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ABSTRACT 

Viscoelastic boundary layer flow and heat transfer over an exponential stretching continuous sheet have been 

investigated in this paper. Numerical solution of the highly non-linear momentum equation and heat transfer equation 

are obtained. Two cases are studied in heat transfer, namely (i) the sheet with prescribed exponential order surface 

temperature (PEST case) and (ii) the sheet with prescribed exponential order heat flux (PEHF case). The governing 

coupled, non-linear, partial differential equations are converted into coupled, non-linear, ordinary differential 

equations by a similarity transformation and are solved numerically using shooting method. The classical explicit 

Runge-Kutta-Fehlberg 45 method is used to solve the initial value problem by the shooting technique. The effects of 

various parameters such as viscoelastic parameter, slip parameter, Eckert number and Prandtl number on velocity and 

temperature profiles are presented and discussed. The results have possible technological applications in the liquid-

based systems involving stretchable materials. 
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NOMENCLATURE 

A0, A1   prescribed constants 

Cp        specific heat at constant pressure 

E          eckert number 

k          thermal conductivity 

k0        viscoelastic parameter 

k1
*      dimensionless viscoelastic parameter 

L         reference length   

Pr       prandtl number 

Re       reynolds number 

T         fluid temperature of the moving sheet 

Tw       wall temperature 

T       temperature far away from the sheet 

U0          constant 

Uw       stretching velocity of the boundary 

u, v      velocity components along x and y direction 

x         flow directional co-ordinate along the  

          stretching sheet 

y         distance normal to the stretching sheet 

X, Y    dimensionless co-ordinates 

Greek symbols 

 α1         slip parameter 

 α*
        non-dimensional slip parameter 

       kinematic viscosity 

        dynamic viscosity 

        dimensionless temperature in PEST case   

        dimensionless temperature in PEHF case 

        density of the fluid 

  dimensionless stream function 

 Subscripts 
 

w      wall temperature 

∞      ambient temperature condition 

 

1. INTRODUCTION 

Boundary layer flow on continuous moving surface is 

an important type of flow occurring in a number of 

engineering processes. Aerodynamic extrusion of 

plastic sheets, cooling of an infinite metallic plate in a 

cooling path, the boundary layer along a liquid film in 

condensation process and a polymer sheet of filament 

extruded continuously from a die are examples of 

practical applications of continuous moving surfaces. 

Gas blowing, continuous casting and spinning of fibers 

also involve the flow due to a stretching surface. 
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“Sakiadis (1961 a, b, c)” initiated the study of the 

boundary layer flow over a continuous solid surface 

moving with constant speed. “Erickson et al. (1969)” 

extended the work of Sakiadis to account for mass 

transfer at the stretching sheet surface. “Tsou et al. 

(1967)” reported both analytical and experimental 

results for the flow and heat transfer aspects 

developed by a continuously moving surface. “Crane 

(1970)” studied the steady two dimensional boundary 

layer flow caused by the stretching sheet, which 

moves in its own plane with a velocity which varies 

linearly with the axial distance. Several researchers 

considered various aspects of momentum and heat 

transfer characteristics in boundary layer flow over a 

stretching boundary (“Stokes (1966)”, “Gupta and 

Gupta (1977)”,  “Rajagopal et al. (1984)”, Siddappa 

and Abel (1985)”, “Andersson (1992)”, “Kumaran and 

Ramanaiah (1996)”, “Cortell (2007)”, Sekhar and 

“Chethan  (2010, 2011)”). 

 

“Magyari and Keller (2000)” studied the heat and mass 

transfer on the boundary layer flow due to an 

exponentially stretching surface. “Elbashbeshy (2001)” 

added new dimension to the study on exponentially 

stretching surface. “Partha et al. (2004)” have examined 

the mixed convection flow and heat transfer from an 

exponentially stretching vertical surface in quiescent 

liquid using a similarity solution. Heat and mass 

transfer in a viscoelastic boundary layer flow over an 

exponentially stretching sheet were investigated by 

“Khan and Sanjayanand (2005, 2006)”. “Sajid and 

Hayat (2008)” considered the influence of thermal 

radiation on the boundary layer flow due to an 

exponentially stretching sheet. “Bidin and Nazar 

(2009)” studied the steady two dimensional boundary 

layer flow and heat transfer of an incompressible 

viscous fluid in the presence of thermal radiation over 

an exponentially stretching sheet. “Sekhar and Chethan 

(2012)” analyzed the flow and heat transfer due to an 

exponentially stretching continuous surface in the 

presence of Boussinesq-Stokes suspension. 

“Siddheshwar et al. (2014)” extended this work to 

study the flow and heat transfer characteristics in the 

presence of a transverse uniform magnetic field.  

 

A common feature of all these analyses is the 

assumption that the flow field obeys the conventional 

no-slip condition at the sheet. But there are situations 

wherein such condition is not appropriate. Especially, 

no-slip condition is inadequate for most non-Newtonian 

fluids. For example, polymer melts often exhibit 

macroscopic wall slip and that in general is governed by 

a non-linear and monotone relation between the slip 

velocity and traction. The fluids exhibiting boundary 

slip find applications in technology such as in the 

polishing of artificial heart valves and internal cavities. 

