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ABSTRACT 

An investigation of unsteady hydromagnetic natural convection heat and mass transfer flow with Hall current 

of a viscous, incompressible, electrically conducting, heat absorbing and optically thin radiating fluid past an 

accelerated moving vertical plate through fluid saturated porous medium in a rotating environment is carried 

out when temperature of the plate has a temporarily ramped profile. The exact solutions of momentum, energy 

and concentration equations are obtained in closed form by Laplace transform technique. The expressions of 

skin friction, Nusselt number and Sherwood number are also derived. For both ramped temperature and 

isothermal plates, Hall current tends to accelerate primary and secondary fluid velocities whereas heat 

absorption and radiation have reverse effect on it. Rotation tends to retard primary fluid velocity whereas it has 

a reverse effect on secondary fluid velocity. Heat absorption and radiation have tendency to enhance rate of 

heat transfer at the plate. 

Keywords: Hall current, Coriolis force, Ramped temperature, Heat absorption and Thermal radiation. 
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absorption coefficient 

uniform magnetic field 

species concentration 

specific heat at constant pressure 

chemical molecular diffusivity 

 acceleration due to gravity 

thermal Grashof number 

solutal Grashof number 

thermal conductivity of the fluid 

 permeability of porous medium 

permeability parameter 

rotation parameter 

Hall current parameter 

magnetic parameter 

radiation parameter 

Prandtl number 

heat absorption coefficient 

radiating flux vector  
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Schmidt number 

fluid temperature 

characteristic time 

characteristic velocity 

fluid velocity in x direction 

fluid velocity in z direction

Greek Symbols 

coefficient of thermal expansion

uniform angular velocity 

coefficient of expansion for species concentration 

electrical conductivity 

fluid density 

Stefan-Boltzmann constant 

kinematic coefficient of viscosity 

cyclotron frequency 

electron collision time 

heat absorption parameter
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1. INTRODUCTION 

Heat absorption/generation effects play a significant 

role on the heat transfer characteristics of several 

physical problems of practical interest viz. 

convection in Earth’s mantle, post-accident heat 

removal, fire and combustion modeling, fluids 

undergoing exothermic and/or endothermic chemical 

reaction, development of metal waste from spent 

nuclear fuel, applications in the field of nuclear 

energy etc.  Therefore, it is appropriate to consider 

temperature dependent heat source and/or sink which 

may have strong influence on heat and mass transfer 

characteristics of the fluid flow problems under 

consideration. However, exact mathematical 

modeling of internal heat generation/absorption is 

highly complicated. It is noticed that some simple 

mathematical models yet idealized may express their 

average behavior for most of the physical situations. 

Sparrow and Cess (1961) were one of the initial 

investigators to consider temperature dependent heat 

absorption on steady stagnation point flow and heat 

transfer. Later, several researchers considered 

hydromagnetic natural convection flow past a flat 

plate considering different aspects of the problem. 

Mention may be made of the research studies of 

Chamkha and Khaled (2001), Chamkha (2004), 

Ramadan and Chamkha (2004) and Das et al. (2009). 

Jha and Ajibade (2009) analyzed natural convection 

flow of a temperature dependent heat 

generating/absorbing fluid between vertical porous 

plates with periodic heat input. Thermal radiation in 

hydromagnetic flows is an essential aspect of various 

scenarios in aerospace, mechanical, chemical, 

environmental and hazards engineering. Industrial 

applications such as glass production and furnace 

design, space technology applications such as 

cosmical flight aerodynamics, rocket propulsion 

systems and spacecraft re-entry vehicles operate at 

high temperatures where radiation effects are greatly 

significant. It is worthy to note that unlike 

convection/conduction the governing equations 

considering the effects of radiation become quite 

complicated due to the inclusion of radiation term in 

the energy equation making it nonlinear. Some 

reasonable approximations are proposed to solve the 

governing equations with radiative heat transfer. 

England and Emery (1969) investigated the effects 

of thermal radiation on laminar free convection 

boundary layer flow past a vertical plate for heat 

absorbing and non absorbing gases. They obtained 

velocity and temperature profiles experimentally for 

constant heat flux boundary condition in case of air 

and carbon-dioxide and these were compared with 

analytical solutions for optically thin gases and 

absorbing gray gases. Hossain and Takhar (1996) 

studied the effects of radiation on mixed convection 

boundary layer flow near a vertical plate with 

uniform surface temperature using Rosseland flux 

model. Contributions are also due to Azzam (2002), 

Raptis et al. (2003), Ogulu and Prakash (2006), 

Raptis (2011), Reddy et al. (2013), Prakash et al. 

