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ABSTRACT

The present study is concerned with the scattering of an incoming water wave over a single step below
the upper surface where the height of the step may be finite or very large(infinite) in presence of a surface
discontinuity. Using linear theory, the problem is formulated mathematically as a boundary value problem
in two separate regions of the ocean corresponding to two different depths. By utilising the eigenfunc-
tion expansion of the velocity potentials in conjunction with the impendence conditions along the common
vertical boundary of the two regions, the mathematical problem is reduced to a system of linear equations
which are solved numerically to obtain the hydrodynamic coefficients. If the surface discontinuity is due to
a semi-infinite floating dock over an infinite step at the bottom, use of Havelock expansion of the velocity
potentials and impendence conditions, the boundary value problem leads to another system of linear equa-
tion involving integral equations. The explicit form of the reflection coefficient is computed numerically in
terms of wave number of the incoming wave and a number of graphical representations is given.

Keywords: Water wave scattering, Surface discontinuity, Inertial surfaces, Semi-infinite dock, Step bot-
tom, Reflection and transmission coefficient.

1. INTRODUCTION

The problem of water wave scattering due to the
presence of floating body or by finite obstacles
of a specified geometry placed on the bottom is
of general interest. Earlier, a number of problem
concerning surface wave propagation along with
various types of floating obstacles present at the
upper surface or bottom of the ocean are discussed
in the treatise of Lamb (1932), Stoker (1957),
Kreisel (1949) and many others. Their valuable
contributions enriched the prospect of linear water
wave theory in this context. Weitz and Keller
(1950) considered a water wave scattering problem
involving a discontinuity in the surface boundary
condition due to the presence of a broken ice on a
half portion of the upper surface whereas the other
half being free. Evans and Linton (1994) consid-
ered the problem of scattering of incoming wave
by an uneven bottom using step approximation and
obtained a scattering matrix of the hydrodynamic
coefficients. Ultimately they reduced this problem
to a problem of scattering by a discontinuity at the
upper surface in uniform finite depth water and

employed residue calculus technique of complex
variable theory to obtain the reflection and trans-
mission coefficient of the incident wave. Mandal
and De (2009) investigated a wave scattering prob-
lem by a discontinuity at the upper surface together
with a small bottom undulation. Using perturbation
technique in conjunction with Green’s integral
theorem they obtained hydrodynamic coefficients
up to first order in terms of computable integral.
Recently Basu et al. (2012) and Maiti et al. (2013)
extended the problem of scattering of an incident
wave by taking porous uneven or uniform bottom
in presence of a surface discontinuity and they
obtained the hydrodynamic coefficients in terms of
wave number of the incident wave.

The problem of scattering of an incoming
wave train by a semi-infinite floating dock in front
of a free surface was considered by Linton (2001),
Leppington (1970) and many others. Heins (1949)
considered the same problem and utilised Wiener-
Hopf technique for analytical solution of the
mathematical problem. Chakrabarti et al. (2005)



R. Maiti and U. Basu / JAFM, Vol. 8, No. 2, pp. 173-180, 2015.

investigated the classical dock problem by utilizing
Fourier analysis and the mathematical problem
was reduced to the Carleman type singular integral
equation over semi-infinite range. Recently Basu
et al. (2012) considered the problem of scattering
of an incident wave train by a semi-infinite floating
dock in presence of a small bottom undulation.
They obtained the reflection and transmission
coefficients by using perturbation technique and
Green’s integral theorem.

Scattering of an incident wave over a sudden
change in depth of the ocean is another interesting
aspect in the present context. The problem of
diffraction of an incoming wave by a sudden
change of depth has been studied earlier by
Sretenskii (1950), Bartholomeusz (1958) and many
others. Lee and Ayer (1981), Miles (1982) and
Kirby and Dalrymple (1983) investigated the prop-
agation of surface waves over a rectangular trench.
The mathematical problem was reduced to a
system of equations involving integrals which were
solved numerically and they obtained the reflection
and transmission coefficients for different ratios
of depth. Newman (1965) considered the problem
of propagation of incoming water wave from a
deep sea to a region of finite depth. Butakov and
Zharkov (1998) studied the problem of scattering
of an incoming wave from an infinitely deep region
to a region of finite depth in presence of a drifting
broken ice sheet at the upper surface of the ocean.
In their formulation, the problem was formulated
considering two different regions and by utilising
the matching condition at the vertical boundaries of
the fluid domain incorporating with the eigenfunc-
tion expansion of the velocity potentials a system
of linear equation was formulated and the reflection
and transmission coefficients were obtained along
with numerical results.

