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ABSTRACT 

The magnetic field effect on laminar natural convection flow is investigated in a filled enclosure with internal heat 

generation using two-dimensional numerical simulation. The enclosure is heated by a uniform volumetric heat 

density and walls have constant temperature. A fixed magnetic field is applied to the enclosure. The dimensionless 

governing equations are solved numerically for the stream function, vorticity and temperature using finite difference 

method for various Rayleigh (Ra) and Hartmann (Ha) numbers in MATLAB software. The stream function equation 

is solved using fast Poisson's equation solver on a rectangular grid (POICALC function in MATLAB), voricity and 

temperature equations are solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB) 

methods respectively. The results show that the strength of the magnetic field has significant effects on the flow and 

temperature fields. For the square cavity, the maximum temperature reduces with increasing Ra number. It is also 

observed that at low Ra number, location of the maximum temperature is at the centre of the cavity and it shifts 

upwards with increase in Ra number. Circulation inside the enclosure and therefore the convection becomes stronger 

as the Ra number increases while the magnetic field suppresses the convective flow and the heat transfer rate. The 

ratio of the Lorentz force to the buoyancy force (Ha2/Ra) is as an index to compare the contribution of natural 

convection and magnetic field strength on heat transfer. 

 

Keywords: Magnetohydrodynamics (MHD), Natural convection, Square cavity, Stream function, Vorticity, Poicalc 

function. 

NOMENCLATURE 

B    magnetic flux density vector: Wb·m−2 

Cp   specific heat: J.kg-1.K-1 

g     gravitational acceleration vector: m·s−2 

h     grid spacing: m 

J     electric current density vector: A·m−2 

k    thermal conductivity: W·m−1·K−1 

L    dimension of cavity: m 

p     pressure: N·m−2 

q     volumetric heat source density: W.m-3 

T    temperature: K 

ν     velocity vector: m·s−1 

x, y, z Cartesian coordinates: m 

 

Greek symbols 

α   thermal diffusivity: m2·s−1 

β   coefficient of volumetric expansion: K−1 

φ   electric potential: V 

μ    dynamic viscosity: kg. m-1.s−1 

ρ    density: kg.m−3 

σ    electrical conductivity: mho.m−1 

 

ω    vorticity: s-1  

Ψ    stream function: m2.s-1 

 

Subscript 

0         reference value 

max     maximum value 

x, y, z   component of a vector quantity 
 

Dimensionless quantities 

V    velocity vector 

X    Cartesian coordinate in x direction 

Y    Cartesian coordinate in y direction 

Ω    vorticity 

Ψ    stream function 

θ     temperature 
 

Dimensionless numbers 

Gr   Grashof number 

Ha   Hartmann number 

Pr    Prandtl number  

Ra    Rayleigh number 
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1. INTRODUCTION 

The set of equations which describe MHD are a 

combination of the Navier-Stokes equations of fluid 

dynamics and Maxwell's equations of 

electromagnetism. These differential equations are 

solved simultaneously, either analytically or 

numerically. In industrial problems and microelectronic 

heat transfer devices flow of an electrically conducting 

fluid subjected to a magnetic field is used, thus, the 

fluid experiences a Lorentz force and its effect is to 

reduce the flow velocities which turn the affects in the 

heat transfer rate. Laminar natural convection flows 

have significant applications in many engineering areas 

including cooling of electronic equipment, nuclear 

reactor insulation, solar energy collection, and crystal 

growth in liquids and have been investigated by a 

number of researchers and a rich and variety of 

numerical results have been published due to this 

phenomenon. 

 

An analytical solution to the equations of 

magnetohydrodynamic flow is proposed in (Garandet 

and Alboussiere, 1992) and is used to model the effect 

of a transverse magnetic field on buoyancy driven 

convection in a two-dimensional cavity. The control 

volume algorithm is used in (Al-Najem et al., 1998; 

Sarris et al., 2005; Kandaswamy et al., 2008; 

Sheikhzadeh et al., 2011) to solve the two dimensional 

transient MHD equations with alternating direct 

implicit procedure (ADI). Finite difference method and 

finite element method are developed in (Borghi et al., 

1996; Borghi et al., 2004; Verardi and Cardoso 1998; 

Verardi et al., 2001; Verardi et al., 2002; Shadid et al., 

2010) for the solution of two-dimensional steady state 

electrodynamic problem in magnetohydrodynamic 

flows. A mathematical model describing the dynamics 

of magnetic field influence on a conducting liquid in a 

square cavity is presented in (Krzeminski et al., 2000) 

such that biharmonic mathematical model is used with 

stream function and the magnetic potential. 

