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ABSTRACT 

A study has been carried out to analyze the effects of viscous-Ohmic dissipation and variable thermal conductivity on 

steady two-dimensional hydromagnetic flow, heat and mass transfer of a micropolar fluid over a stretching sheet 

embedded in a non-Darcian porous medium with non-uniform heat source/sink and thermal radiation. The governing 

differential equations are transformed into a set of non-linear coupled ordinary differential equations which are then 

solved numerically. A comparison with previously published work has been carried out and the results are found to 

be in good agreement. The effects of various physical parameters on velocity, temperature, and concentration 

distributions are shown graphically. 
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NOMENCLATURE 

A
⋆

       coefficients of space-dependent heat  

           source/sink 

B
⋆

       coefficients of temperature-dependent  

           heat source/sink 

C
b

       drag coefficient  

Cp        pressure coefficient  

k
∗
1

      vortex viscosity  

N         components of microrotation  

m0       a constant 

wm     rate of mass transfer 

q
r
       radiative heat flux  

wq      rate of heat transfer 

T        temperature of the fluid 

T
w

      wall temperature 

 j         microinertia per unit mass,  

γ         spin gradient viscosity 

σ         electrical conductivity of the fluid  

I w       skin-friction on the flat plate  

       density of the liquid 

 

1. INTRODUCTION 

The problem of flow, heat and mass transfer of an 

incompressible viscous fluid on mixed convection 

over a stretching surface in a fluid saturated porous 

medium has important applications in the field of 

geophysics and energy related engineering problems. 

For instance, it occurs in the aerodynamic extrusion 

of polymer sheets, thermal energy storage and 

recoverable systems, petroleum reservoirs, 

continuous filament extrusion from a die, cooling of 

an infinite metallic plate in a cooling bath since 

during cooling reduction in both the thickness and 

width take place when these strips are sometimes 

stretched. The temperature distribution, thickness 

and width reduction are functions of draw ratio and 

stretching distance. In all these technologies, the 

quality of the final product depends on the rate of 

heat and mass transfer at the stretching surface. Chen 

and Char (1988) investigated the heat transfer on a 

continuous stretching surfaces with suction or 

blowing. More discussions and applications of 

convective transport in porous media can be found in 

the book by Nield and Bejan (1999). 

http://www.jafmonline.net/
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Great interest has been evinced in micropolar fluids 

after the pioneering work by Eringen (1966) due to its 

occurrence in the industrial processes. This theory takes 

into account of local structure and microrotational 

effects of the fluid elements. Micropolar fluids may be 

used to analyze the behavior of exotic lubricants 

colloidal suspensions or polymeric fluid and liquid 

crystals. They constitute an important branch of non-

Newtonian fluid dynamics in which microrotation as 

well as microinertia effects are exhibited. Heat and 

mass transfer in micropolar fluids is also important in 

the context of chemical engineering, aerospace 

engineering and also industrial manufacturing 

processes. A thorough review on this subject is 

provided by Ariman et al. (1974). Stagnation-point flow 

of a non-Newtonian micropolar fluid towards a 

stretching sheet was studied by Nazar et al. (2004). 

 

A considerable interest has been shown in radiation 

interaction with convection for heat transfer in fluids. 

Thermal radiation on flow, heat and mass transfer 

processes is of major importance in the design of many 

advanced energy conversion systems operating at high 

temperature. Thermal radiation effects become 

important when the difference between the surface and 

the ambient temperature is large. Raptis (1998) 

considered the flow of a micropolar fluid past a 

continuously moving plate in the presence of radiation. 

Combined effects of non-uniform heat source/sink and 

thermal radiation on heat transfer over an unsteady 

stretching permeable surface was investigated by Pal 

(2011). It is well known that there exists non-Darcian 

flow phenomena besides inertia force effect and solid 

boundary viscous resistance. Mohammadein and Ei-

Amin (2000) analyzed the problem of thermal 

dispersion-radiation effects on non-Darcy natural 

convection in a fluid saturated porous medium. The 

influence of thermal radiation on hydromagnetic Darcy-

Forchheimer mixed convection flow past a stretching 

sheet embedded in a porous medium was investigated 

by Pal and Mondal (2011). Recently, Pal and Mondal 

(2012) analyzed hydromagnetic convective diffusion of 

species in Darcy–Forchheimer porous medium with 

non-uniform heat source/sink and variable viscosity. 

