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ABSTRACT 

An analysis is presented to investigate the influences of viscous and pressure stress work on MHD natural convection 

flow along a uniformly heated vertical wavy surface. The governing equations are first modified and then 

transformed into dimensionless non-similar equations by using set of suitable transformations. The transformed 

boundary layer equations are solved numerically using the implicit finite difference method, known as Keller-box 

scheme. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat 

transfers, streamlines and isotherms are shown graphically. Some results of skin friction, rate of heat transfer are 

presented in tabular form for selected values of physical parameters. 

 

Keywords: Natural convection, uniform surface temperature, wavy surface, magnetohydrodynamics, Joule heating 

and Prandtl number. 

NOMENCLATURE 

B0 applied magnetic field strength 

Cfx  local skin friction coefficient 

Cp  specific heat at constant pressure 

[J.kg-1.K-1] 

f  dimensionless stream function 

g  acceleration due to gravity [ms-2] 

Gr grashof number 

k  thermal conductivity [Wm-1K-1]  

k  thermal conductivity of the ambient fluid 

[Wm-1K-1] 

L characteristic length associated with the 

wavy surface [m] 

n  unit normal to the surface 

Nux  local Nusselt number 

P pressure of the fluid [Nm-2] 

Pr  Prandtl number 

Q heat generation parameter 

Q0 heat generation constant 

qw heat flux at the surface [Wm-2] 

 

T  Temperature of the fluid in the boundary 

layer [K] 

Tw  Temperature at the surface [K] 

T Temperature of the ambient fluid [K]  

(u, v) Dimensionless velocity components along 

the (x, y) axes [ms-1] 

(x, y) Axis in the direction along and normal to 

the tangent of the surface 

 Amplitude of the surface waves 

β Volumetric coefficient of thermal 

expansion [K-1] 

η Dimensionless variable  

     Dimensionless temperature function 

     Stream function [m2s-1] 

     Viscosity of the fluid [kgm-1s-1] 

μ     Viscosity of the ambient fluid 

ν      Kinematic viscosity [m2s-1] 

      Density of the fluid [kgm-3] 

σ0      Electrical conductivity 

w       Shearing stress 
 

http://www.jafmonline.net/
mailto:maalim@math.buet.ac.bd
mailto:kfzkabir@gmail.com
mailto:maalim@math.buet.ac.bd


K. H. Kabir et al. / JAFM, Vol. 8, No. 2, pp. 213-221, 2015.  

 

214 

 

1. INTRODUCTION 

The viscous dissipation and pressure work effect play 

an important role in natural convection in various 

devices which are subjected to large deceleration or 

which operate at high rotational speeds and also in 

strong gravitational field processes on large scales (on 

large planets) and in geological processes. Ackroyd 

(1974) first investigated stress work effects in laminar 

flat-plate natural convection. Joshi and Gebhart (1981) 

investigated the effect of pressure stress work and 

viscous dissipation in some natural convection flows. 

The natural convection along a vertical wavy surface 

was first studied by Yao (1983) and using an extended 

Prantdl’s transposition theorem and a finite-difference 

scheme. He proposed a simple transformation to study 

the natural convection heat transfer from isothermal 

vertical wavy surfaces, such as sinusoidal surface. 

Moulic and Yao (1989) also investigated mixed 

convection along a vertical wavy surface. Alam et al. 

(1997) have also studied the problem of free convection 

from a wavy vertical surface. Hossain et al. (2002)  

have studied the problem of natural convection of fluid 

with temperature dependent viscosity along a heated 

vertical wavy surface. Natural convection heat and 

mass transfer along a vertical wavy surface have been 

investigated by Jang et al. (2003). Molla et al. (2004)  

have studied natural convection flow along a vertical 

wavy surface with uniform surface temperature in 

presence of heat generation/absorption. Tashtoush and 

Al-Odat (2004) investigated magnetic field effect on 

heat and fluid flow over a wavy surface with a variable 

heat flux. Alam et al (2006) investigated the effect of 

pressure stress work and viscous dissipation in natural 

convection flow along a vertical flat plate with heat 

conduction. Devi and Ganga (2010) studied the 

dissipation effects on MHD nonlinear flow and heat 

transfer past a porous surface with prescribed heat flux. 