In the present paper, the problem of scatter-
ing of an incoming water wave in presence of a
discontinuity at the upper surface is considered
when the fluid region is of finite depth and the
bottom has a sudden change in its depth from h1
to h2, (h1 > h2) i.e there is a single step at the
bottom. Assuming linear theory, the problem is
mathematically formulated as a two dimensional
boundary value problem. At first the discontinuity
at the upper surface arises due to a change in
wave number of the incoming wave when the
upper surface of the ocean is covered by two
different floating inertial surfaces in two halves.
The discontinuity at the upper surface may also be
presented in the form of a semi-infinite floating
dock of negligible thickness occupying one half
of the ocean in front of the free surface and the
bottom geometry remains same as before. When a

train of progressive wave arrives and interacts with
the discontinuity then some part of it is reflected
and transmitted through the ocean whereas there
will be no propagation of the incident wave as well
as no transmission in presence of a semi-infinite
floating dock in front of the free surface. In the
mathematical formulation, we find that the velocity
potential satisfies two different boundary value
problems in two region of the ocean of different
depths. These boundary value problems are being
solved and the potentials are expressed in terms of
depth eigenfunctions in their respective regions.
By utilising the impendence conditions at the
vertical boundaries of the fluid domain along
with the eigenfunction expansion of the velocity
potentials, a system of linear equations is generated
involving computable integrals. The resulting
matrix equations involving the hydrodynamic
coefficients are evaluated numerically. Finally, we
consider that the free surface region is of infinitely
deep and right-half of the upper surface is covered
by a semi-infinite floating dock over finite depth
water so that the bottom has an infinite step. In
this case, the solution of the velocity potentials
for the free surface region is obtained by using
Havelock expansion (Havelock (1929)) of the
potential. The remaining problem is solved by
combining the matching conditions at the vertical
fluid boundary leading to another system of linear
equations involving integral equations. The ex-
plicit analytical form of the reflection coefficient
is obtained by using the far field behavior of
the potential functions in the free surface region
which is computed numerically after solving the
matrix equations. In each case, the hydrodynamic
coefficients are plotted in figures in terms of wave
number of the incident wave for both finite and
infinite step respectively.

2. MATHEMATICAL FORMULATION OF
THE PROBLEM

For the mathematical formulation of the problem, a
right handed cartesian co-ordinate system (x,y) is
chosen in which y = 0 represents the undisturbed
upper surface and the direction of y-axis is verti-
cally downward into the fluid region. The fluid
is considered to be inviscid, incompressible and
a train of progressive wave arrives from x→ −∞

where the direction of the positive x-axis being
opposite to the direction of the incoming wave
field. Assuming that the motion in water is two-
dimensional, irrotational and time-harmonic with
angular frequency σ, it can be described by the ve-
locity potential ψ(x,y, t) = Re[φ(x,y)e−iσt ] where
φ(x,y) satisfies the Laplace equation:

∂2φ

∂x2 +
∂2φ

∂y2 = 0, in the fluid region. (1)
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2.1 Case-A: Two floating inertial surfaces over
a finite step:

We consider that the discontinuity at the upper sur-
face occurs due to the presence of two floating iner-
tial surfaces of uniform area densities ε1ρ and ε2ρ

(ρ being the density of water), occupying the re-
gions y= 0,x < 0 and y= 0,x > 0 respectively. The
bottom of the ocean has a finite step due to a sud-
den change of depth from h1 to h2, (h1 > h2). The
boundary conditions at the upper surface are given
by

