulate-rich gaseous emissions. In geophysical 

context, the fluid is often not pure but may instead be 

permeated with dust particles. The effects of 

suspended particles on the stability of superposed 

fluids have industrial and scientific importance in 

geophysics, chemical engineering and astrophysics. 

Scanlon and Segel (1973) have considered the effect 

of suspended particles on the onset of Bénard 

convection and found that the critical Rayleigh 

number was reduced solely because the heat capacity 

of the pure fluid was supplemented by the particles. 

Since the earth’s gravity field varies with the vertical 

distance from its surface, so it is necessary to take into 

account the gravity as a variable quantity with height 

from the earth’s centre. This variation of gravity plays 

an important role for large scale flows in ocean, 

atmosphere and mantle but for laboratory purposes, 

we usually neglect these variations. Thermal 

instability of a fluid layer under varying gravity field 

heated from above and below has been investigated by 

Pradhan and Samal (1987). 

 

Magneto-hydrodynamics theory of electrically 

conducting fluids has several scientific and practical 

applications in astrophysics, geophysics, space 

sciences etc. Transformers, microphones, advertising 

displays, memory storages, and so on, which play a 

key role in everyday life, could not have been 

developed without an understanding of magnetic 

phenomena. Magnetic field is also used in several 

clinical areas such as in neurology and orthopedics for 

probing and curing the internal organs of the body in 

several diseases like tumours detection, heart and 

brain diseases, stroke damage etc. The problem of 

thermal instability of an electrically conducting 

couple-stress fluid heated from below through a 

porous medium in the presence of a uniform magnetic 

field has been investigated by Sharma and Thakur 

(2000). Sharma and Sharma (2004) have investigated 

the effect of suspended particles on couple-stress fluid 

heated from below in the presence of rotation and 

magnetic field and concluded that the effects of 

magnetic field, rotation and couple stress parameter is 

to stabilize the system whereas suspended particles 

have destabilizing effects. 

 

The flow through a porous medium has been of 

fundamental importance in solidification, chemical 

processing industry, geophysical fluid dynamics, 

petroleum industry, recovery of crude oil from 

earth’s interior etc. A detailed study of convection 

through porous medium has been covered 

extensively by Nield and Bejan (2006) in his 

historical monograph. A porous medium is defined 

as a solid with inter-connected voids. Liquid 

saturated porous material are often present on and 

below the surface of the earth in the form of dust 

particles, limestone and other sediments permeated 

by groundwater or oil. Recently, the development of 

geothermal power resources has increased 

considerable attention in convection through porous 

medium. The physical properties of comets, 

meteorites and interplanetary dust strongly suggest 

the importance of porosity in astrophysical situations 

(McDonnel [1978]). The problem of both linear and 

nonlinear thermal convection in a couple stresses 

fluid-saturated rotating rigid porous layer has been 

studied by Shivakumara et al. (2011) and found that 

both couple stress parameter and Taylor number 

dampen the oscillations of Nusselt number. 

 

The problem of thermosolutal convection in a couple-

stress fluid layer through a porous medium to include 

the effects of vertical magnetic field and vertical 

rotation has been discussed by Kumar (2012). 

Recently Banyal (2013) has investigated thermal 

instability of a couple-stress fluid heated from below 

and derive the necessary condition for the onset of 

instability as a stationary convection. The intent of the 

present note is to study the onset of convection in a 

couple-stress fluid saturated porous medium under the 

influences of varying gravity, suspended particles and 

uniform magnetic field. 

2. FORMULATION OF PROBLEM 

AND PERTURBATION EQUATIONS 

Here we consider an infinite horizontal layer of a 

couple-stress fluid permeated with suspended particles 

and bounded by the planes z=0 and z=d in a porous 

medium of porosityand medium permeability 1k . 

The fluid layer is acted on by a uniform vertical 

magnetic field H (0, 0, H) and a variable gravity field 

  0f z gg , where  f z  can be positive or negative 

according as the gravity increases or decreases upward 

from its value 0g (>0). The layer is heated from below 

so that a uniform temperature gradient dT dz   is 

maintained.  