They have analyzed viscous  and  Joule dissipation  

effects after finding analytical solutions of highly 

nonlinear momentum equation and confluent 

hypergeometric similarity solution of heat transfer 

equations. Recently Parveen and Alim (2011ab) 

investigated Joule heating effect on MHD natural 

convection flow along a vertical wavy surface with 

viscosity dependent on temperature and studied effect 

of temperature dependent thermal conductivity on 

magnetohydrodynamic natural convection flow along a 

vertical wavy surface. Alim et al. (2011) considered the 

effects of temperature dependent thermal conductivity 

on natural convection flow along a vertical wavy 

surface with heat generation. Miraj et al. (2011) 

investigated effects of pressure work and radiation on 

natural convection flow around a sphere with heat 

generation. The thermal conductivity of the fluid had 

been assumed to be constant in all the above studies. 

However, it is known that this physical property may be 

change significantly with temperature.  

 

The present study aims to incorporate the idea of the 

conjugate effects of viscous dissipation and pressure 

work on MHD natural convection flow of viscous 

incompressible fluid with Joule heating along a 

uniformly heated vertical wavy surface. Numerical 

results for velocity, temperature, skin friction, the rate of 

heat transfer, the streamlines and the isotherms are 

obtained for different values of the selected parameters, 

such as joule heating parameter J, the viscous dissipation 

parameter which is characterized by Eckert number Ec, 

pressure work parameter Ge, magnetic parameter M and 

presented graphically and discussed. Some selected 

results of skin friction coefficient and rate of heat transfer 

for different values of Joule heating parameter J have 

been shown tabular form and then discussed. 

2. FORMULATION OF THE PROBLEM 

Steady two dimensional laminar free convection 

boundary layer flow of a viscous incompressible and 

electrically conducting fluid along a vertical wavy 

surface in presence of uniform transverse magnetic 

field of strength B0 with temperature dependent 

physical properties like viscosity and thermal 

conductivity is considered. It is assumed that the wavy 

surface is electrically insulated and is maintained at a 

uniform temperature Tw. Far above the wavy plate, the 

fluid is stationary and is kept at a temperature T.  The 

surface temperature Tw is greater than the ambient 

temperature T that is Tw > T. The flow configuration 

of the wavy surface and the two-dimensional 

Cartesian coordinate system are shown in figure 1. 
 

The boundary layer analysis outlined below allows 

( X )  being arbitrary, but our detailed numerical work 

assumed that the surface exhibits sinusoidal 

deformations. The wavy surface may be defined by 

 
   

 
w

n X
Y ( X ) sin

L


   (1) 

Where,  is the amplitude and L is the wave length 

associated with the wavy surface. 
 

The governing equations of such flow of magnetic field 

in presence of heat generation/absorption with viscosity 

variation along a vertical wavy surface under the usual 

Boussinesq approximations can be written in a 

dimensional form as: 

Continuity Equation 

0
 

 
 
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 (2) 

X-Momentum Equation  

 
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Y-Momentum Equation 
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Fig. 1. Physical model and coordinate system 

 

where (X, Y) are the dimensional coordinates along 

and normal to the tangent of the surface and (U, V) are 

the velocity components parallel to (X, Y), 
2 2 2 2 2( / / )      x y  is the Laplacian operator, g 

is the acceleration due to earth gravity, P is the 

dimensional pressure of the fluid, ρ is the density, T is 

the temperature of the fluid in the boundary layer, CP 

is the specific heat at constant pressure and 

( / )   is the kinematic viscosity and μ(T) is the 

dynamic viscosity of the fluid in the boundary layer 

region depending on the fluid temperature, k is the 

thermal conductivity of the fluid, 0  is the electrical 

conductivity of the fluid, B0 is the strength of 

magnetic field and β is the volumetric coefficient of 

thermal expansion. 
 

The boundary conditions for the present problem are 

0, 0, at ( );

0, ,  as   

    

   

w wU V T T Y y X

U T T P p Y


 (6) 

Where, Tw is the surface temperature, T is the ambient 

temperature of the fluid and P is the pressure of fluid 

outside the boundary layer. 
 