K1φ+
∂φ

∂y
= 0 on y = 0,x < 0, (2)

K2φ+
∂φ

∂y
= 0 on y = 0,x > 0. (3)

This produces a discontinuity in the upper sur-
face of the ocean at the point (0,0), where K1 =

K
1−ε1K ,K2 = K

1−ε2K and ε1,ε2 < g
σ2 (K = σ2

g , g is
the acceleration due to gravity) so that the time-
harmonic progressive wave can propagate with an-
gular frequency σ along the inertial surfaces. The
boundary conditions at the bottom are given by

∂φ

∂y
= 0 on y = hi, (i = 1,2). (4)

The boundary condition along the vertical wall h2 <
y < h1,x = 0 is given by

∂φ

∂x
= 0 on x = 0,h2 < y < h1. (5)

Besides, there is a singularity at the edge of the step
(Mandal and Chakrabarti (2000)) which is of the
form

r
1
3 ∇φ(x,y) is bounded as r→ 0, (6)

where r is the distance from submerged edge of the
step. When a train of progressive wave having po-
tentials eik0xψ1

0(y) arrives from negative infinity di-
rection, the far field behavior of φ(x,y) is specified
as

φ(x,y)∼
{

Teis0x
ψ

2
0(y) as x→ ∞,

eik0x
ψ

1
0(y)+Re−ik0x

ψ
1
0(y) as x→−∞.

(7)

Here, ψ1
0(y) = N1

0 coshk0(h1 −
y),ψ2

0(y) = N2
0 coshs0(h2 − y) and N1

0 =

( 2k0h1
2k0h1+sinh2k0h1

)1/2,N2
0 = ( 2s0h2

2s0h2+sinh2s0h2
)1/2.

k0 and s0 are given by the unique positive real
roots of the following two transcendental equations
(Das and Mandal (2005)) k tanhkh1 = K1 and
s tanhsh2 = K2 respectively. Here R and T are the
unknown reflection and transmission coefficients
(complex) which are to be determined.

2.2 Case-B: Semi-infinite floating dock over a
finite step:

Discontinuity at the upper surface may occurs due
to the presence of a semi-infinite floating dock of
negligible thickness occupying the region x > 0,
y = 0 in front of the free surface x < 0, y = 0 over
the same bottom geometry as before. Instead of the
conditions Eq. (2) and Eq. (3), the boundary con-
ditions at the upper surface are given by

Kφ+
∂φ

∂y
= 0 on y = 0,x < 0, (8)

∂φ

∂y
= 0 on y = 0,x > 0. (9)

As there is no propagation of incoming wave in the
dock region, the incident wave field eik0xψ1

0(y) from
negative infinity direction is reflected by the dock
and the far field conditions for φ(x,y) are

φ(x,y)∼
{

0 as x→ ∞,

eik0x
ψ

1
0(y)+Re−ik0x

ψ
1
0(y) as x→−∞.

(10)

2.3 Case-C: Semi-infinite floating dock over an
infinite step:

In this case, the free surface region is of infinite
depth and the dock region remains of finite depth H
so that there is an infinite step at the bottom (New-
man (1965)). Along with Eq. (6), Eq. (8) and
Eq. (9), the boundary conditions given by the Eq.
(4),Eq. (5) andEq. (7) are

∇φ−→ 0 as y→∞, (11)

∂φ

∂x
= 0 on x = 0,H < y < ∞ (12)

and

φ(x,y)∼
{

0 as x→ ∞,

φIe−Ky+iKx +φRe−Ky−iKx as x→−∞.

(13)

φI and φR are the incident and reflected wave poten-
tials respectively and K is the root of the dispersion
relation k = σ2

g . In each case, determination of the
reflection coefficients R is of our prime concern.