(2013). Moreover, the combined effects of thermal 

radiation and heat generation/absorption on 

hydromagnetic natural convection flow play a 

crucial role in controlling the heat transfer and may 

have promising applications in the industry. Keeping 

in view the importance of such study, Chamkha 

(2000) studied thermal radiation and buoyancy 

effects on hydromagnetic flow over an accelerating 

permeable surface with heat source or sink. Seddeek 

(2001) investigated thermal radiation and buoyancy 

effects on MHD natural convection heat generating 

flow past an accelerating permeable surface with 

temperature-dependent viscosity. Saha et al. (2010) 

considered the combined effects of thermal radiation 

and heat generation on hydromagnetic flow past a 

uniformly heated vertical plate. Prasad et al. (2013) 

investigated the effects of internal heat 

generation/absorption, thermal radiation, magnetic 

field and temperature dependent thermal 

conductivity on the flow and heat transfer 

characteristics of a Non-Newtonian Maxwell fluid 

over a stretching sheet. 

 

Several investigations on natural convection flows are 

performed using both analytical and numerical methods 

under different thermal conditions which are continuous 

and well-defined. However, practical problems often 

involve thermal conditions which may be non-uniform 

or arbitrary. Some of the numerous industry based 

applications considering non-uniform thermal 

conditions include nuclear heat transfer control, 

materials processing, turbine blade heat transfer, 

electronic circuits and sealed gas-filled enclosure heat 

transfer operations. Narahari et al. (2011) considered 

flow of a viscous incompressible fluid past an infinite 

vertical plate with ramped temperature taking into 

account the presence of foreign mass or constant mass 

flux. Patra et al. (2012) considered the effects of 

radiation on natural convection flow of a viscous and 

incompressible fluid near a stationary vertical flat plate 

with ramped temperature. Nandkeolyar et al. (2013a) 

investigated unsteady hydromagnetic natural 

convection flow of a dusty fluid past an impulsively 

moving vertical plate with ramped temperature in the 

presence of thermal radiation. Subsequently, 

Nandkeolyar et al. (2013b) considered unsteady 

hydromagnetic heat and mass transfer flow of a heat 

radiating and chemically reactive fluid past a flat 

porous plate with ramped wall temperature. 

Contributions are also due to Nandkeolyar and Das 

(2013) and Nandkeolyar et al. (2013c). 
 

Study of hydromagnetic natural convection flow in a 

rotating medium has great significance due to its 

applications in many areas of geophysics, 

astrophysics and fluid engineering. Taking into 

account of this fact, Singh (1983), Nanousis (1992), 

Singh et al. (2010) investigated unsteady 

hydromagnetic natural convection flow past a flat 

plate in a rotating medium considering different 

aspects of the problem. Seth et al. (2011) considered 

the effects of rotation on unsteady hydromagnetic 

natural convection flow past an impulsively moving 

vertical plate with ramped temperature in a porous 

medium with thermal diffusion and heat absorption. 

Ghosh et al. (2013) studied unsteady hydromagnetic 

mixed convection flow in a rotating channel subject 

to forced oscillation under an oblique magnetic field. 
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Muthucumaraswamy et al. (2013) considered the 

effects of rotation on unsteady hydromagnetic 

natural convection flow past an uniformly 

accelerated isothermal infinite vertical plate with 

variable mass diffusion in the presence of chemical 

reaction of first order. Seth et al. (2013b) analyzed 

the effects of thermal radiation and rotation on 

unsteady hydromagnetic free convection flow past an 

impulsively moving vertical plate embedded in 

porous medium with ramped temperature. 
 

It is noticed that when the density of an electrically 

conducting fluid is low and/or applied magnetic field 

is strong, Hall current plays a vital role in determining 

flow-features of the fluid flow problems because it 

induces secondary flow in the flow-field (Sutton and 

Sherman (1965). Taking into account of this fact, 

Aboeldahab and Elbarbary (2001) and Seth et al. 