“Navier (1827)” suggested a slip boundary condition in 

terms of linear shear stress. Therefore the present work 

has been undertaken in order to analyze the flow and 

heat transfer characteristics due to an exponentially 

stretching sheet in the presence of a viscoelastic fluid 

with slip effects. 

2. MATHEMATICAL FORMULATION 

We consider a steady, two-dimensional boundary 

layer flow of an incompressible second order 

viscoelastic fluid over a stretching sheet for analysis. 

Boundary is assumed to be moving axially with a 

velocity of exponential order in distance by applying 

two equal and opposite forces along the x-axis by 

keeping the origin fixed. Since the fluid under 

consideration is viscoelastic, the energy will be 

stored in the fluid by means of frictional heating due 

to viscous dissipation. So we take account of this. 

However, we assume that the fluid possesses strong 

viscous property in comparison with the elastic 

property. With this assumption we neglect the 

contribution of heat due to elastic deformation. The 

governing boundary layer equations for momentum 

and heat transfer in such flow situations are 

0
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where u and v are the velocity components of the 

fluid in x and y directions, µ is the viscosity,   is the 

kinematic coefficient of viscosity, k0 is the 

viscoelastic parameter, Uw stands for stretching 

velocity of the boundary, U0 is a constant, L is the 

reference length, α1 is the slip parameter,   is the 

density, k is the thermal conductivity, T is the 

temperature, Tw is the temperature at the wall, T∞ is 

the temperature outside the dynamic region and Cp is 

the specific at constant pressure. Here A0 and A1 are 

the parameters of the temperature distribution on the 

stretching surface. 

 

We introduce the stream function  (x, y) defined by 

 
 
 

u , v
y x

 
                                                   (2.5) 

The above set of partial differential equations is 

converted into a set of ordinary differential equations 

using the following similarity transformation. 
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where   is the similarity variable and 0
U L

Re


 is the 

Reynolds number.
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                      (2.7) 

The boundary conditions (2.4) for velocity can be 

written as:  

 0 0f ,    0 1 0   *f α f , 

  0  f ,   0  f .                                   (2.8) 

Here 0
1 * wk U

k


is the dimensionless viscoelastic 

parameter and 1
2

* wU
α α

L


 is the non-dimensional 

slip parameter. 

 

Using equation (2.6) in equations (2.3) and (2.4), we 

get: 

(i) PEST: 

  24     Pr f f Pr E f ,                                (2.9) 

   0 1 0  , .                                                   (2.10) 

where 
2

0

0


p

U
E

T C
is the Eckert number. 

(ii) PEHF: 

 

  24     Pr f f Pr E f ,                               (2.11) 

 

   0 1 0    , .                    (2.12) 
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E

A C
Re

is the Eckert number. 

   

We now outline the procedure for solving two boundary 

value problems (2.9)-(2.10) and (2.11)-(2.12) which are 

coupled with (2.7)-(2.8). 

3. METHOD OF SOLUTION 

We adopt the shooting method with Runge-Kutta-

Fehlberg 45 scheme to solve the initial value problems 

in PEST and PEHF cases mentioned in the previous 

section. The coupled non-linear equations (2.7)-(2.10) 

in PEST case are transformed in to a system of seven 

first order ordinary differential equations as follows. 
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The corresponding boundary conditions are 

       
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1 2 3 5

2 3 6
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*y , y α y , y ,

y , y , y .
                  (2.14) 

Here, y1 = f () and y5 =  (). 

 

Aforementioned boundary value problem is converted 

in to an initial value problem by choosing the values of 

y3(0) and y6(0) appropriately. Resulting initial value 

problem is integrated using Runge-Kutta-Fehlberg 45 

order method. Newton-Raphson method is used to 

correct the guess values of y3(0) and y6(0).  

 

The decision on an appropriate ‘’ for the problem 

depends on the parameter of values chosen. In view of 

this, for each parameter combination, the appropriate 

value of ‘’ has to be decided. If the solution of two 

consecutive ‘’s matches to a desired accuracy, then 

we take this to be the appropriate ‘’ for the given set 

of parameter combination. First we guess the initial 

values for the unavailable initial values in the boundary 

value problem. Obviously the chosen guess values are 

not the most accurate values and we need to refine 

them. Newton-Raphson method is used for this 

purpose. We solve the Eq. (2.13) with these initial 

conditions, using the Runge-Kutta-Fehlberg 45 order 

method of four slopes and obtain the solution at ‘’. 

The solution at ‘’ does not match with those given in 

the problem due to the crude choice of unavailable 

initial values. So, the method is repeated till the 

solution of two consecutive ‘’s matches to a desired 

accuracy.  Same procedure is adopted to solve (2.7)-

(2.8) and (2.11)-(2.12). The results are presented in 

several graphs. 