3. METHOD OF MATHEMATICAL
DERIVATION AND SOLUTION

We divide the fluid domain into two regions accord-
ingly to two different depths namely the region-1
for −∞ < x < 0,0 < y < h1 and the region-2 for
0 < x < ∞,0 < y < h2 respectively. The velocity
potential φ(x,y) in these two regions is defined as

φ(x,y)=
{

φ1(x,y) in the region-1,
φ2(x,y) in the region-2. (14)
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The matching conditions due to the continuity of
pressure and the horizontal velocity of flow across
the common vertical boundary of the two regions
are given by

φ1(0,y)= φ2(0,y) for 0< y< h2, (15)

φ1x(0,y)= φ2x(0,y) for 0< y< h2. (16)

First we consider the Case-A where the mathemat-
ical boundary value problem is to solve the basic
equationEq. (1) along with the boundary condi-
tions given by Eq. (2)-(7). Now according to Eq.
(14), the velocity potentials φ1(x,y) and φ2(x,y) are
given by

φ1(x,y)= eik0x
ψ

1
0+

∞

∑
n=0

Aneknx
ψ

1
n(y)

in the region-1, (17)

φ2(x,y)=
∞

∑
n=0

Bne−snx
ψ

2
n(y) in the region-2 (18)

with A0 = |R|,B0 = |T | and An,Bn (n = 1,2, .....)
are the unknown constants to be deter-
mined. Here ψ1

n(y), ψ2
n(y) are the orthog-

onal depth eigenfunctions for the two re-
gions (region-1 and region-2) respectively
which are given by ψ1

n(y) = N1
n coskn(h1 − y),

ψ2
n(y) = N2

n cossn(h2 − y) and N1
n =

( 2knh1
(2knh1+sin2knh1

)1/2,N2
n = ( 2snh2

(2snh2+sin2snh2
)1/2 (n =

1,2, ......). kn and sn (n = 1,2,3, .....) are given
by the positive real roots of the following two
transcendental equations kn tanknh1 + K1 = 0 and
sn tansnh2 +K2 = 0 respectively. Now multiplying
ψ2

n(y), (n = 0,1,2, .......) to the matching condi-
tion given by Eq.(15) and integrating between the
limits 0 to h2, we obtain,∫ h2

0
φ1(0,y)ψ2

n(y)dy=
∫ h2

0
φ2(0,y)ψ2

n(y)dy. (19)

Again, multiplying ψ1
n(y), (n= 0,1,2, .......) to Eq.

(16) and integrating between 0 to h2 we obtain,∫ h2

0
φ1x(0,y)ψ1

n(y)dy=
∫ h2

0
φ2x(0,y)ψ1

n(y)dy (20)

i.e using Eq. (5), Eq. (20) can be written as∫ h1

0
φ1x(0,y)ψ1

n(y)dy=
∫ h2

0
φ2x(0,y)ψ1

n(y)dy (21)

Now we consider the Case-B where the boundary
value problem can be formulated by Eq. (1) to-
gether with boundary conditions given by Eq. (4)-
(6) and Eq. (8)-(10). Now following Eq. (14), the
eigenfunction expansion of the potentials φ1(x,y)
and φ2(x,y) in this case are respectively given by

φ1(x,y) = eik0x
ψ

1
0(y)+

∞

∑
n=0

Cneknx
ψ

1
n(y)

in the region-1, (22)

φ2(x,y)=
∞

∑
n=1

Dne−snx
ψ

2
n(y) in the region-2 (23)

with C0 = |R| and Cn,Dn (n = 1,2, .....) are the un-
known constants to be determined. Here ψ1

n(y) =
N1

n coskn(h1−y), ψ2
n(y) = N2

n cossn(h2−y) and kn,
sn (n= 1,2,3, .....) are given by kn tanknh1+K1 = 0
and sn =

nπ

h2
respectively. By a similar analysis, we

multiply ψ2
n(y) and ψ1

n(y) to the matching condition
given by Eq. (15) and Eq. (16) successively and in-
tegrating between the limit 0 to h2, we obtain,∫ h2

0
φ1(0,y)ψ2

n(y)dy=
∫ h2

0
φ2(0,y)ψ2

n(y)dy (24)

and∫ h2

0
φ1x(0,y)ψ1

n(y)dy=
∫ h2

0
φ2x(0,y)ψ1

n(y)dy (25)

i.e using Eq.(5), Eq.(25) can be written as∫ h1

0
φ1x(0,y)ψ1

n(y)dy=
∫ h2

0
φ2x(0,y)ψ1

n(y)dy. (26)