 

The governing equations of motion and continuity for a 

couple-stress fluid are
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where 

 0 0, , , , , , ,e d iq q N x t and      iX g
 

denote, 

respectively, the density of fluid, viscosity, couple-

stress viscosity, magnetic permeability, velocity of pure 

fluid, velocity of suspended particles, number density 

of the suspended particles and the gravitational 

acceleration term.  zyxx ,,
 

and 6K   , 

where  being particle radius, is the Stokes’s drag 

coefficient. 

 

The presence of suspended particles adds an extra 

force term, in equation of motion, proportional to 



K. Kumar et al. / JAFM, Vol. 8, No. 1, pp. 55-63, 2015.  

 

57 

 

velocity difference between particles and fluid. Since 

the force exerted by the fluid on the particles is equal 

and opposite to that exerted by the particles on the 

fluid, there must be an extra force term, equal in 

magnitude but opposite in sign, in the equations of 

motion for the particles. Inter-particle reactions are 

ignored as the distances between the particles are 

assumed to be quite large compared with their 

diameters. The effects of pressure, magnetic field and 

gravity on the particles are very small and hence 

ignored. 

If 0mN is the mass of particles per unit volume, then 

the equations of motion and continuity for the particles 

are: 

   0 0

1
.d

d d d

q
mN q q K N q q

t

 
      

       (3) 
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0. 0d
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N q

t


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
       (4) 

The equation for temperature balance is: 
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pt d

T
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t
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t
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 
      
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      (5) 

Where, in the above equation, , , , ,s s v ptc c c T and k  

denote, respectively, the density of solid material, heat 

capacity of solid material, the specific heat at constant 

volume, heat capacity of suspended particles, the 

temperature and the co-efficient of heat conduction. 

 

The Maxwell’s equations of electromagnetism are: 

  2H
q H H

t



    


       (6) 

and 

. 0,H         (7) 

Where   denote the electrical resistivity.  

The density equation of state is 

 0 01 T T              (8) 

The steady state corresponding to the system of Eqs. (1) 
to (8) is defined as: 

0 0

2

0 0

(0,0,0), , 1 ,

1 , 0,0,
2

q T T z z

zp p g H H
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Now, we analyze the stability of the basic state  

using perturbation technique. Let the initial  

state solutions described by Eq. (9) be slightly 

perturbed. We assume that  q (u,v,w), qd(l,r,s),  

N, θ, p ,   and  , ,x y zh h h h  denote, respectively, 

the perturbation in fluid velocity q(0,0,0), perturbation 

in particle velocity qd(0,0,0), perturbation in  

particle number density 0N , temperature T, pressure p, 

density   and magnetic field H. The change in  

density   caused by perturbation θ in temperature,  

is given by 

0        (10) 

Now, assuming the perturbation quantities to be very 

small, the governing perturbation equations (using 

Oberbeck-Boussinesq approximation) due to 

linearization procedure are: 
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v

k
w

C


  

 
 and s  

denote, respectively, the kinematic viscosity, the co-

efficient of thermometric conductivity, unit vertical 

vector, vertical fluid velocity and suspended particles 

velocity and   0
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Eliminating p  between the three component 

equations of Eq. (11) and using Eqs. (12) and (13), we 

obtain:  
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and 

 

' '

2

0 1 0

1
1 1

1

4

e

m m

t t tK K

H mN

z k t



  
  

 

     
     

      

  
    

   

     (19) 



K. Kumar et al. / JAFM, Vol. 8, No. 1, pp. 55-63, 2015.  

 

58 

 

Where 
v u

x y


  
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  
 and 

y x
h h

x y
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 
 
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 stand for the 

z-component of vorticity and z-component of current 

density, respectively. 

 

From Eq. (15), we obtain: 

  2

' '
1 1

m m
E b b w

t t tK K
  

       
                   

  

(20) 
 

The x and y component equations of Eq. (17) along 

with Eq. (16) yields: 
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and the z- component equation of Eq. (17) is  
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  is the three dimensional 

Laplacian operator. 

 

3. D

DISPERSION RELATION AND 

       DISCUSSION 
We now use normal mode method by decomposing the 

disturbances with a dependence on x, y and t of the 

form:  
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Where xk , yk
 
are the wave numbers along x and y 

directions, respectively and  222

yx kkk   is the 

resultant wave number and n is the frequency of the 

harmonic disturbance, which is, in general, a complex 

quantity. 