Using Prandtl’s transposition theorem to transform the 

irregular wavy surface into a flat surface as extended by 

Yao (1983) and boundary layer approximation, the 

following dimensionless variables are introduced for 

non-dimensional governing equations.  
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          (7) 

Where, 
1

2
0 u Gr

L




 is characteristic velocity, θ is the 

dimensionless temperature function and (u, v) are the 

dimensionless velocity components parallel to   (x, y). 

Here (x, y) are not orthogonal but a regular rectangular 

computational grid can be easily fitted in the 

transformed coordinates. It is also worthwhile to point 

out that (u, v) are the velocity components parallel to 

(x, y) which are not parallel to the wavy surface, p is 

the dimensionless pressure of the fluid, L is the wave 

length associated with the wavy surface and Gr is the 

Grashof number. Introducing the above dimensionless 

dependent and independent variables into equations 

(2)–(5), the following dimensionless form of the 

governing equations are obtained after ignoring terms 

of smaller orders of magnitude in Gr, the Grashof 

number defined in (7). 
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It is worth noting that the σx and σxx indicate the first 

and second differentiations of σ with respect to x, 

therefore, / / x d dX d dx    and σxx = dσx / dx. 

 

In the above equations Pr, M, Ge, Ec and J are 

respectively known as the Prandtl number, the magnetic 

parameter, pressure work parameter, Eckert number and 

joule heating parameter, which are defined as  

 
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It can easily be seen that the convection induced by the 

wavy surface is described by equations (8)–(11). For 

the present problem this pressure gradient ( 0  p x ) 

is zero. Thus, the elimination of  p / y  from equations 

(9) and (10) leads to 
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The corresponding boundary conditions for the present 

problem then turn into  
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0 1 0

0

    


   

u v , at y

u , as y




 (14) 

Now we introduce the following transformations to 

reduce the governing equations to a convenient form: 

3 1
4 4


  x f ( x, ), yx , ( x, )       (15) 

Where, f(η) is the dimensionless stream function, η is 

the dimensionless similarity variable and ψ is the 

stream function that satisfies the continuity equation (8) 

and is related to the velocity components in the usual 

way as  

 
  
 

u , v
y x

 
  (16) 

Introducing the transformations given in equation (15) 

and using (16) into equations (13) and (11) are 

transformed into the new co-ordinate system. Thus the 

resulting equations are  
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The boundary conditions (14) now take the following 

form: 

0 0 0 0 1

0 0

   


     

f ( x, ) f ( x, ) , ( x, )

f ( x, ) , ( x, )




 (19) 

Here, prime denotes the derivatives with respect to η. 

 

However, once we know the values of the functions f 

and  and their derivatives, it is important to calculate 

the values of the shearing stress w in terms of the local 

skin friction coefficient Cfx and the rate of heat transfer 

in terms of local Nusselt number Nux from the 

following relations: 

2
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w w
fx x
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q X
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Here 
2 2






x y

x y

if jf
n

f f

 is the unit normal to the surface. 

Using the transformation (15) and (21) into equation 

(20) the local skin friction coefficient Cfx and the rate of 

heat transfer in terms of the local Nusselt number Nux 

take the following forms: 
1

24
1

1 0
2

 fx x( Gr / x ) C f ( x, )  (22) 

31
24 4 1 0

 
  x xGr x Nu ( x, )   (23) 

For the computational purpose the period of oscillations in 

the waviness of this surface has been considered to be π. 

3. METHOD OF SOLUTION  

The governing partial differential equations are reduced 

to dimensionless local non-similar equations by 

adopting appropriate transformations. The transformed 

boundary layer equations are solved numerically using 

Keller box method described by Keller (1978) and 

Cebeci and Bradshaw (1984) and used by many other 

authors. 

