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ABSTRACT 

This paper presents a study for the MHD flow of an incompressible generalized Burgers' fluid through a rectangular 

duct in porous medium. The flow is generated due to the velocity sawtooth pulses applied on the duct. Exact solutions 

of the governing equations are obtained by using the Laplace transform and double finite Fourier sine transform in 

this order. The obtained solutions satisfy all the initial and boundary conditions and are written as a sum of steady and 

transient solutions. Graphs are plotted for both developing and retarding flows. The effects of magnetic parameter, 

porosity parameter, and various parameters of interest on the flow characteristics are discussed. The problem reduces 

to the flow between two plates in the absence of side walls. 
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NOMENCLATURE 

L velocity gradient 

 dynamic viscosity 

V         velocity field 

k̂  unit vector along the z-directionchord 

R          Darcy's resistance 

k           permeability of the medium 

           porosity 

          dimensionless magnetic parameter 

           dimensionless porosity parameter 

          density 

J           current density 

T           time period 

      aspect ratio 

 B     total magnetic field 

      electrical conductivity of the fluid 

1      relaxation time 

3     retardation time 

2     material parameter 

4     material parameter 

0     strength of applied magnetic field 

( )H  Heaviside unit step function 

S       extra-stress tensor 

A       first Rivlin-Ericksen tensor 

 

 

1. INTRODUCTION 

The study of fluid flows has numerous applications in 

medicine, industry and technology. In the last decade, 

non-Newtonian fluids have been studied extensively. 

Flow of such fluids through different geometries of 

cross-sections e.g., circular, triangular, rectangular, 

involve different types of solutions. Phenomena of flow 

through porous media occur in industry, geomechanics 

and biomechanics, e.g., filtration of fluids, flow of 

fluids through rocks and regulation of skin. 

 

Hunt (1965) presented an analysis of laminar motion of 

a conducting liquid in a rectangular duct under a 

uniform transverse magnetic field. Johri and Singh 

(1998) discussed oscillating flow of a viscous liquid in 

a porous rectangular cross-section under the influence 

of periodic pressure gradient using finite cosine 

transforms. Tsangaris and Vlachakis (2003) solved 

Navier-Stokes equations to obtain the analytical 

solution of the fully developed laminar flow in a duct 

having a cross section of a right-angled isosceles 

triangle in the presence of oscillating pressure gradient. 

Fetecau and Corina Fetecau (2005) provided a set of 

solutions corresponding to two types of unsteady flows 

of an Oldroyd-B fluid in a channel of rectangular cross-

section in the presence as well as in the absence of 

pressure gradient. Khan et al.  (2007) analyzed the 
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influence of Hartman number on the flow of an 

Oldroyd-B fluid in a porous medium for the velocity, 

volume flux, and tangential stresses using the double 

Fourier sine transform. Ghosh and Sana (2008) 

constructed the hydromagnetic channel flow of 

Oldroyd-B fluid induced by tooth pulses. Fetecau et al. 

(2009) established the analytic solution for the velocity 

field and the shear stress, corresponding to the unsteady 

flow of an Oldroyd-B fluid in an infinite circular 

cylinder subject to a time-dependent couple by means 

of the Hankel transform. Mahmood et al. (2010) 

obtained exact solutions for the oscillatory motion of a 

generalized second grade fluid in an annular region 

between two cylinders. M. The study of Jarrahi et al. 

(2011) investigated the laminar developing flow 

through a curved pipe under steady, pure sinusoidal and 

pulsatile conditions. Seth et al. (2011) studied the 

unsteady hydromagnetic coquette flow of an 

incompressible electrically conducting fluid in a 

rotating system in the presence of a uniform transverse 

magnetic field through porous medium induced by the 

impulsive movement of the upper plate of the channel. 

Khan and Zeeshan (2011) investigated the unsteady 

magneto hydrodynamic flow of an Oldroyd-B fluid 

through a porous space induced by saw tooth pulses by 

using the Laplace transform method. Nazar et al. (2012) 

presented an analysis for the unsteady flow of an 

incompressible Maxwell fluid in an oscillating 

rectangular cross section for the velocity field and the 

associated shear stresses using the Fourier sine and 

Laplace transforms. Khan et al. (2012) extended the 

work of Nazar (2012) to Burgers' fluid. Sultan et al. 