4. RESULTS AND DISCUSSION 

The boundary layer flow and heat transfer due to an 

exponentially stretching sheet in the presence of a 

viscoelastic liquid is analyzed. The effects of various 

parameters such as viscoelastic parameter, slip 

parameter, Prandtl number and Eckert number are 

shown in several graphs in figures 1 to 8. 

 

 

 



A. S. Chethan et al. / JAFM, Vol. 8, No. 2, pp. 223-229, 2015.  

 

226 

 

 

(a)  

 

 (b) 

Fig. 1. Plot of  f 

 

versus  for different values of viscoelastic parameter (k1
*). 

 

 

(a) 
 

(b) 

Fig. 2. Plot of  f 

 

versus  for different values of k1
*. 

 

 
 (a)  (b) 

Fig. 3. Plot of temperature profiles for different values of k1
*. 

 

 

(a) 
 

(b) 
 

Fig. 4. Plot of  f 

 

versus  for different values of slip parameter (*). 
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(a) 

 
(b) 

Fig. 5.  Plot of 

 

 f 

 

versus  for different values of *. 

 

 
(a) 

 
(b) 

Fig. 6. Plot of temperature profiles for different values of *. 

 

 (a)
  

 (b) 

Fig. 7. Plot of temperature profiles for different values of Prandtl number (Pr). 

 

 
(a)

  
 (b) 

Fig. 8. Plot of temperature profiles for different values of Eckert number (E). 
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Figure 1– 3 illustrate the effect of viscoelastic 

parameter k1
* on the flow and heat transfer in PEST and 

PEHF cases. It is observed from these plots that f () 

and f () decrease with increasing values of k1
*, where 

as  () increases with increasing values of k1
*. This 

means that the increasing values of k1
* results in 

thinning of momentum boundary layer and thickening 

of the momentum boundary layer. 

 

Figure 4 – 6 demonstrates the effect of *
 on the flow 

and heat transfer. The effect of * is similar to that of 

k1
* in both PEST and PEHF cases. 

 

The impact of Prandtl number Pr on the heat transfer is 

depicted in figure 7. We infer from the figures that the 

increase of Prandtl number results in the decrease of 

temperature distribution at a particular point of the flow 

region. This is due to the decrease in the thickness of 

the thermal boundary layer with increasing values of 

Prandtl number. The increase of Prandtl number means 

slow rate of thermal diffusion. It is obvious that the 

wall temperature distribution is at unity on the wall in 

PEST case for all values of Pr, E and k1
*. However, it 

may be other than the unity in PEHF case due to 

adiabatic temperature boundary condition.  

 

Figure 8 demonstrates the variation of the temperature 

profile for different values of Eckert number E. The 

effect of increasing values of E is to enhance the 

temperature in the flow region. This is due to the fact 

that the heat energy is stored in the liquid considered 

due to frictional heating. 

 

In order to validate our results, we have compared the 

values of skin friction coefficient in the absence of 

viscoelastic parameter and slip parameter with the 

results of Elbashbeshy (2001) and found them to be in 

good agreement (Table 1).  

 

Table 1 Comparison of values of skin  

friction   0f  with *
1k = * = 0. 

 0 f  

Elbashbeshy (2001) Present study 

1.28181 1.281816 

1.37889 1.378894 

          1.4839 1.484389 

1.59824 1.598242 

 

Table 2  represents the variations in the magnitudes of 

the non-dimensional surface velocity gradient  0 f , 

wall temperature gradient  0   and the wall 

temperature  (0) due to the changes in the numerical 

values of viscoelastic parameter 1
*k , slip parameter α*, 

Prandtl number Pr and Eckert number E. It can be seen 

from the table that the magnitude of  0 f increases 

with increasing values of 1
*k . The opposite behavior is 

seen for the increasing values of α*. Since the flow 

problem is uncoupled with the thermal problem, 

changes in the values of Pr and E will not affect the 

value of  0 f .  

 

Table 2 Values of skin friction

 

 0f  , wall 

temperature gradient  0   and wall temperature 

 (0) for different values of 
1
*k , α*, Pr and E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

We notice that the temperature gradient decreases with 

increasing values of 1
*k  and E in PEST case and 

increases with increasing values of 1
*k  and E in PEHF 

case. The table also reveals that the effect of increasing 

values of α* and Pr is to increase  0 in PEST case 

and to decrease  (0) in PEHF case. 

 

 

5. CONCLUSIONS 
 

1. The effect of viscoelastic parameter is to decrease 

the velocity distribution and increase temperature 

distribution in the boundary layer.  

2. The flow slows down at distances close to the sheet 

for increasing values of the slip parameter. 

3. The effect of Prandtl number is to decrease the 

magnitude of heat transfer. 

4. The energy dissipation due to viscous dissipation 

has the effect to thicken the thermal boundary layer, 

increase the temperature profile and hence the heat 

transfer rate from the surface. 

5. The magnitude of the non-dimensional surface 

velocity gradient decreases with increasing values 

of viscoelastic parameter. 
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