(2012) investigated the effects of Hall current on 

hydromagnetic free convection boundary layer flow 

past a flat plate considering different aspects of the 

problem. It is noteworthy that Hall current induces 

secondary flow in the flow-field which is also the 

characteristics of Coriolis force. Therefore, it is 

essential to compare and contrast the effects of these 

two agencies and also to study their combined effects 

on such fluid flow problems. Narayana et al. (2013) 

studied the effects of Hall current and radiation-

absorption on MHD natural convection heat and mass 

transfer flow of a micropolar fluid in a rotating frame 

of reference. Recently, Seth et al. (2013a) investigated 

the effects of Hall current and rotation on unsteady 

hydromagnetic natural convection flow of a viscous, 

incompressible, electrically conducting and heat 

absorbing fluid past an impulsively moving vertical 

plate with ramped temperature in a porous medium 

taking into account the effects of thermal diffusion. 
 

Aim of the present investigation is to study unsteady 

hydromagnetic natural convection heat and mass 

transfer flow with Hall current of a viscous, 

incompressible, electrically conducting, temperature 

dependent heat absorbing and optically thin heat 

radiating fluid past an accelerated moving vertical plate 

through fluid saturated porous medium in a rotating 

environment when temperature of the plate has a 

temporarily ramped profile. This problem has not yet 

received any attention from the researchers although 

natural convection heat and mass transfer flow of a heat 

absorbing and radiating fluid resulting from such 

ramped temperature profile of a plate moving with time 

dependent velocity may have strong bearings on 

numerous problems of practical interest where initial 

temperature profiles are of much significance in 

designing of so many hydromagnetic devices and in 

several industrial processes occurring at high 

temperatures where the effects of thermal radiation and 

heat absorption play a vital role in the fluid flow 

characteristics. 

2. FORMULATION of THE PROBLEM and its 

SOLUTION 

Consider unsteady hydromagnetic natural convection 

flow of an electrically conducting, viscous, 
 

 

Fig. 1. Geometry of the Problem 

 

incompressible and temperature dependent heat 

absorbing and optically thin heat radiating fluid past a 

infinite moving vertical plate embedded in a porous 

medium taking Hall effects into account. Choose the 

coordinate system in such a way that x -axis is along the 

length of the plate in the upward direction and y -axis 

normal to the plane of the plate in the fluid. A uniform 

transverse magnetic field 0B  is applied parallel to y -

axis. Both the fluid and plate are in rigid body rotation 

with uniform angular velocity   about y -axis. Initially 

i.e. at time 0t  , both the fluid and plate are at rest and 

at uniform temperature T
 . Also species concentration 

within the fluid is maintained at uniform concentration 

C
 . At time 0t  , plate starts moving with time 

dependent velocity ( )U t  in x direction and temperature 

of the plate is raised or lowered to 0( ) /wT T T t t       

when 0t t  , and thereafter, i.e. at 0t t  , plate is 

maintained at uniform temperature wT  . Also, at time 

0,t  species concentration at the surface of the plate is 

raised to uniform species concentration wC and is 

maintained thereafter. Geometry of the problem is 

presented in Fig. 1. Since plate is of infinite extent along  

x  and  z  directions and is electrically non-conducting, 

all physical quantities, depend on  y  and  t  only. It is 

assumed that the induced magnetic field produced by 

fluid motion is negligible in comparison to the applied 

one. This assumption is valid because magnetic Reynolds 

number is very small for metallic liquids and partially 

ionized fluids (Cramer and Pai, 1973). Also no external 

electric field is applied so the effects of polarization of 

fluid is negligible (Cramer and Pai, 1973). 

 

Keeping in view of the assumptions made above, the 

governing equations for unsteady hydromagnetic 

natural convection flow of a viscous, incompressible, 

electrically conducting and temperature dependent heat 

absorbing and optically thin heat radiating fluid in a 

uniform porous medium taking Hall effects and rotation 

into account are given by 
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where e em    is Hall current parameter. 

*
1 0, , , , , , , ', , , , , , , , ,p M ru w T K k c Q C D q g         

e and e  are, respectively, fluid velocity in 

'x  direction, fluid velocity along z  direction, fluid 

temperature, permeability of porous medium, thermal 

conductivity, specific heat at constant pressure, heat 

absorption coefficient, species concentration, chemical 

molecular diffusivity, radiating flux vector, kinematic 

coefficient of viscosity, electrical conductivity, fluid 

density, acceleration due to gravity, coefficient of 

thermal expansion, coefficient of expansion for species 

concentration, cyclotron frequency and electron 

collision time. 