(2013a), (2013b) obtained the analytic solutions for the 

unsteady MHD flow of Maxwell and Oldroyd-B fluids 

respectively, in long porous rectangular cross-section. 

Seth and Singh (2013) presented an analysis for the 

unsteady hydromagnetic couette flow of a viscous 

incompressible electrically conducting fluid in a 

rotating system with Hall effects in the presence of a 

uniform transverse magnetic field induced by the due to 

time dependent velocity oscillations of the upper plate 

in its own plane.  

 

The objective of this paper is to study the unsteady flow 

of generalized Burgers’ fluid through rectangular duct. 

The duct is brought into motion induced by the velocity 

sawtooth pulses applied on the duct in the presence of 

magnetic field. The problem is solved by introducing 

the non-dimensional variables. Laplace and Fourier sine 

transforms have been used as mathematical tools to 

solve the problem. The problem reduces to the flow 

between two plates, when the aspect ratio parameter 

(ratio of length to width) is zero. Solutions for Oldroyd-

B, Maxwell, and Newtonian fluids are also obtained as 

limiting cases. 

1. GOVERNING EQUATIONS 

For the generalized Burgers' fluids, the Cauchy stress 

tensor is given by 

= -p I+S,                                                                 (1) 

2 2

1 2 3 42 2

,

S S A A
S+  +  = A+  +   

t tt t

   
    

  

 
 
 
 

       (2) 

where pI denotes the indeterminate spherical stress, 

3 1   and 2 and 4 both having the dimension of 

square of time and 

2

2

 
  

 

T

.

S ds
= LS SL

t dtt

 


        (3) 

We seek a velocity field V and stress field S  of the 

form Nazar et al. (2012) 

,
ˆV= v(x, y, t)=w(x, y,t) k,  S=S(x, y,t)          (4) 

where k̂  is the unit vector along the z -direction. If 

the fluid is at rest up to the moment 0t  , then 

0



S( x,y, )
V(x, y, 0)= 0,  S(x, y,0)=  = 0. 

t
        (5) 

Eqs. (1)- (3) and (5) give S  =S =S 0xx xy yy   and 

the meaningful equations 

2

1 2 12

 

 
( 1+ + ) (x, y,t)= 

t t
  

2

3 4 2

  

  ,

w( x,y,t )
( 1+ + )

t xt
                                   (6) 

2

1 2 22

 

 
( 1+ + ) (x, y,t)= 

t t
  

2

3 4 2

  

  ,

w( x,y,t )
( 1+ + )

t yt
                                   (7) 

Where  1 xz=S x, y, t    and  2 yz=S x, y, t  are the 

non-zero shear stresses. 

 

The Darcy's resistance R  for a generalized Burgers' 

fluid satisfies the following expression 

2

1 2 2

 

 
( 1+ + )R= 

t t
 

2

3 4 2

 


 
,( 1+ + )V

k t t


     (8) 

A uniform Magnetic field J B  is applied to the fluid. 

It is assumed that the external electric field and the 

induced magnetic field are negligible such that the 

magnetic Reynolds number is small. Further it is 

assumed that the magnetic field is perpendicular to the 

velocity field.  

Thus the Lorentz force due to magnetic field becomes 

2
0J B= -  V ,                                                          (9) 

The balance of linear momentum which governs the 

MHD flow through porous medium becomes 

  
dV

 = + J B +R, 
dt

                                           (10) 

We consider the unsteady flow of an incompressible, 

electrically conducting generalized Burgers' fluid 

through a duct of rectangular cross section whose sides 

are at 0 0  x ,x d , y and y h.   Initially, the duct 

and the fluid are at rest. At time 0t  the duct starts 

moving induced by velocity sawtooth pulses applied on 



Q. Sultan et al. / JAFM, Vol. 8, No. 2, pp. 243-254, 2015.  

 

245 

 

the duct.  