 

Using expression (23) and making the substitutions of 

the non-dimensional quantities of the form 
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the magnetic Prandtl number and 
2d
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


  , is the 

dimensionless couple-stress parameter. 

 

We obtain the non-dimensional form of Eqs. (18) to 

(22) (after dropping the asterisk for convenience) as:
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Eliminating and K
 
from Eqs.(24), (26) and (27), we 

obtain: 
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From Eqs. (25) and (28), we obtain: 
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    (30)

 

It is apparent from Eq. (30) that for the problem under 

consideration  

0 0X and Z       (31) 

i.e. the z- components of vorticity and current density 

vanish identically for the problem on hand. 
 

The boundary conditions appropriate to two free and 

perfectly conducting boundaries are defined as: 

W = D2W = DZ = DK = hz= 0   

 on z = 0 and d.     (32) 

Equation (29) together with the boundary conditions 

(31) and (32) constitute an eigen-value problem for the 
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present problem. It is also evident that when 0  , 

the system reduces to that for an ordinary viscous fluid. 

4. SOLUTION OF THE EIGEN-VALUE 

PROBLEM 

The boundary conditions (31) and (32) suggest that a 

proper solution for W belonging to the lowest mode is 

defined by 

0 sinW W z      (33) 

Where W0  is a constant. 

Substituting solution Eq. (33) in Eq. (29) and 

letting
2

2 1
1 1 14 2 2 2 2

, , , , ,l

R a Q
R x i P P Q


 

    


       , 

we get an eigen-value expression of the form: 

    

       

   

1
1 1 1 12

1 1

1 2 1 1 1 1

2
1 1

1 1 22
1 1

1
1 1 1 1

1

1 1 1 1

1
1

i f
x x i E p

Pi

i p x x Q x x i E p

B i
R xf z i p x

i




  

 

  


  

  
               

             

 
        

  

(34) 

Equation (34) is required dispersion relation accounting 

the effects of magnetic field, suspended particles, 

medium permeability and medium porosity on thermal 

instability of a couple-stress fluid through a varying 

gravity field in a porous medium. 

5. THE STATIONARY CONVECTION 

When instability sets in as stationary convection, the 

marginal state will be characterized by putting 0  in 

Eq. (34) and we get an eigen-value relationship for a 

stationary instability of the form:  

 

   
 

2 3

1 1
1

1 11
1

x x Q
R x

xBf z P P

     
     

    

           (35)

 

Minimizing Eq. (35) with respect to x , yields the third 

order equation in x  as 

    3 2

1 1 1 12 3 1 1 0x x Q P                     (36) 

In order to investigate the effects of suspended 

particles, magnetic field, medium permeability, couple-

stress parameter and medium porosity, we examine the 

behaviour of 1 1 1 1 1

1 1

, , ,
dR dR dR dR dR

and
dB dQ dP d d 

 analytically. 

Equation (35) yields 

 

   
 

2 3

11 1

2

1 11
1

x xdR Q
x

dB xf z B P P

     
      

    

    (37) 

 

 
1

1

1 xdR

dQ f z xB





     (38) 

 

   
2 3

1

2 2

1 11 x xdR

dP Bxf z P P

   
   

  
 

   (39) 

 

 

3

1

1

1 xdR

d BxPf z





     (40) 

 
 1

12

1
1

dR
Q x

d xBf z
            (41)

 

Eqs. (37) - (41) show that, for the case of stationary 

convection, magnetic field and couple-stress parameter 

have stabilizing effects, whereas suspended particle, 

medium permeability and medium porosity have 

destabilizing effects for   0f z  .  
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Fig. 1. Variation of critical thermal Rayleigh  

number 
1c

R  with couple-stress parameter 
1


  

for fixed values of  0.1, 2, 10, 1B f z P      

and 
1

1Q   for curve 1, 
1

2Q   for curve 2, 
1

3Q 
 

for curve 3, 
1

4Q   for curve 4. 
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Fig. 2. Variation of critical thermal Rayleigh  

number 
1c

R  with magnetic field parameter 
1

Q
 

for fixed values of   1
0.1, 2, 10, 20B f z    

 
and 1P  for curve 1, 3P   for curve 2, 5P   

for curve 3, 7P  for curve 4. 
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Fig.3. Variation of critical thermal Rayleigh number 