 

Initial and boundary conditions for the fluid flow 

problem are given below 
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(5b) 
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In the case of an optically thin gray fluid the local 

radiant absorption (Raptis, 2011) is expressed as: 
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
                                     (6) 

where 
*a  is absorption coefficient and 

*  is Stefan-

Boltzmann constant.  

 

It is assumed that the temperature difference within the 

fluid flow is sufficiently small such that fluid 

temperature 4T   may be expressed as a linear function 

of the temperature. This is accomplished by expanding 
4T   in a Taylor series about free stream temperature 

T
 . Neglecting second and higher order terms, 4T   is 

expressed as   
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Making use of Eqs. (6) and (7) in Eq. (3), we obtain 
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Introducing non-dimensional variables and parameters 
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where 
2,K  M , 1K , rG , cG , rP , R ,   and cS  are, 

respectively, rotation parameter, magnetic parameter, 

permeability parameter, thermal Grashof number, 

solutal Grashof number, Prandtl number, radiation 

parameter, heat absorption parameter and Schmidt 

number. 

 

It may be noted that characteristic time 
0t  may be 

defined according to the non-dimensional process 

mentioned above as 

2
0 0/ ,t U                                                                (14) 

where 
0U  is characteristic velocity. 

 

Initial and boundary conditions, presented by Eqs. (5a) 

to (5e), in non-dimensional form, are given by 
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Combining Eqs. (10) and (11), we obtain 
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In order to investigate the flow features of the fluid 

flow generated due to uniformly accelerated movement 

of the plate, we consider 1( )f t R t  where 1R  is a non-

dimensional constant.  

 

Using Laplace transform technique in Eqs. (12), (13) 

and (16), exact solutions for fluid temperature ( , )T y t , 
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are obtained and are presented in the following form 

after simplification. 
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where ( 1)H t   and ( )erfc x  are, respectively, unit step 

function and complementary error function, 
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2.1 Solution for Unit Prandtl and Unit Schmidt 

Number 

It may be noted that the solution, presented by Eq. (20) 

for fluid velocity ( , )F y t  is not valid for unit Prandtl 

number and unit Schmidt number. Since Prandtl 

number is a measure of the relative strength of viscosity 

to thermal diffusivity of fluid and Schmidt number is a 

measure of the relative strength of viscosity to 

molecular (mass) diffusivity of fluid, the case 1rP   

and 1cS   corresponds to those fluids for which the 

viscous, thermal and concentration boundary layer 

thicknesses are same order of magnitude. There are 

some fluids of practical significance which belong to 

this category (Chen, 2004). Setting 1rP   and 1cS   

in Eqs. (12) and (13) and following the same procedure 

adopted earlier, exact solutions for fluid temperature 

( , )T y t , fluid concentration ( , )C y t  and fluid velocity 

( , )F y t  are obtained and are presented in the following 

form 
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where  1 2 1/ra G    and 1 1/ .cb G   

2.2 Solution when Fluid is in Contact to 

Isothermal Plate 

Analytical solution, presented by Eqs. (18) and  (20), is 

solution for fluid temperature and fluid velocity for the 

flow of an electrically conducting, viscous, 

incompressible, temperature dependent heat absorbing 

and radiating fluid past an accelerated moving vertical 

plate in a rotating medium with ramped temperature 

taking Hall effects into account. In order to emphasize 

the effects of ramped temperature distribution within 

the plate on fluid flow, it may be justified to compare 

such a flow with the one past an accelerated moving 

vertical plate with uniform temperature. Keeping in 

view the assumptions made earlier, the solution for 

fluid temperature and fluid velocity for the flow past an 

accelerated moving and rotating isothermal vertical 

plate is obtained and is presented in the following form 
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2.3 Skin Friction and Nusselt Number 

Expressions for primary skin friction ,x   secondary 

skin friction z  and Nusselt number uN , which are 

measures of shear stress at the plate due to primary 

flow, shear stress at the plate due to secondary flow and 

rate of heat transfer at the plate respectively, are 

presented in the following form for ramped temperature 

and isothermal plates. 
 