 

A finite element method for the solution of 3D 

incompressible magnetohydrodynamic flow is 

presented in (Salah et al., 2001). The buoyancy-driven 

magnetohydrodynamic flow in a liquid-metal filled 

cubic enclosure with internal heat generation is 

investigated by three-dimensional numerical simulation 

in (Piazza and Ciofalo, 2002). Reference (Mahmud et 

al., 2003) has performed an analysis to study the first 

and second laws (of thermodynamics) characteristics of 

flow and heat transfer inside a vertical channel made of 

two parallel plates under the action of transverse 

magnetic field. A two-dimensional mathematical model 

has been developed to study the interaction between 

gravitational body force and self-induced 

electromagnetic body force in a Joule-heated liquid 

pool in a rectangular cavity, with an aspect ratio of 2 in 

(Sugilal et al., 2005). 

 

Steady, laminar, natural-convection flow in the 

presence of a magnetic field in an inclined rectangular 

enclosure heated from one side and cooled from the 

adjacent side is considered in (Ece and Büyük, 2006; 

Ece and Büyük 2007) so that the governing equations 

are solved numerically for the stream function, vorticity 

and temperature using the differential quadrature 

method. A finite volume code based on PATANKAR’s 

SIMPLER method is utilized in (Pirmohammadi et al., 

2009; Pirmohammadi and Ghassemi 2009; 

Pirmohammadi et al., 2010; Pirmohammadi et al., 

2011) with constant Prandtl (Pr) number. 

 

The present study investigates the laminar steady 

convection in an enclosure in the presence of a 

magnetic field. The enclosure is filled with an 

electrically conducting fluid whose Prandtl number is 

0.733. Therefore, a two-dimensional numerical model is 

developed to solve the vorticity, stream function and 

temperature governing equations of buoyancy-driven 

natural convection flow inside a cavity. The study 

pursues numerical solution to study the effect of 

magnetic field strength and Ra number on the natural 

convection and heat transfer. 

2. MATHEMATICAL FORMULATION 

Steady, laminar, natural-convection flow is considered 

in the presence of a magnetic field in a square 

enclosure. Dimensional coordinates with the x-axis 

measuring along the bottom wall and y-axis being 

normal to it along the left wall are used. The geometry 

and the coordinate system are schematically shown in 

Fig. 1. Magnetic flux density B is applied with respect 

to the coordinate system. The walls are kept at a 

constant temperature T=0. (Bagewadi and Bhagya 

2011; Kadid et al., 2011) 

 

Continuity, change of linear momentum and energy 

equations are written as follows 

0 v


               (1) 

  BJvpgvv


 2.         (2) 

 
pC

q
TTv


  2.


         (3) 

where, v  is the velocity vector, p is the pressure, T is 

the temperature, g


 is the gravitational acceleration, 

  is the density,   is the viscosity, Cp is the specific 

heat,   is the thermal diffusivity of the fluid and q is 

volumetric heat density, respectively, J  is the current 

density and B


 is magnetic field. The magnetic 

Reynolds number is small and the induced magnetic 

field due to the motion of the electrically conducting 

fluid is neglected. The current density is 

)( BvJ  


                                       (4) 

Where   is the electrical conductivity of the fluid and 

  is the electric potential. The conservation of the 

electric charge is 

0 J           (5) 

From (4) and (5) is derived: 

02              (6) 
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Fig. 1. Geometry and the coordinate system 

 
Since there is always somewhere around the cavity an 

electrically insulating boundary, the unique solution is 

0  which means that the electric field vanishes 

everywhere. The governing equations in scalar form 

under Boussinesq approximation are written as 
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Here  is the coefficient of thermal expansion of the 

fluid and 0 is the density of the fluid at temperature 

T=0. Stream function and vorticity are defined as 

follows 
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Therefore the governing equations reduce to 
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Dimensionless variables used in the analysis are 

according to, 

L

x
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where k is the thermal conductivity. Dimensionless 

numbers, the Prandtl, Grashof, Rayleigh and Hartmann 

numbers are defined as follows, 
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According to the equations (16) and (17), the governing 

equations in this study are given in dimensionless form 

as 
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Which these equations are solved subject to the 

boundary conditions 0 and 0 at all walls. 

The vorticity values at the wall is calculated using 

Jensen’s formula (Erturk, 2009)   

h

V
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35.04
2
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0 
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                                        (21) 

Where subscript 0 refers to the points on the wall, 1 

refers to the points adjacent to the wall, 2 refers to the 

second line of points adjacent to the wall, V refers to the 

velocity of the wall with its value being equal to 1 on 

the moving wall, and 0 on the stationary walls while h 

is the grid spacing. The velocities at a point (x,y) are 

approximated as follow (Gupta and Kalita, 2005): 
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3. SOLUTION METHOD 

The dimensionless governing equations associated with 

the boundary conditions are solved for stream function, 

vorticity and temperature numerically using the second 

order finite difference method. The hybrid-scheme, 

which is a combination of the central difference scheme 

and the upwind scheme, is used to discretize the 

convection terms. The sequence of algorithm is 

provided here: 

1. Guess the velocity and the stream function fields. 

2. Solve discretized temperature equation using Jacobi 

BiCGSTAB method. 