In view of Eqs. (4) and (6)-(10), the governing equation 

leads to 

2

1 2 2

   
 
   

w( x,y,t )
1+  +  =

t tt
    

2 2 2

3 4 2 2 2

     
  
       

1+  +  + w(x,y,t)
t t x y

    

2
2

0 1 2 2

  
 
   

- 1+  +  w(x,y,t)
t t

    

2

3 4 2

  
 
   

- 1+  +  w(x,y,t).
k t t


                              (11) 

We consider the following initial and boundary 

conditions 

2

2

 

 

w(x, y,0) w(x, y,0)
w(x, y,0)= = =0,

t t
 

  x  (0, d),  y (0, h),                                             (12) 

w(0, y, t) =  w(d, y, t) = w(x, 0, t) = w(x, h, t) = U f(t),      (13) 

for all t , where f(t) denotes the sawtooth pulses which 

is an even periodic function. 

Introducing the following non-dimensional relations 

* * * *w x y z
w = , ,x = ,y = ,z = ,

U d h d
                          (14a) 

2
31 2

1 2 32 2 4 2

* * * *t
t = , = , = , = , 

d d d d

    
                (14b) 

2
4

4 1 24

yz* xz
dSdS

= , = , = .
U Ud

 
  

 
                (14c) 

Eqs. (6), (7) and (11)-(13) in dimensionless form 

become 

2

1 2 12

 

 
( 1+ + ) (x, y,t)= 

t t
  

2

3 4 2

  

 

w( x,y,t )
( 1+ + )

t xt
  ,                                 (15) 

2

1 2 22

 

 
( 1+ + ) (x, y,t)= 

t t
  

2

3 4 2

  

 

w( x,y,t )
( 1+ + )

t yt
  ,                                 (16) 

2

1 2 2

   
 
   

w( x,y,t )
1+  +  =

t tt
   

2 2 2
2

3 4 2 2 2

     
  
       

1+  +  + w(x,y,t)
t t x y

    

2

1 2 2

  
 
   

- 1+  +  w(x,y,t)
t t

   

2

3 4 2

  
 
   

- 1+  +  w(x,y,t).
t t

                                   (17) 

while the initial and boundary conditions become 

2

2

 

 

w(x, y,0) w(x, y,0)
w(x, y,0)= = =0,

t t
 

  for x  [0, 1],  y [0, 1],                                      (18) 

w(0, y, t) =  w(1, y, t) = w(x, 0, t) = w(x, 1, t) =  f(t),     (19) 

where 
2 2 2

0  
dd d

= , ,
h k

 
 


 and the asterisks 

have been omitted for simplicity. 
 

According to the nature of ( )f t , the boundary 

conditions in mathematical form may be expressed as 

[8] 

w(0, y, t) =  w(1, y, t) = w(x, 0, t) = w(x, 1, t) =       

1

1 1
1

2





 
   
  
 

 p
pT

p

tH( t ) ( ) ( t pT )H ( t ) ,
T

             (20) 

Where H( ) is defined as p TH (t) = 0 for t  pT and 

p TH (t) = 1  for t > pT . 

2. CALCULATION OF VELOCITY FILED 

Applying Laplace transform to Eq. (17), using initial 

conditions given in Eq. (18), we obtain the following 

problem 

 2
1 2 ( , , )1+  q+  q qw x y q =   

 
2 2

2 2
3 4 2 2

  
 
   

1+  q+  q + w(x,y,q)
x y

    

 2
1 2- 1+  q+  q w(x,y,q)   

 2
3 4- 1+  q+  q w(x,y,q).                                         (21) 

and the Laplace transform  , ,w x y q of the function 

 , ,w x y t has to satisfy the boundary conditions           

w(0, y, q) =  w(1, y, q) = w(x, 0, q) = w(x, 1, q) =     

2 2
1

1 1 1 1
( 1) ( ) ,

2

p

p

exp pTq
T q q





 
   
 
 

                        (22) 

Here we have used the property 

 ( ) ( )a L H t g t a = exp[-as] G(s).  

Multiplying both sides of Eq. (20) by 

( )msin x ( )nsin y , where m m  and n n   , 

integrating then with respect to x  from 0 to 1, with 

respect to y from 0 to 1, employing the methodology 

of [8] and taking into account the corresponding 

conditions given in Eq. (22), we obtain 

2
2

3 42 2

1
[ [{1 } /  mn mn

s
a

w (m, n ,q)= q q
Tq q


   

3 2 2
2 1 2 4{  mnq +( + + ( + ))q       

2 2
1 3 mn mn+(1+ + ( + ))q+ + + )}]]     

1

( 1)




  p

p

(1+2 exp(- pTq) ),                                     (23) 

Where 
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[1 ( 1) ][1 ( 1) ]   


m n

mn
m n

a
 

,                                (24) 

2 2 2 2
mn m n= + , m,n=1,2,3...  .