(i) For ramped temperature plate 
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(ii) For isothermal plate 
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2.4 Sherwood Number 

The expression for Sherwood number hS , which is a 

measure of rate of mass transfer at the plate, is given by  

.c
h

S
S

t
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                                                             (30) 

Expression, presented by Eq. (30) depicts that 

Sherwood number increases on increasing Schimidt 

number cS and decreases on increasing time. Since cS  

presents relative strength of viscosity to molecular 

diffusivity of the fluid, cS  decreases on increasing 

molecular diffusivity. This implies that molecular 

diffusivity tends to reduce rate of mass transfer at the 

plate and there is a reduction in rate of mass transfer at 

the plate with the progress of time.  

3. RESULTS AND DISCUSSION 

In order to study the influence of Hall current, rotation, 

radiation, heat absorption, thermal buoyancy force, 

solutal buoyancy force, mass diffusion and time on the 

flow-field, the numerical values of primary and 

secondary fluid velocities in the boundary layer region, 

computed from the analytical solutions, presented by 

Eqs. (20) and (25), are displayed graphically versus 

boundary layer coordinate y  for various values of Hall 

current parameter ,m  rotation parameter 
2K , radiation 

parameter R , heat absorption parameter  , Grashof 

number rG , solutal Grashof number cG , Schmidt 

number cS  and time ,t  taking magnetic parameter 

15M  , permeability parameter 1 0.2K   and Prandtl 

number 0.71rP   (ionized air) in Figs. 2 to 17. It is 

revealed from Figs. 2 to 17 that, for both ramped 

temperature and isothermal plates, primary fluid 

velocity u  and secondary fluid velocity w  attain a 

distinctive maximum value near the surface of the plate 

and then decrease properly on increasing boundary 

layer coordinate y  to approach free stream value. Also 

the primary and secondary fluid velocities are faster in 

case of isothermal plate than that of ramped 

temperature plate. It is observed form Figs. 2 and 3 that, 

for both ramped temperature and isothermal plates, u   

 

 

Fig. 2. Primary velocity profiles when 
2

2, 2,K R 
 

3, 4, 3, 0.6a 0 5n .d .
c cr

G SG t   
 

 

 
Fig. 3. Secondary velocity profiles when 

2
2,K   

3, 42, ,
r

R G    3, 0.6 and 0.5.
c c

tG S  
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Fig. 4. Primary velocity profiles when 0.5,m   

42, 3,3, ,
r c

R GG    0.6
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S 
 

and 0.5t 
 

 

 
Fig. 6. Primary velocity profiles when 0.5,m   

2
2,K    3, 0.3, 64,

c cr
GG S   

 
and 0.5t   

 

 
Fig. 8. Primary velocity profiles when 0.5,m   

2
2,K    2,R 

 
4

r
G  , 3,

c
G   0.6

c
S 

 
and 0.5.t 

 
 

and w  increase on increasing m . This implies that 

Hall current tends to accelerate primary and secondary 

fluid velocities for both ramped temperature and 

isothermal plates. This is due to the reason that Hall 

current induces secondary flow in the flow field. 

 

It is revealed from Figs. 4 and 5 that u  decreases on 

increasing 
2K  whereas w  increases on increasing 

2K for both ramped temperature and isothermal plates. 

This implies that rotation tends to retard the primary 

fluid velocity whereas it has a reverse effect on 

secondary fluid velocity for both ramped temperature  

 
Fig. 5. Secondary velocity profiles when 0.5,m   

2,R  3,  4
r

G  , 3,
c

G  0.6
c

S    

and 0.5.t   
 

 
Fig. 7. Secondary velocity profiles when 0.5,m   

2
2,K  3, 0.3, 64,

c cr
GG S   

 
and 0.5t 

 
 

 
Fig. 9. Secondary velocity profiles when 0.5,m   

2
2,K    2,R 

 
4

r
G  , 3,

c
G   0.6

c
S 

 
and 0.5.t   

 

and isothermal plates which is in agreement with the 

characteristics of Coriolis force which tends to suppress 

the primary flow for inducing the secondary flow. It is 

noticed from Figs. 6 to 9 that u  and w  decrease on 

increasing either R  or   for both ramped temperature 

and isothermal plates. This implies that radiation and 

heat absorption tend to retard the primary and 

secondary fluid velocities for both ramped temperature 

and isothermal plates. This is because radiation and heat 

absorption have tendency to reduce fluid temperature 

which is clearly evident from Figs. 18 and 19.  
 