3. Calculate velocity field using stream function field 

(equation 22). 

4. Calculate vorticity boundary condition using velocity 

and stream function fields (equation 21). 

5. Solve the discretized vorticity equation using red-

black Gauss-Seidel method. 
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6. Solve the discretized stream function equation using 

fast Poisson's equation solver on a rectangular grid 

(POICALC function) in MATLAB. 

7. Check error in temperature, vorticitty and stream 

function fields. If errors are below the specified 

tolerance then exit the loop otherwise relax variables 

and return to step 2. Repeat the whole procedure till 

converged solution is obtained. The tolerance of the 

convergence criterion used for all variables is 10-6:  

6
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3.1. Grid Refinement Check 

In order to determine the proper grid size for this study, 

a grid independence test are conducted with Pr=1 and 

Ra=105. The following six grid sizes are considered for 

the grid independence study. These grid densities are 

3232, 4040, 6464, 8080, 9696 and 128128. The 

maximum temperature θmax and maximum stream 

function max of the fluid in the cavity are used as a 

sensitivity measure of the accuracy of the solution and 

are selected as the monitoring variables for the grid 

independence study. Table 1 shows the dependence of 

the quantities θmax and max on the grid size. 

Considering the accuracy of the numerical values, the 

following calculations are performed with 6464 grid. 

 

Table 1 Grid sensitivity check at Pr=1 and Ra=105 

Grid 

size 

Ha=0 Ha=100 

θmax max θmax max 

3232 0.064688 2.3540 0.073602 0.044403 

4040 0.064730 2.3493 0.073623 0.043853 

6464 0.064727 2.3423 0.073645 0.043171 

8080 0.064714 2.3419 0.073651 0.043056 

9696 0.064718 2.3409 0.073653 0.042970 

128128 0.064717 2.3390 0.073661 0.042910 

3.2. Code Validation 

In order to verify the accuracy of the numerical  

code, comparisons with the previously published  

results are necessary. The present numerical code is 

verified against a documented numerical study. The 

code is benchmarked with a differentially heated 

cavity problem, witch the right wall maintained at 

cooled condition. The left wall is hot whereas the two 

horizontal walls are under adiabatic condition.  

The governing equations are solved on a uniform  

grid of 6464, and for a Prandtl number,  

Pr = 0.733. The solutions are obtained for two values 

of Rayleigh number 104, 105 and Hartmann  

number Ha=0. The Pr and Ra are 
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Fig. 2. Comparison of isotherms at various Ra  

and Ha=0 
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Fig. 3. Comparison of streamlines at various Ra  

and Ha=0 

 
chosen such that the direct comparison to be possible 

with the benchmark solution (Pirmohammadi et al., 

2009) which is based on finite volume scheme. The 

isotherms and streamlines are compared with results of 

(Pirmohammadi et al., 2009) in figures 2 and 3. It is 

observed that the present results agree well with 

previous numerical work. 

4. RESULTS AND DISCUSSIONS 

Parametric investigations are performed for a square 

cavity in the following range of parameter values: 
 

Rayleigh number: 104 Ra  107; 

Prandtl number:  Pr=0.733; 

Hartmann number: 0Ha500. 

 

The influence of the Ha number on the streamlines and 

isotherms inside the cavity at Ra=106 are shown in 

figures 4 - 15. Table2 shows variations of 

dimensionless maximum temperature (θmax) and 

dimensionless maximum stream function (max) with 

Ha and Ra numbers. The maximum  
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Fig .4. Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=0 
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Fig. 6. Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=50 
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Fig. 8. Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=100 
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Fig.10.Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=200 
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Fig. 5. Streamlines of natural convection in a square 

cavity for Ra=106 and Ha=0 
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Fig. 7. Streamlines of natural convection in a square 

cavity for Ra=106 and Ha=50 
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Fig. 9. Streamlines of natural convection in a square 

cavity for Ra=106 and Ha=100 

-0.0924

-0.0719

-0.0513

-0.0308

-0.0103

0.0103

0.0308

0.0513

0.0719

0.0924

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Fig. 11. Streamlines of natural convection in a 

square cavity for Ra=106 and Ha=200 
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Fig. 12. Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=300 
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Fig. 14. Isotherms of natural convection in a square 

cavity for Ra=106 and Ha=500 
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Fig. 13. Streamlines of natural convection in a 

square cavity for Ra=106 and Ha=300 
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Fig. 15. Streamlines of natural convection in a 

square cavity for Ra=106 and Ha=500 

 

value of stream function is as a measure of the 

intensity of natural convection in the cavity.  It is 

evident from the table2 that in absent of magnetic 

field, by increasing the Ra, the maximum value of 

the stream function increases; this means that the 

flow move faster as natural convection to be stronger 

and the isotherm will be distorted. 