Next we consider the Case-C where the boundary
value problem is to solve Eq. (1) together with
boundary conditions given by Eq. (6), Eq. (8)-(9)
and Eq. (11)-(13). The unknown reflection coeffi-
cient in this case is given by

R =
φR

φI
. (27)

As before, we specify the potential function
φ(x,y) = φ1(x,y) for the free surface region 0 <
y < ∞,−∞ < x < 0 and φ(x,y) = φ2(x,y) for the
semi-infinite dock occupying the region 0 < y <
H,0< x<∞. Considering the continuity of the hor-
izontal velocity of flow across the x-direction along
x = 0,0 < y < H, we get

φ1x(0,y)= φ2x(0,y)= u(y), say, in 0< y<H,(28)

where u(y) is the linear velocity across the common
vertical boundary of the two region. The potential
function φ1(x,y) for the free surface region (−∞ <
x < 0,0 < y < ∞) can be written as

φ1(x,y) = φIe−Ky+iKx+φ0(x,y), (29)

where the additional potential function φ0(x,y)
characterises the reflected wave far from the discon-
tinuity and satisfies the following boundary value
problem

i)
∂2φ0

∂x2 +
∂2φ0

∂y2 = 0 in the fluid region,

ii) φ0(x,y)→ φRe−Ky−iKx as x→−∞,
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iii)
∂φ0

∂x
= v(y) on x= 0,0< y<∞,

where v(y) is specified by combining Eq. (28),Eq.
(29) together with condition (iii) of the above
boundary value problem

v(y) =
{

u(y)− iKφIe−Ky for 0 < y < H,

−iKφIe−Ky for H < y < ∞.

(30)

Using Havelock expansion (Havelock (1929)), the
potential φ0(x,y) for the above boundary value
problem (i)-(iii) can be specified as

φ0(x,y)= 2ie−Ky−iKx
∫

∞

0
v(ξ)e−Kξdξ+

2
π

∫
∞

0
v(ξ)χ(ξ,x,y)dξ (31)

χ(ξ,x,y) =∫
∞

0
e−k|x| (kcosky−Ksinky)(kcoskξ−Ksinkξ)

k(k2 +K2)
dk.

Substituting the expression of v(y) from Eq. (30) in
φ0(x,y), we obtain

φ0(x,y)= φIe−Ky−iKx+2ie−Ky−iKx
∫ H

0
u(ξ)e−Kξdξ+

2
π

∫ H

0
u(ξ)χ(ξ,x,y)dξ. (32)

After substitution of Eq. (32) to Eq. (29) for
φ1(x,y), we obtain,

φ1(x,y)= 2φIe−KycosKx+2ie−Ky−iKx
∫ H

0
u(ξ)e−Kξdξ

+
2
π

∫ H

0
u(ξ)χ(ξ,x,y)dξ. (33)

Now the potential function φ2(x,y) is of the form

φ2(x,y) =
∞

∑
n=1

Ene−snx
ψn(y)

for 0 < x < ∞,0 < y < H, (34)

where En are the unknown constants and sn =
nπ

H (n = 1,2,3, ...). Here ψn(y) = cossn(H −
y), (n = 1,2,3, ......) forms a complete set of or-
thogonal eigenfunction for the semi-infinite dock
region. Now by using Eq. (28), we obtain,

u(y)=−
∞

∑
n=1

unψn(y), (35)

where un = snEn. Using the orthogonality of
ψn(y)(n = 1,2,3, ...) in Eq. (34) and Eq. (35), we
obtain,

φ2(x,y)=
∞

∑
n=1

e−snx

sn
(
∫ H

0
u(ξ)ψn(ξ)dξ)ψn(y). (36)

Since φ1(0,y) = φ2(0,y) across 0 < y < H, from
Eq. (33), (35) and Eq. (36), we obtain

∞

∑
n=1

un

∫ H

0
Q(ξ,y)ψn(ξ)dξ= φIe−Ky, (37)

where

Q(ξ,y)= ie−K(y+ξ)+
∞

∑
n=1

cossn(H−ξ)cossn(H− y)
2snH + sin2snH

+
1
π

χ(ξ,0,y).