Very recently, Anjalidevi and Kayalvizhi (2013) 

studied effects of thermal radiation and heat source on 

nonlinear hydromagnetic flow over a stretching surface 

with prescribed heat and mass flux embedded in a 

porous medium. 

 

The objective of the present paper is to study heat 

transfer by mixed convection from a vertical flat plate 

embedded in electrically conducting micropolar fluid 

saturated porous medium using Darcy-Brinkman-

Forchheimer Boussinesq model in the presence of 

uniform magnetic field, non-uniform heat source/sink 

and thermal radiation. The nonlinearity of the basic 

equations and associated mathematical difficulties have 

led us to use numerical method. Thus the transformed 

dimensionless governing equations are solved 

numerically by using fifth-order Runge-Kutta-Fehlberg 

method (RKF45) method with shooting technique. The 

flow scenario stated above finds applications in 

polymer processing, metallurgical transport modeling, 

aerodynamic heating and many geophysical processes 

e.g. crude oil recovery. The present stretching sheet 

flow problem with heat transfer is quite important in 

polymer extrusion. 

2. MATHEMATICAL FORMULATION AND 

GOVERNING EQUATIONS 

We consider a steady two-dimensional mixed 

convection flow of an incompressible, electrically 

conducting micropolar fluid towards a surface 

coinciding with the plane y=0 and the flow region y > 0. 

The x-axis is taken in the direction along motion of the 

sheet and the y-axis is taken perpendicular to it. The 

flow is generated by the action of two equal and 

opposite forces along the x-axis and the sheet is 

stretched in such a way that the velocity at any instant is 

proportional to the distance from the origin (x = 0). 

Further, the flow field is exposed to the influence of an 

external transverse magnetic field of strength 

)0,,0( 0BB 


. Frictional heating due to viscous 

dissipation and Ohmic heating due to application of 

magnetic field are considered in the present model. 

With these assumptions the governing equations are 

given by 

(i) The equation of continuity  
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v
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(iii) The equation of angular momentum  
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(iv) The equation of energy  
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(v) The equation of mass diffusion  
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where u and v are the velocity components along the x 

and y directions,   is the density of the liquid, T is the 

temperature of the fluid, C
b

 is the form of drag 

coefficient which is independent of viscosity and other 

properties of the fluid but depends on the geometry of 

the medium, k is permeability of the porous medium, 

C
p

 is the specific heat at constant pressure, ν is the 

kinematic viscosity, σ is the electrical conductivity of 

the fluid, N is the components of microrotation or 

angular velocity whose rotation is in the direction of the 

x-y plane and j, γ and k
∗
1
 are the microinertia per unit 

mass, spin gradient viscosity and vortex viscosity, 
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respectively. Furthermore, the spin gradient viscosity γ, 

which defines the relationship between the co-efficient 

of viscosity and micro-inertia is as follows (Kim and 

Kim (2007)), γ=μ(1+K/2)j, where K=k
∗

1
/μ  (>0) is the 

material parameter. Here all the material constants γ, μ, 

K, j are non-negative and we take  j = ν/b as a reference 

length. The appropriate physical boundary conditions 

for the problem under study are given by 

0


    


w

u
u u bx,  v 0,  N m ,  

y
 

2 2

0 01
   

         
   

x x
 T T T A , C C C A at  y ,w w

l l
 

0 0     u ,   T T ,  N ,  C C    as y         (6) 

The non-uniform heat source/sink q''' is given by    

 , )()( **



 TTBeTwTA

x

u
q w 




  

where A
⋆

 and B
⋆

 are the coefficients of space and 

temperature-dependent heat source/sink, respectively. 

The case A*> 0 and B*> 0 corresponds to internal heat 

generation while A*< 0 and B*< 0  corresponds to 

internal heat absorption, l is the characteristic length, 

T
w

 is the wall temperature and T∞ is the temperature of 

the fluid far away from the sheet, Cw is the wall 

concentration of the solute and C∞ is the concentration 

of the solute far away from the sheet and A
0
, A

1
 are 

constants. It should be remarked that m0 is a constant 

such that 0 ≤ m0 ≤ 1. 