4. RESULTS AND DISCUSSIONS  

The effects of stress work on MHD natural convection 

flow of viscous incompressible fluid along a uniformly 

heated vertical wavy surface with joule heating has been 

investigated. Although there are six parameters of interest 

in the present problem, the effects of magnetic parameter 

M, viscous dissipation parameter Ec, pressure work 

parameter Ge, and the joule heating parameter J on the 

surface shear stress in terms of local skin friction 

coefficient, the rate of heat transfer in terms of the local 

Nusselt number, the velocity and temperature profiles, 

the streamlines and the isotherms are focused. Numerical 

values of skin friction coefficient Cfx and rate of heat 

transfer Nux are calculated from equations (22) and (23) 

for the wavy surface from lower stagnation point at x = 

0.0 to x = 2.0 presented in tabular form in the Table 1 and 

comparison of the present numerical results of the values 

of skin friction coefficient Cfx, and the heat transfer 

coefficient Nux, with Parveen and Alim (2011b) have 

been shown in Table 2.  

 

 

Table 1 Skin friction coefficient and rate of heat transfer against x for different values of joule heating 

parameter J with other controlling parameters Pr = 0.72,  = 0.1, M = 0.2, Ec = 10.0 and Ge = 0.01. 
 

x 
J = 0.0 J = 0.4 

Cfx Nux Cfx Nux 

0.0000 

0.5050 

1.0050 

1.5050 

2.0000 

0.7437 

1.0595 

0.8787 

1.3317 

1.1292 

0.3283 

-0.8423 

-1.0399 

-4.6785 

-3.9747 

0.7437 

1.0711 

0.9073 

1.4180 

1.2493 

0.3283 

-0.8916 

-1.1913 

-5.4669 

-5.1074 
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Table 2 Comparison of the values of skin friction coefficient Cfx, and the heat transfer coefficient Nux with 

Parveen and Alim (2011b) and present work for the variation of Prandtl number Pr while Ec = 0.0, 

 Ge = 0.0, J = 0.0 and M = 0.8 with  = 0.2. 
 

Pr 
Cfx Nux 

Parveen and Alim (2011b) Present work Parveen and Alim (2011b) Present work 

0.73 

1.73 

4.24 

7.00 

0.81128 

0.72029 

0.62331 

0.57038 

0.81098 

0.72032 

0.62329 

0.57043 

0.32999 

0.44434 

0.59015 

0.68546 

0.33004 

0.44441 

0.59021 

0.68554 
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Fig. 2. (a) Velocity and (b) Temperature profiles against   for different values of M with 

 = 0.2, Pr = 0.72, Ec = 10.0, Ge = 0.01 and J = 0.01. 

 

Here, the stress work and the joule heating parameter J 

are ignored to make the numerical data comparable 

with Parveen and Alim (2011b) for different values of 

Prandtl number Pr. It is obvious from the comparison 

table that the present results agreed well with the results 

of Parveen and Alim (2011b). 

 

Numerical values of local shearing stress and the rate of 

heat transfer are calculated from equations (22) and (23) in 

terms of the skin-friction coefficients Cfx and Nusselt 

number Nux respectively for a wide range of the axial 

distance variable x starting from the leading edge for 

different values of the parameters Pr, Ec, M, Ge, J and .  

 

The velocity and temperature of the flow field is 

found to change more or less with the variation of the 

flow parameters. The effect of the flow parameters on 

the velocity and temperature fields, the skin friction 

coefficients, the rate of heat transfer, streamlines and 

the isotherms are analyzed with the help of graphs. 

 

The effects for different values of magnetic parameter 

M on the velocity and temperature have been 

presented graphically in figures 2(a) and 2(b). It has 

been seen from figure 2(a) that for the higher values 

of magnetic parameter M the velocity decreases to the 

position of  = 5.5 and from that position of  

velocity increases with magnetic parameter M that is, 

velocity profiles meet together at the position of  = 

5.5 and cross the side and increasing with magnetic  

 

parameter M. The maximum values of velocities are 

recorded as 0.47071, 0.45227, 0.40234, 0.37326 and 

0.34727 for magnetic parameter M = 0.0, 0.5, 2.0, 3.0, 

4.0 respectively which occur at the same position  = 

1.73814. Here, it is observed that at  = 1.73814, the 

maximum velocity decreases by 26.22 % as the 

magnetic parameter M change from 0.0 to 4.0. The 

values of temperature are recorded as 0.66955, 

0.67611, 0.69481, 0.70637 and 0.71717 for magnetic 

parameter M = 0.0, 0.5, 2.0, 3.0, 4.0 at the same 

position of  = 1.23788 and the temperature increases 

by 7.10 %. 