4. DETERMINATION OF THE HYDRODY-
NAMIC COEFFICIENTS

In the Case-A, using the expressions of φ1(x,y) and
φ2(x,y) given by Eq. (17) and Eq. (18) to Eq.
(19) and Eq. (21), we get a system of linear equa-
tion involving the unknown constants An,Bn (n =
0,1,2, ...) in which A0 = |R| and B0 = |T | re-
spectively. For the Case-B, we get C0 = |R|, the
unknown reflection coefficient, which can be de-
termined after eliminating the unknown constants
Cn,Dn (n= 1,2, ...) from the system of linear equa-
tions given by Eq. (24) and Eq. (26). In all
cases, the resulting system of linear equations can
be solved numerically for the unknown constants
after truncating the infinite sums up to desired ac-
curacy. Now, multiplying both sides ofEq. (37) by
ψl(y) = cossl(H − y), (l = 1,2,3......) and inte-
grating between the limits 0 to H, we obtain,

∞

∑
n=1

un

∫ H

0

∫ H

0
Q(ξ,y)cossn(H−ξ)cossl(H−y)dydξ

= φI

∫ H

0
e−Ky cossn(H−y)dy. (38)

The reflection coefficient can be obtained from the
far field behavior of the additional potential φ0(x,y)
satisfying the boundary value problem (i)-(iii) in
section-3 for the Case-C. As R = φR

φI
and φ0(x,y)→

φRe−Ky−iKx as x→−∞ and therefore from Eq. (31),
we have

R= 1+2i
∫ H

0
e−Kξu(ξ)dξ. (39)

Using u(y) =−∑
∞
n=1 unψn(y),Eq. (39) reduces to,

R = 1+2iKe−KH
∞

∑
n=1

Un

K2 + s2
n
, (40)

where the unknowns Un =
un
φI

(n = 1,2,3, ....). can
be eliminated from the system of linear equations
given by Eq. (38).
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Fig. 1. Case-A: |R| for h1 = h2 = h.

Fig. 2. Case-A: |T | for h1 = h2 = h.

5. NUMERICAL COMPUTATION AND
GRAPHICAL RESULTS

In this section, hydrodynamic coefficients are eval-
uated numerically by solving the system of linear
equations in each case as discussed in section-3 and
section-4. For computational purpose, the infinite
series are being truncated up to a finite number of
term so that a modest degree of accuracy is main-
tained. The computed values of the hydrodynamic
coefficients are plotted graphically against the wave
number of the incident wave in each case.
First we consider that the depth of the ocean is uni-
form and of finite depth h in presence of a disconti-
nuity for two floating inertial surfaces at the upper
boundary. Now following Eq. (19) and Eq. (21),
the computed values of reflection and transmission
coefficient are plotted in Fig. 1 and Fig. 2 respec-
tively against Kh.

It is observed that the values of |R| increases with
Kh but the values of |T | decreases simultaneously
which can be explained by the energy identity rela-
tion |R2|+ 1

α
|T 2| = 1,α = s0

k0
(Evans and Linton,

1994). In Case-A, when there is a finite step at
the bottom of height l = h1− h2,(h1 > h2), the re-
flection and transmission coefficients are computed
numerically for different step heights by using Eq.
(19) and Eq. (21). Fig. 3 and Fig. 4 depicts
these values of |R| and |T | respectively against Kl

by taking h1/l = 3,5, h2/l = 1, ε1/l = 0.04 and
ε2/l = 0.08. Comparing with the Fig. 1 and Fig.
2, it is noted that as the step height l at the bot-
tom increases, the values of |R| increases but |T |
decreases against Kl. The above results can be ex-
plained as there is a change of wave number of the
incident wave at the upper surface of the ocean due
to the presence of two different floating inertial sur-
faces and the presence of a finite step of height l
at the bottom. However, to observe effect of area
densities of the inertial surfaces on the reflection
and transmission coefficients, the Fig. 5 and Fig.
6 are plotted by taking h1/l = 5, h2/l = 1,ε1/l =
0.01,0.06 and ε2/l = 0.08 respectively.