2.1 Similarity Solutions for Momentum and Angular 

Momentum Equations 

The governing Eqs. (2)-(5) admit a self-similar solution 

of the form  

    
b b

u bxf ( ),   v b f ( ),   y,  N bx g(η ) 
ν

   


 

                                                                                     (7) 

where f is the dimensionless stream function and η is 

the similarity variable. Substituting these in Eq. (2), we 

obtain the following third -order non-linear ordinary 

differential equation:  

2 1 21           f f f ( K ) f Da f f K g      

            2   t cHa f Gr Gr  ,                                    (8) 
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kb
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

1  is inverse Darcy number, 

0B
b
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


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 is Hartmann number, 

lb

TTg
Gr t

t 2

* )( 



 is thermal Grashof number, 

lb

CCg
Gr c

c 2

* )( 



 is solutal Grashof number and 



*
1k

K   is material parameter. Using the transformation 

(7), we obtain the ordinary differential equation of the 

form as follows:  

1 2 2       f g f g ( K / )g K( g f ).                           (9) 

 (9) 

The appropriate boundary condition (6) now becomes  

 

f (η)=0,     f'’(η)= 1,    g(η) = −m0 f ''(η)     at      η=0, 

( ) 0, ( ) 0,    f g as  .   

(10) 

2.2 Similarity Solution of the Energy and Mass-

Diffusion Equations 

The thermal conductivity κ is assumed to vary linearly 

with temperature and it is of the form 

)](1[   
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w

−κ
∞

)/κ
∞

, 

which depends on the nature of the fluid and is a small 

parameter. In general, ε > 0 for air and liquids such as 

water, while ε<0 for fluids such as lubrication oils. 

Following Rosseland approximation (see Hsiao (2007)) 

the radiative heat flux q
r
 is modeled as, 

q
r
=−(4σ

*
/3k

*
)∂T

4
/∂y where σ

*
 is the Stefan-

Boltzmann constant and k
*

 is the mean absorption 

coefficient. T
4
 can be expressed by using Taylor’s 

series as T
4
≅−3T

4

∞
+4T

3

∞
T. Thus, we have from Eq. (4) 

as  
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The thermal boundary conditions for solving Eq. (11) 

depends on the type of heating process considered. 

Thus non-dimensional temperature θ(η) and 

concentration  (η) are defined in PST case as  
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Finally, we obtain the non-linear ordinary differential 

equation for θ(η) and  (η) in the form 

    2 2 21 2          cNr Pr f f Pr Ha E f      

   21 0      cA f B Pr E f ,                           (15) 

 ''+Sc( 'f−2 f  )=0.                                          (16) 

Corresponding thermal boundary conditions for θ(η) 

and   (η) are given by  

    (η) = 1,       (η)= 1   at  η=0,                            (17) 

  0 0  ( ) , ( ) as     .                  (18) (17) 
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Here the prime denotes the differentiation with respect 

to η and

p

c
CD
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k

T
Nr  is thermal radiation 

parameter and 
D

Sc


   is Schmidt number. 

 

2.3 Skin-friction Coefficient, Nusselt Number and 

Sherwood Number 

 

The most important physical quantities for the problem 

are skin-friction coefficient (C
f
), local Nusselt number 

(Nu
x
) and local Sherwood number (Sh

x
) which are 

defined by the following relations:  

2 2  
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w w w
f x

w ww

xq xm
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(T T ) D(C C )u /
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The skin-friction on the flat plate w , rate of heat 

transfer wq  and rate of mass transfer wm  are given by  
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Thus we get from Eq. (18) as  

 1 2 1 0 0   f x x xC Re K f ( ), Nu Re ( ),                 (20) 

where Re
x
=u

w
x/ν is the local Reynolds number.  

3. RESULTS AND DISCUSSIONS 

In the present study our main focus is to analyze the 

effects of various physical parameters with the help of 

some important graphs. A comparative study of the 

present result with those of Ishak et. al (2008), Chen 

(1998) and Grubka and Bobba (1985) is performed and 

the results are presented in Table-1. It is clearly seen 

from this table that present results coincides very well 

with their results, which confirms that the numerical 

method used in the present work is accurate and perfect. 

Fig. 1 depicts the convergency history plot of f  (0), 

g(0), θ(0),  (η). From this figure it is observed that there 

is no change in the value of f  (η), θ(η),  (η) when the 

value of η
∞

 is increased. Thus it can be concluded that 

the numerical method adopted in this paper is very 

efficient as it has passed all the checks required for 

testing the efficiency of a numerical method. Fig. 2 

shows the graph of velocity profile for various values of 

inverse Darcy number Da
−1

 and m0. It is observed from 

this figure that velocity profile increases with increase in 

the value of m0, whereas reverse effect is observed for 

increase in the inverse Darcy number. Physically, this is 

due to the fact that increase in the values of Da -1 leads  to 

lower permeability of the porous media (i.e. Da-1 is 

proportional to 1/k), which implies more resistance 

offered to the flow due to the presence of  porous fiber 

and which leads to the deceleration in transport. Also in 

the limit Da-1→ 0, the flow corresponds to the case of a 

vanishing porous medium which leads to the scenario of 

higher velocity profile in the momentum boundary layer.  