1cR with medium permeability P for fixed values of 

  10.1, 2, 10, 20B f z     and 

1 1Q  for curve 1, 
1 2Q  for curve 2, 

1 3Q  for 

curve 3, 
1 4Q  for curve 4. 
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Fig.4. Variation of critical thermal Rayleigh number 

1cR  with medium porosity  for fixed values 

of  11, 50, 10P f z    ; 
1 1Q  for 

curve 1, 
1 2Q  for curve 2, 

1 3Q  for curve 3, 

1 4Q  for curve 4 and 2,4 6B and for all 

curves. 
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Fig.5. Variation of critical thermal Rayleigh number 

1cR  with dust particle parameter B for fixed values 

of  13, 50, 10P f z    ; 
1 1Q  for 

curve 1, 
1 2Q  for curve 2, 

1 3Q  for curve 3, 

1 4Q  for curve 4 and 0.1,0.3 0.5and for 

all curves. 

Equation (36) will give the critical wave 

numbers
cx using Newton-Raphson method by 

assigning various values to physical parameters and 

then the critical thermal Rayleigh number 1cR
 

for 

stationary stability/instability can be deduced from Eq. 

(35). 

 
The variation in numerical values of critical thermal 

Rayleigh number 1cR  against various values of physical 

parameters and wave numbers are given in Tables 1-2 

and also shown graphically by the Figs. 1-5. 
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Table 1 Critical thermal Rayleigh numbers and wave numbers of the unstable modes at marginal stability  

for the onset of stationary convection for various values of couple-stress parameter,  

magnetic field and permeability 
 

 
 

 

Table 2 Critical thermal Rayleigh numbers and wave numbers of the unstable modes at marginal  

stability for the onset of stationary convection for various values of  

porosity and dust particle parameter 
 

 

6. PRINCIPLE OF EXCHANGE OF  

    STABILITIES 

THEOREM: If 0, 0, 0, 0, 0, 0 0e lR B P and     

then the necessary condition for the onset of convection 

at the marginal state for the existence of non-trivial 

solution of Eqs. (24), (26) and (27) together with  

the boundary conditions (31) and (32) is that the 

inequality 

    

    

    

2
2 2 2

2 2 2

2 2 2 2

1 1 9 3 1

1 1 9 3 1

16 1 1 9 1l

R

P

  

  

  

       
  

         
  

        
  

 

must be satisfied and in the absence of couple-stress 

parameter (i.e. 0  ), the necessary condition for the 

onset of stationary convection is that 
24

l

R
P


.

 Proof: When the principle of exchange of stabilities is 

satisfied then the marginal state will be characterized 

by 0  , for this, we multiply Eq. (24) by W* (the 

complex conjugate of W), integrating over the range of 

z and making use of Eqs. (26) and (27) with the help of 

boundary conditions (31) and (32), we obtain

 

2

1 2 3 4

0 2

1
0

4

e

l l

a
I I I I

P P B p

  

 

 
   

g
    (42) 
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Where 

 
1 2 22

1
0

,I DW a W dz 

 
1 2 2 22 4 2

2
0

2 ,I D W a W a DW dz  

 
1 2 22

3
0

,I D a dz   

 
1 2 2 22 4 2

4
0

2I D K a K a DK dz    

Where W and  satisfies the boundary condition (32). 

Now, multiplying Eq. (26) by  (the complex 

conjugate of ), with 0   and integrating over the 

range of z using the boundary condition (32), we obtain 

 
1 1

2
2 2

0 0

B d
D a dz W dz





 
 

      
 
 

 

 
1 12 2

1 2 22

0
0 0

B d B d
D a dz W dz W dz

 

 

    
         

   
  

1 12 2

0 0

B d B d
W dz W dz

 

 

   
      
   

 

1 1
1 12 2 2

2 2

0 0

B d
dz W dz





 
                         

       
(43) 

Where Cauchy-Schwartz inequality has been used in 

the right hand side of the above expression. 