Fig. 3. Case-A: |R| for h1/l = 3,5;h2/l = 1.

Fig. 4. Case-A: |T | for h1/l = 3,5;h2/l = 1.

The above results can be explained as there is a
change of wave number of the incident wave at the
upper surface of the ocean due to the presence of
two different floating inertial surfaces and the pres-
ence of a finite step of height l at the bottom. How-
ever, to observe effect of area densities of the in-
ertial surfaces on the reflection and transmission
coefficients, the Fig. 5 and Fig. 6 are plotted by
taking h1/l = 5, h2/l = 1,ε1/l = 0.01,0.06 and
ε2/l = 0.08 respectively.

For the Case-B, where the right half of the up-
per surface of the ocean is covered by a semi-
infinite floating dock over a finite step of height
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Fig. 5. Case-A: |R| for ε1/l = 0.01,0.06;ε2/l =
0.08.

Fig. 6. Case-A: |T | for ε1/l = 0.01,0.06;ε2/l =
0.08.

l = h1− h2,(h1 > h2) at the bottom, there will be
no propagation as well as transmission of the in-
coming wave field in the dock region. The reflec-
tion coefficient can be obtained by solving the sys-
tem of equations given by Eq. (24) and Eq. (26)
after truncation of the infinite sums as before and
the computed values of |R| are plotted in Fig. 7 and
Fig. 8 respectively. Figure 7 depicts |R| = 1 for
the case of uniform depth of the ocean by taking
h1 = h2 = h. However, for different step heights
l = h1− h2,(h1 > h2), following Eq. (24) and Eq.
(26) the computed values of |R| are plotted in Fig.
8 by taking h1/l = 5,7 and h2/l = 1. In Fig. 3, it
is observed that over the same bottom topography,
the values of |R| first increases with Kl and then
decreases but in Fig. 8, it gradually increases with
Kl. Comparing these two figures, the graph of re-
flection coefficient is different due to the presence
of two different types of discontinuity at the upper
surface.

Finally for the case of an infinite step at the bottom
(Case-C), the reflection coefficient |R| is evaluated
numerically by utilising the expression given by Eq.
(40). These computed values of |R| are depicted in
Fig. 9 against KH while the dock region remains of
finite depth H.

Fig. 7. Case-B: |R| for h1 = h2 = h.

Fig. 8. Case-B: |R| for h1/l = 5,7;h2/l = 1.

6. CONCLUSIONS

The discontinuity at the upper surface is being pre-
sented either by two floating inertial surfaces or by
a semi-infinite floating dock in front of a free sur-
face. Here boundary value problems for the two re-
gions of different finite depths are solved by using
eigenfunction expansion of the velocity potentials
in conjunction with the matching conditions at the
vertical boundary between two regions. A system
of linear equations involving unknown constants
are then obtained and solved numerically. Nu-
merical values of these hydrodynamic coefficients
are plotted graphically against wave number for
two different depths corresponding to two regions.
Comparing all graphs with the case of uniform fi-

Fig. 9. Case-C: |R| against KH.
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nite depth it is observed that the change of depth at
the bottom has an effect on the values of reflection
or transmission coefficients. For the presence of a
semi-infinite floating dock in front of the free sur-
face over an infinite step, the boundary value prob-
lem is being solved by using Havelock expansion.
Finally, by using the continuity of the horizontal ve-
locity of flow across the common vertical boundary
of the two regions along with the eigenfunction ex-
pansion of the velocity potentials of the finite depth
region give rises to another system of equations in-
volving integral equations. The explicit form of the
reflection coefficient is thus obtained from the far
field behavior of the potential function and is com-
puted numerically for graphical representation.
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