 

Fig. 3 is the plot of g(η) with η for different values of 

Gr
t
 and m0. It is found that increase in the thermal 

Grashof number results in increase in the value of  
 

Table 1 Comparison of local Nusselt number (0)  

with Pr for Ha=0, Sc=0.0 and various values of Pr 

with Ishak et al. (2008), Chen (1998) and Grubka 

and Bobba (1985) 
 

 

Pr 
)0(    )0(   

 

Present 

Results 
Ishak et al. 

(2008) 

Chen 

(1998) 

Grubka 

and Bobba 

(1985) 

1 1.3333 1.33334 1.3333 1.333333 

3 2.5097 2.50997 2.5097 2.509725 

10 4.7969 4.79686 4.7969 4.796873 
 

 

 

Fig. 1. Convergence history plot of f'(η), g(η), θ(η), 

 (η) where η
α

=η
∞

. 

 

 

Fig. 2. Variation of f' for inverse Darcy number 

Da
−1

 and mo. 

angular velocity g(η) and peak is observed near the 

stretching boundary which ultimately decreases to zero 

away from the stretching boundary layer and thereby 
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matching the boundary condition as η→∞, for both the 

values of m0 = 0.0 and 0.6. This shows that the thermal 

Grashof number boosts the microrotation values 

indicating that the thermal buoyancy force has an  

 

 

Fig. 3. Effect of g(η) with η for different values of 

Gr
t
 and mo {TC "3 Effect of g(η) with η for different 

values of Gr
t
 and n." \f f} 

 

Fig. 4. Plot of temperature profiles θ(η) with η for 

various values of  space-dependent non-uniform 

heat source parameter A*>=0. 

 

 

Fig. 5. Plot of temperature profiles θ(η) with η for 

various values of  space-dependent non-uniform 

heat sink parameter A*<0. 

 

Fig. 6. Plot of temperature profiles θ(η) with η for 

various values of  temperature-dependent non-

uniform heat source parameter B*>=0. { TC "4 Plot 

of temperature profiles Θ(η) with η for various 

values of A
*

. " \f f} 

 

Fig. 7. Plot of temperature profiles θ(η) with η for 

various values of  temperature-dependent non-

uniform heat sink parameter B*<=0. { TC "5 Effect 

of Θ(η) with η for different values of B
*

." \f f}  

 

 

Fig. 8. Influence of porous parameter ε on 

temperature profile θ(η) with E
c
.{ TC "6 Influence 

of porous parameter ε on temperature profile Θ(η) 

with E
c
." \f f} 
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Fig. 8 represents the graph of temperature profile θ(η) 

with E
c
 and ε, we observe by analyzing the graph that 

the effect of increasing the value of Eckert number E
c
 

is to increase the temperature distribution in the thermal 

boundary layer. Physical meaning is that the heat 

energy is stored in the fluid because of the frictional 

heating, so as the value of Eckert number is increased 

which means that there is increase in the frictional 

heating due to viscous dissipation thereby increases the 

temperature in the thermal boundary layer. 

4. CONCLUSION 

The present paper deals with the analysis of steady 

boundary layer flow, heat and mass transfer of a 

micropolar fluid past an impermeable stretching sheet 

embedded in a porous medium with magnetic field and 

thermal radiation effects using the Darcy-Brinkman-

Forchheimer model. The governing boundary layer 

non-linear differential equations are solved numerically. 

Following conclusions are drawn from the numerical 

results as follows: 

(i) Velocity profiles decrease with increase in inverse  

Darcy number Da-1. 

(ii)   Angular velocity increases with increase in the 

thermal Grashof number. 

(iii) Presence of space-dependent heat source parameter 

A* and temperature-dependent heat source parameter B* 

increase the temperature profile, whereas reverse effects 

are observed in the case of sink when A*< 0 & B*< 0. 

(iv) Temperature increases with increase in the value of 

the Eckert number, n and Hartmann number. 
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