It is evident from Figs. 10 to 13 that u  and w  increase  
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Fig. 10. Primary velocity profiles when 0.5,m   

2
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Fig. 12. Primary velocity profiles when 0.5,m   

2
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Fig. 14. Primary velocity profiles when 0.5,m   

2
2,K   2,R 

 
3  , 4,

r
G   3

c
G   and 0.5.t   

 

on increasing either rG  or cG  for both ramped 

temperature and isothermal plates. Physically, rG  

presents relative strength of thermal buoyancy force to 

viscous force whereas cG  presents the relative strength 

of solutal buoyancy force to viscous force. 
rG  

increases on increasing thermal buoyancy force and cG  

increases on increasing solutal buoyancy force. This 

implies that thermal buoyancy force and concentration 

buoyancy force tend to accelerate the primary and 

secondary fluid velocities for both ramped temperature 

and isothermal plates. It is noticed from Figs. 14 and 15 

that u  and w  decrease on increasing cS  for both 

ramped temperature and isothermal plates.  

 
Fig. 11. Secondary velocity profiles when 0.5,m   

2
2,K   2,R 

 
3  , 3,

c
G   0.6

c
S  and 0.5.t   

 

 
Fig. 13. Secondary velocity profiles when 0.5,m   
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Fig. 15. Secondary velocity profiles when 0.5,m   

2
2,K   2,R 

 
3  , 4,

r
G   3

c
G   and 0.5.t   

Since Schmidt number cS  is a measure of relative 

strength of viscosity to chemical molecular diffusivity. 

This implies that mass diffusion tends to accelerate the 

primary and secondary fluid velocities for both ramped 

temperature and isothermal plates. It is observed from 

Figs. 16 and 17 that u  and w  increase on increasing t  

for both ramped temperature and isothermal plates. This 

implies that primary and secondary fluid velocities are 

getting accelerated with the progress of time for both 

ramped temperature and isothermal plates. The 

numerical values for fluid temperature T  computed 

from analytical solutions, presented by Eqs. (18) and 

(24), are displayed graphically versus boundary layer 

coordinate y  in Figs. 18 to 20 for various values of 

heat absorption parameter ,  radiation parameter R  

and time t  taking Prandtl number 0.71rP  . It is 
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evident from Figs. 18 to 20 that fluid temperature T  

decreases on increasing either   or R  for both ramped 

temperature and isothermal plates whereas it increases 

on increasing t . 

 

Fig. 16. Primary velocity profiles when 0.5,m   

2
2,K   2,R 

 
3.  , 4,

r
G   3

c
G   and 0.6

c
S  . 

 

 
Fig. 18. Temperature profiles when 2R   and 0.5.t   

 

 

 
Fig. 20. Temperature profiles when 2R    and 3. 

 
 

This implies that, for both ramped temperature and 

isothermal plates, heat absorption and radiation have 

tendency to reduce fluid temperature. Fluid temperature 

is getting enhanced with the progress of time for both 

ramped temperature and isothermal plates. It is noticed 

from Figs. 18 to 20 that, for both ramped temperature 

and isothermal plates, fluid temperature is maximum at 

the surface of the plate and it decreases properly on 

increasing boundary layer coordinate y  to attain free 

stream value. Also, fluid temperature is higher in case 

of isothermal plate than that of ramped temperature 

plate. 
 

The numerical values of species concentration C , 

computed from the analytical solution, presented by Eq.  
 

 
Fig. 17. Secondary velocity profiles when 0.5,m   

2
2,K   2,R 

 
3.  , 4,

r
G   3

c
G   and 0.6

c
S  . 

 

 
Fig. 19. Temperature profiles when  3  and 0.5.t   
 

 
Fig. 21. Concentration profiles when 0.5.t   

 

 
Fig. 22. Concentration profiles when 0.6.

c
S 

 
 

(19), are presented graphically versus boundary layer 

coordinate y  in Figs. 21 and 22 for various values of 

Schmidt number cS  and time t . It is evident from 

Figs. 21 and 22 that species concentration C  decreases 

on increasing cS  whereas it increases on increasing t .  
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Table 1 Skin friction at ramped temperature plate when 