 
Now, using the Rayleigh-Ritz inequality (1973), 

1 1 1 1
2 2 2 22 2

0 0 0 0

DW dz W dz and D dz dz            (44) 

in the left hand side of inequality (43), we obtain 

 

1 1
1 122 2

2 22 2

0 0

B d
a dz W dz






       
      

       
                      (45)

 

So the combination of inequalities (43) and (45) yields 

 
 

2 12
1 2 2 22

2 20
0

1B d
D a dz W dz

a



 

 
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 
      (46)

 

Now, utilizing the inequalities (44), (46) and Banerjee 

et al. (1992) inequality 
1 1 1 1

2 22 22 4 2 4

0 0 0 0

,D W dz W dz D K dz K dz       in Eq. (42), we 

obtain    

 

 

  

 

2 2

1
2 22 2 2 2

5

0 2 0
2

2 2

1 0
4

l

e

a

P

a I a W dz
p

Ra B

a




 




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 
 
 

     
 
 
 
 

      (47) 

Where in the above inequality (47), 
1

2

5

0

I K dz   is 

positive definite. 

Therefore, when 0, 0, 0, 0, 0, 0e lR B P and  
 

inequality (47) yields that 

 
  

2
2 2

2 2

2
1

l

a
R a

P a B




 
   
 
 

  

   (48) 

Since the minimum value of 
 

  
2

2 2

2 2

2
1

l

a
a

P a B




 
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 
 

 is 

    

    

    

2
2 2 2

2 2 2

2 2 2 2

1 1 9 3 1

1 1 9 3 1

16 1 1 9 1lP

  

  

  

       
  

         
  

        
  

                     (49) 

for 
    2 2 2

2

1 1 1 9

4
a

          
  


 

   (50) 

So the inequality 

    

    

    

2
2 2 2

2 2 2

2 2 2 2

1 1 9 3 1

1 1 9 3 1

16 1 1 9 1l

R

P

  

  

  

       
  

         
  

        
  

  

gives the necessary condition for the onset of instability 

when the principle of exchange of stabilities is satisfied. 

Further, in the absence of couple-stress parameter, 

inequality (48) gives  

24

l

R
P


        (51) 

For 

2 2a 

    

                   (52)

 

It is evident from Eqs. (51) and (52) that 

when 0 1land P   then the results agree well with 

those for Newtonian fluids at the onset of convection 

through a porous medium and this validates the proof of 

the theorem, when both the boundaries are dynamically 

free.  

7. CONCLUSION 

The effect of a vertical magnetic field and suspended 

particles on the onset of thermal convection in a couple-

stress fluid in the presence of variable gravity field 

through a porous medium is taken into account in the 

present paper treated here. The following results are 

drawn while investigating the problem: 

 

(a). For the case of stationary convection: 

 The suspended particles, medium porosity and 

medium permeability are found to hasten the onset 

of thermal instability when the gravity field 

increases upward from its value g0 i.e.   0f z  . 

 The effects of magnetic field and couple-stress 

parameter is to stabilize the system, as such their 

effect is to postpone the onset of thermal 

instability when the gravity field increases upward 

from its value g0 i.e.   0f z  . 

(b). At the marginal state (i.e. when the principle of 

exchange of stabilities is satisfied), the necessary 
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condition for the onset of instability is that the 

inequality 

    

    

    

2
2 2 2

2 2 2

2 2 2 2

1 1 9 3 1

1 1 9 3 1

16 1 1 9 1l

R
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  

  

  

       
  

         
  

        
  

 

must be 

satisfied. Thus the sufficient condition for the non-

existence of stationary convection is that 

    

    

    

2
2 2 2

2 2 2

2 2 2 2

1 1 9 3 1

1 1 9 3 1

16 1 1 9 1l

R

P

  

  

  

       
  

         
  

        
  

, for the 

problem under consideration. 

 
(c). In the absence of couple-stress parameter 

(i.e. 0  ), the necessary condition for the onset of 

instability is that the inequality 
24

l

R
P


 is satisfied and 

thus the sufficient condition for the non-existence of 

stability is that 
24

l

R
P


 .  
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