 

For the square cavity, the maximum dimensionless 

temperature (θmax) reduces with increasing Ra. This 

is because as Ra increases, heat transfer due to 

convection increases. It is also observed that at low 

Ra number, the θmax is at the centre of the cavity and 

it shifts upwards with increase in Ra. For Ra5105 

due to strong convective rolls, two local temperature 

maxima are observed in the cavity. These maxima 

shift upwards and towards side walls with the 

increase in Ra. The fluid circulates in the square 

cavity as two symmetrical counter-rotating rolls, 

moving upwards at the center and downwards near 

the cold side walls.   

 

By applying a magnetic field we can suppress the 

natural convection so that the maximum value of the 

stream function reduces as Ha number increases and 

θmax is at the center of the cavity, indicating that 

most of the heat transfer is by heat conduction. For 

high Rayleigh number and for a weak magnetic field 

strength, convection is dominant heat transfer 

mechanism. From the streamlines pattern we see that 

as the Ha number increases, the streamlines will be 

parallel with the two side walls of the cavity and the 

streamlines are elongated. On the other hand it is 

clear from table 2 that for all Ra numbers by 

increasing the Ha number have a pure conduction 

regime. Because Lorentz force interacts with the 

buoyancy force and suppresses the convection flow 

by reducing the velocities. Furthermore, it is shown 

that as the Ra number is increased, the convective 

heat transfer is increased, so that for suppression of 

convection is needed very high magnetic field. 

 

As it was mentioned, natural convection of 

electrically conductive fluid in the enclosure is 

affected by buoyancy and Lorentz forces. The 

buoyancy force has an aiding effect on natural 

convection, but the Lorentz force has an opposing 

effect. Either of the two forces are important, when 

Ha2/Ra  1. The buoyancy force is dominant when 

Ha2/Ra<< 1 and the Lorentz force is dominant when 

Ha2/Ra>> 1. Variations of the maximum temperature 

in terms of Ha2/Ra for various Ra are shown in Fig. 

16. The figure 16 shows that at Ha2/Ra>0.1, the 

value of maximum temperature is constant 

(conduction regime). While at low Ha2/Ra 

(Ha2/Ra<0.005), the electromagnetic body force can 

be ignored. 
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Table 2 Variation of θmax and max with Ha and Ra 

numbers 

Ra Ha θmax max 

104 

0 0.073407 0.31624 

50 0.073655 0.01594 

100 0.073656 0.0043178 

200 0.073657 0.0011301 

300 0.073657 0.0005104 

500 0.073657 0.0001858 

105 

0 0.064737 2.3075 

50 0.073587 0.15926 

100 0.073645 0.043171 

200 0.073656 0.011301 

300 0.073657 0.0051045 

500 0.073657 0.0018587 

106 

0 0.045875 6.4695 

50 0.068887 1.4913 

100 0.073167 0.42893 

200 0.073622 0.11296 

300 0.073641 0.051033 

500 0.073655 0.018586 

107 

0 --- --- 

50 0.044108 6.4406 

100 0.058396 3.3591 

200 0.070802 1.0867 

300 0.072981 0.50574 

500 0.073553 0.18560 
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Fig. 16. The maximum temperature versus Ha2/Ra 

for various Ra 

 

 

5. CONCLUSION 

Author has investigated the laminar steady convection 

flow in a cavity in the presence of a magnetic field in 

this paper. The cavity is filled with an electrically 

conducting fluid whose Prandtl number is 0.733. 

Author has developed a two-dimensional numerical 

model to solve the vorticity, stream function and 

temperature governing equations of buoyancy-driven 

natural convection flow inside the cavity. The stream 

function equation is solved using fast Poisson's 

equation solver on a rectangular grid (POICALC 

function in MATLAB software), voricity and 

temperature equations are solved using red-black 

Gauss-Seidel and bi-conjugate gradient stabilized 

(BiCGSTAB) methods respectively. The effect of the 

magnetic field is to reduce the convective heat transfer 

inside the cavity. Furthermore, when the Ra number is 

increased, the convective heat transfer is increased, so 

that for suppression of convection is needed very high 

magnetic field. The ratio of the Lorentz force to the 

buoyancy force (Ha2/Ra) is as an index to compare the 

contribution of natural convection and magnetic field 

intensity on heat transfer: 

a) Thermally driven natural convection exists when 

Ha2/Ra< 0.005. 

b) Electromagnetically driven flows occur when 

Ha2/Ra> 0.1.  

c) Natural convection occur by both electromagnetic 

body force and gravitational body force when 

0.005< Ha2/Ra< 0.1. 
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