4,
r

G  3,
c

G  3,  2,R  0.6
c

S 
 
and 0.5.t   

       2K  m            0.5 1 1.5 

 2 1.3951 1.1343 0.9100 

x  4 1.4962 1.2806 1.0887 

 6 1.6095 1.4281 1.2617 

 2 0.7275 0.9572 1.0303 

z  4 0.9765 1.2081 1.2912 

 6 1.1981 1.4227 1.5071 
 

Table 3 Skin friction at ramped temperature plate when 

0.5,m  2
2,K  3,  2,R  0.6

c
S 

 
and 0.5.t   

      cG  rG             2 4 6 

 3 1.5382 1.3951 1.2520 

x  5 1.1583 1.0518 0.8721 

 7 0.7784 0.6353 0.4922 

 3 0.7047 0.7275 0.7502 

z  5 0.7900 0.8128 0.8356 

 7 0.8754 0.8982 0.9210 

 

Table 5 Skin friction at ramped temperature plate when 

0.5,m  2
2,K  4,

r
G  3,

c
G  0.6

c
S 

 
and 0.5.t   

            R             2 4 6 

 1 1.3822 1.3951 1.4058 

x  3 1.3951 1.4058 1.4149 

 5 1.4058 1.4149 1.4229 

 1 0.7315 0.7275 0.7242 

z  3 0.7275 0.7242 0.7215 

 5 0.7242 0.7215 0.7192 

 

Table 7 Skin friction at ramped temperature plate when 

0.5,m  2
2,K  4,

r
G  3,

c
G  3 

 and 2.R   

        cS  t             0.3 0.5 0.7 

 0.22 0.6431 1.3571 2.0754 

x  0.32 0.6565 1.3673 2.0860 

 0.6 0.6845 1.3889 2.1043 

 0.22 0.4775 0.7458 1.0092 

z  0.32 0.4698 0.7398 1.0030 

 0.6 0.4548 0.7275 0.9925 

 

This implies that mass diffusion tends to enhance 

species concentration and there is an enhancement in 

species concentration with the progress of time 

throughout the boundary layer region. 

 

The numerical values of primary skin friction 
x  and 

secondary skin friction 
z  for both ramped temperature 

and isothermal plates, computed from the analytical 

expressions, presented by Eqs. (26) and (28), are 

presented in tabular form in Tables 1 to 8 for various 

values of 
2 ,K  ,m ,rG ,cG , ,R cS and t  taking 

15M  , 1 0.2K   and 0.71rP   whereas those of 

Nusselt number 
uN  for both ramped temperature and 

isothermal plates, computed from analytical  

 

Table 2 Skin friction at isothermal plate when 

4,
r

G  3,
c

G  3,  2,R  0.6
c

S 
 
and 0.5.t   

       2K  m            0.5 1 1.5 

 2 0.9649 0.6291 0.3374 

x  4 0.9669 0.6329 0.3425 

 6 0.9773 0.6515 0.3673 

 2 0.7990 1.0619 1.1555 

z  4 1.0660 1.3276 1.4297 

 6 1.2999 1.5503 1.6512 

 

Table 4 Skin friction at isothermal plate when 

0.5,m  2
2,K  3,  2,R  0.6

c
S 

 
and 0.5.t   

      cG  rG             2 4 6 

 3 1.3691 1.0568 0.7445 

x  5 0.9892 0.6769 0.3646 

 7 0.6093 0.2970 0.0153 

 3 0.7404 0.7990 0.8575 

z  5 0.8258 0.8843 0.9249 

 7 0.9112 0.9697 1.0282 

 

Table 6 Skin friction at isothermal plate when 

0.5,m  2
2,K  4,

r
G  3,

c
G  0.6

c
S 

 

and 0.5.t   

            R             2 4 6 

 1 1.0181 1.0570 1.0868 

x  3 1.0570 1.0870 1.1110 

 5 1.0870 1.1110 1.1312 

 1 0.8136 0.7990 0.7880 

z  3 0.7990 0.7880 0.7794 

 5 0.7880 0.7793 0.7725 

 