 

In figures 3(a) and 3(b) the effects for different values 

of the Eckert number Ec on the velocity and 

temperature profiles have been shown graphically. It 

has been seen from figure 3(a) that as the Eckert 

number Ec increases, the velocities rising up to the 

position of  = 1.73814 for the Eckert number 

Ec = 0.0, 5.0, 10.0, 20.0, 25.0 and from that position 

of  velocities fall down slowly and finally 

approaches to zero. It is also observed from figure 

3(b) that as the Eckert number Ec increases, the 

temperature profiles increases. The maximum values 

of velocities are recorded as 0.46690, 0.46880, 

0.47071, 0.47454 and 0.47647 for the Eckert number 

Ec = 0.0, 5.0, 10.0, 20.0, 25.0 respectively which 

occur at the same position  = 1.73814 and the 

maximum velocity increases by 2.04 %. Temperatures 

are recorded as 0.66008, 0.66479, 0.66955, 0.67924 and  
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Fig. 3. (a) Velocity and (b) Temperature profiles 

against   for different values of Ec with  = 0.2, Pr 

= 0.72, M = 0.1, Ge = 0.01 and J = 0.01. 
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Fig. 4. (a) Velocity and (b) Temperature profiles 

against  for different values of Ge with  = 0.2, Pr = 

0.72, M = 0.1, Ec = 10.0 and J = 0.01. 
 
 

0.68417 for the Eckert number Ec = 0.0, 5.0, 10.0, 

20.0, 25.0 respectively at the same position of  

 = 1.23788 and the temperature profiles increases by 

3.60 %. The velocity boundary layer thickness and 

thermal boundary layer thickness are unchanged. The 

effects for different values of the pressure work 

parameter Ge on the velocity and temperature profiles 

have been presented graphically in figures 4(a) and 4(b) 

respectively. For the higher values of the pressure work 

parameter Ge both the velocity and the temperature 

decrease slightly.  

 

The different values of joule heating parameter J on the 

velocity and temperature profiles have been presented 

graphically in figures 5(a) and 5(b) respectively. For the 

higher values of the joule heating parameter J both the 

velocity and the temperature rise up slightly. 
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Fig. 5. (a) Velocity and (b) Temperature profiles against  for different values of J 

with  = 0.2, Pr = 0.72, M = 0.2, Ec = 10.0 and Ge = 0.01. 
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Fig. 6. (a) Skin friction coefficient and (b) Rate of 

heat transfer against x for different values of M 

with  = 0.2, Pr = 0.72, Ec = 10.0, Ge = 0.01 and  

J = 0.01. 

 
In figures 6(a) and 6(b) effects of magnetic parameter 

M on skin friction and the rate of heat transfer have 

been presented. From figure 6(a) it is found that skin 

friction decreases significantly for greater magnetic 

field strength. This is physically realizable as the 

magnetic field retards the velocity field and 

consequently reduces the frictional force at the wall. 

However rate of heat transfer opposite pattern of skin 

friction due to the higher values of magnetic parameter 

M which are presented in figure 6(b). 

 

The different values of the Eckert number Ec of the 

skin friction coefficients and the rate of heat transfer are 

shown graphically in figures 7(a) and 7(b) respectively. 

In this case the values of local skin friction coefficient 

Cfx are recorded to be 0.92433, 1.15578, 1.51578, 

2.46985 and 4.03501 for Ec = 0.0, 5.0, 10.0, 20.0, 25.0 

which occur at same point x = 1.51. From the figure 

7(a), it is observed that at x = 1.51, the skin friction 

coefficient increases by 336.53 % due to the higher 

value of viscous dissipation parameter Ec. However, the 

values of rate of heat transfer are found to be .40024, -

1.63443, -6.11295, -36.29311 and -77.95609 for Ec = 

0.0, 5.0, 10.0, 20.0, 25.0 which occur at same point x = 

1.51. It is seen from the figure 7(b) that for higher 

values of the Eckert number the rate of heat transfer 

decreases that is heat transfer slows down for higher 

viscous dissipation parameter Ec. 
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Fig. 7. (a) Skin friction coefficient and (b) Rate of 

heat transfer against x for different values of Ec 

with  = 0.2, Pr = 0.72, M = 0.1, Ge = 0.01 and  

J = 0.01. 