Table 8 Skin friction at isothermal plate when 

0.5,m  2
2,K  4,

r
G  3,

c
G  3 

 and 2.R   

        cS  t             0.3 0.5 0.7 

 0.22 0.1890 1.0250 1.8709 

x  0.32 0.2024 1.0351 1.8814 

 0.6 0.2304 1.0570 1.8998 

 0.22 0.5664 0.8173 1.0582 

z  0.32 0.5587 0.8113 1.052 

 0.6 0.5437 0.7990 1.0415 

 

expressions, presented by Eqs. (27) and (29), are 

provided in Table 9 for different values of , R and t  

taking 0.71rP  . It is noted from Tables 1 to 8 that the 

numerical values of primary skin friction for ramped 

temperature plate is higher than that for isothermal plate 

whereas the numerical values of secondary skin friction 

for ramped temperature plate is lower than that for 

isothermal plate.  It is evident from Tables 1 to 8 that 

x  decreases on increasing ,m andr cG G whereas it 

increases on increasing 
2 , , , andcK R S t for both 

ramped temperature and isothermal plates. z  increases 

on increasing 
2 , , , andr cK m G G t  whereas it decreases 

on increasing , and cR S  for both ramped temperature 

and isothermal plates.  
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Table 9 Nusselt number u
N . 

R    t  Ramped 

Temperature 

Isothermal 

plate 

2 3 0.3 0.88457 1.92093 

2 3 0.5 1.15702 1.89157 

2 3 0.7 1.51219 1.88595 

2 1 0.5 1.04197 1.48794 

2 3 0.5 1.15702 1.89157 

2 5 0.5 1.28383 2.23148 

2 3 0.5 1.15702 1.89157 

4 3 0.5 1.28383 2.23148 

6 3 0.5 1.40804 2.52849 

 

This implies that Hall current, thermal buoyancy force, 

solutal buoyancy force and mass diffusion tend to 

reduce primary skin friction whereas these agencies 

have reverse effect on secondary skin friction for both 

ramped temperature and isothermal plates. Rotation 

tends to enhance primary and secondary skin frictions 

for both ramped temperature and isothermal plates. 

Heat absorption and radiation tend to enhance primary 

skin friction whereas these agencies have reverse effect 

on secondary skin friction for both ramped temperature 

and isothermal plates. Primary and secondary skin 

frictions are getting enhanced for both ramped 

temperature and isothermal plates with the progress of 

time. 

 

It is evident from Table 9 that Nusselt number 
uN  

increases on increasing either   or R  for both ramped 

temperature and isothermal plates. On increasing time 

t , Nusselt number uN  increases for ramped 

temperature plate whereas it decreases for isothermal 

plate. This implies that, for both ramped temperature 

and isothermal plates, heat absorption and radiation 

tend to enhance rate of heat transfer at the plate. Rate of 

heat transfer at the plate is getting enhanced for ramped 

temperature plate whereas it is getting reduced for 

isothermal plate with the progress of time. 

4. CONCLUSIONS 

Present investigation deals with unsteady 

hydromagnetic natural convection heat and mass 

transfer flow with Hall current of a viscous, 

incompressible, electrically conducting, temperature 

dependent heat absorbing and optically thin heat 

radiating fluid past an accelerated moving vertical plate 

through fluid saturated porous medium in a rotating 

environment when temperature of the plate has a 

temporarily ramped profile. 

 

Noteworthy results are summarized below: 

 For both ramped temperature and isothermal 

plates: 

Hall current, thermal buoyancy force, solutal 

buoyancy force and mass diffusion tend to 

accelerate primary and secondary fluid velocities 

whereas heat absorption and radiation have reverse 

effect on it. Rotation tends to retard the primary 

fluid velocity whereas it has a reverse effect on 

secondary fluid velocity. Primary and secondary 

fluid velocities are getting accelerated with the 

progress of time. Heat absorption and radiation 

have tendency to reduce fluid temperature. There is 

an enhancement in fluid temperature with the 

progress of time. 

 For both ramped temperature and isothermal 

plates: 

Hall current, thermal buoyancy force, solutal 

buoyancy force and mass diffusion tend to reduce 

primary skin friction whereas these agencies have 

reverse effect on secondary skin friction. Rotation 

tends to enhance primary and secondary skin 

frictions. Heat absorption and radiaton tend to 

enhance primary skin friction whereas these 

agencies have reverse effect on secondary skin 

friction. Primary and secondary skin frictions are 

getting enhanced with the progress of time. 

 For both ramped temperature and isothermal 

plates, heat absorption and radiation tend to 

enhance rate of heat transfer at the plate. Rate of 

heat transfer at the plate is getting enhanced for 

ramped temperature plate whereas it is getting 

reduced for isothermal plate with the progress of 

time. 
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