 

In figures 8(a) and 8(b) the skin friction coefficient Cfx 

and local rate of heat transfer Nux for different values of 

pressure work parameter Ge have been displayed. It is 

observed from the figure 8(a) that the skin friction 

coefficient decreasing down for higher values of 

pressure work parameter. It is seen from the figure 8(b) 

that the local rate of heat transfer increasing up with 

higher values of pressure work parameter.  

 

In figures 9(a) and 9(b) the skin friction coefficient Cfx 

and local rate of heat transfer Nux for different values of 

joule heating parameter J have been displayed. It is 

observed from the figure 9(a) that for higher values of 

joule heating parameter J, skin friction increasing up to 

the axial position of x. It is seen from the figure 9(b) 

that for higher values of joule heating parameter J the 

rate of heat transfer decreasing down due to reduction 

of temperature difference between solid wall and the 

fluid. 

 

In figure 10(a) and 10(b) show that streamlines and 

isotherms for selected values of the joule heating 

parameter J =.0.0 and 0.5 respectively. In figure 10 (a) 

have been shown the value of stream function ψ is 0.0 

near the wall and then ψ increases gradually in the 

downstream within the boundary layer and away from 

the wall. In this case the maximum values of stream 

function ψmax are found as 3.7  
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Fig. 8. (a) Skin friction coefficient and (b) Rate of heat 

transfer against x for different values of Ge with  = 

0.2, Pr = 0.72, M = 0.1, Ec = 10.0 and J = 0.01 
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Fig. 9. (a) Skin friction coefficient and (b) Rate of 

heat transfer against x for different values of J with 

 = 0.2, Pr = 0.72, M = 0.2, Ec = 10.0 and Ge = 0.01. 

 

 

and 3.9 for the values of the joule heating parameter J 

equal to 0.0 and 0.5 respectively. The isolines of 

temperature (isotherms) distribution show that 

temperature decreases significantly as the values of the 

joule heating parameter J increases which have been 

presented in figure 10(b). The value of isotherm is 1.0 

at the wall and isotherms decreases slowly along the y-

direction and finally approach to zero. The maximum 

values of isotherms are recorded as 1.7 and 2.1 for the 

values of joule heating parameter J equal to 0.0 and 0.5 

respectively. 
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Fig. 10. (a) Streamlines  and  (b) Isotherms for J = 0.0 (Red solid lines), J  = 0.5 (Black 

dashed lines), with  = 0.2, Pr = 0.72, M = 0.2, Ec = 10.0 and Ge = 0.01 
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5. CONCLUSION 

The effects of the Prandtl number Pr, the magnetic 

parameter M, the viscous dissipation parameter Ec, the 

pressure work parameter Ge, the joule heating 

parameter J and the amplitude of the waviness of 

surface  on MHD natural convection flow of viscous 

incompressible fluid along a uniformly heated vertical 

wavy surface have been studied in detail. From the 

present investigations the following conclusions may be 

drawn: 

 

Magnetic field strength enhancement causes the 

temperature and the rate of heat transfer rise and the 

velocity reduction within the boundary layer. At the 

position of  = 5.5 the velocity becomes constant and 

then cross the side and increasing with magnetic 

parameter. The local skin friction coefficient decreases 

due to the greater magnetic field strength.  

 

The velocity profiles, the temperature profiles and the 

frictional force enhances for the higher values of the 

Eckert number Ec, the joule heating parameter J but the 

rate of heat transfer reduces significantly for all those 

cases. 

The velocity, the temperature, the skin friction reduce 

and the rate of heat transfer rise up for higher values of 

the pressure work parameter Ge. 

 

The value of stream function ψ is 0.0 near the wall and 

then ψ increases gradually in the downstream within the 

boundary layer and away from the wall and isolines of 

temperature (isotherms) show that temperature is 1.0 at 

the wall and decreases slowly away from the wall and 

finally approach to zero for the selected values of the 

joule heating parameterJ. 
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