 

   
                         (25) 

Writing Eq. (23) in the following equivalent form 

3
2 1 22

1
[ [{ mn

s
a

w (m, n ,q)= q +( +
T q

    

2
4 1 3 / + + )q +(1+ + )q+ + )}       

3 2 2
2 1 2 4{  mnq +( + + ( + ))q       

2 2
1 3 ] mn mn+(1+ + ( + ))q+ + + )}       

1

1





  p

p

(1+2 ( ) exp(- pTq) ).                                     (26) 

Let us take 

3 2
2 1 2 4 1( , , ) [  sB m n q q +( + + )q +(1+       

3 2 2
3 2 1 2 4] / [  mn+ )q+ + ) q +( + + ( + ))q          

2 2
1 3 mn mn+(1+ + ( + ))q+ + + )]      .                   (27) 

Eq. (27) can also be written as [8] 

3 2( , , ) ( ) /  sB m n q q +aq bq c  

2
1, 2, 3,[ ( )( )( )]  mn mn mnq q q q q q q                        (28) 

where 

1 31 2 4

2 2 2

, , ,
 

  
1+ ++ +

a b c
      

  
 

2
1 2 4

, ,
2

( )

3

 mn
i mn i mn

+
q =s -

    


 

for 1,2,3.i                                                                   (29) 

In the above relations 
1/3

2 3
1, 1, 1,

1,
2 4 27

 
    
 
 

mn mn mn
mns

  
 

1/3
2 3

1, 1, 1,

2 4 27

 
    
 
 

mn mn mn  
,                         (30) 

1/3
2 3

1, 1, 1,
2,

2 4 27

 
    
 
 

mn mn mn
mns Z

  
 

1/3
2 3

1, 1, 1,2

2 4 27

 
    
 
 

mn mn mn
Z

  
,                     (31) 

1/3
2 3

1, 1, 1,2
3,

2 4 27

 
    
 
 

mn mn mn
mns Z

  
 

1/3
2 3

1, 1, 1,

2 4 27

 
    
 
 

mn mn mn
Z

  
.                       (32) 

Where 

2
1 3

2

1 ( )   mn
1,mn=

   



 

2 2
1 2 4

2
2

( ( ))

3

   mn- ,  
    


                               (33) 

2 2 3
1 3

3
2 2

(1 ( ))
2

27

     
mn mn

1,mn=
     


 

2 2
2 4 1 3

2
2

( ( ))(1 ( ))

3

       mn mn- ,  
        


               (34) 

1 3

2

 


i
Z .                                                           (35) 

we get   0iRe q    if 1 3 2 4 +      1 2 42     

provided 1 2 3 4, , , 0     . 
 

An equivalent suitable representation of the Eq. (28) is 

1, 2, 3, 1, 2,

1 1 1
( , , ) [ (   s

mn mn mn mn mn

B m n q b c
q q q q q

 

1,

3, 1, 2, 1, 3,

1 1 1
)]

( )( )
  

 

mn

mn mn mn mn mnq q q q q q q


 

2,

1, 2, 1, 2, 3, 2,

1 1

( ) ( )( ) ( )


   

mn

mn mn mn mn mn mnq q q q q q q q



3,

3, 1, 3, 2, 3,

1

( )( ) ( )


  

mn

mn mn mn mn mnq q q q q q

 ,                        (36) 

Where 

3 2
, , ,

, 2
,

, 1,2,3.
  

 
j mn j mn j mn

j mn

j mn

q aq bq c
j

q
               (37) 

Inverting Eq. (36) by means of Laplace transform, we 

obtain  

1, 2, 3, 1, 2,

1 1 1
( , , ) [ (   

mn mn mn mn mn

B m n t b c
q q q q q

 

1, 1,

3, 1, 2, 1, 3,

exp( )1
)]

( )( )
  

 

mn mn

mn mn mn mn mn

q t
t

q q q q q


 

2, 2, 3, 3,

2, 1, 2, 3, 3, 1, 3, 2,

exp( ) exp( )
.

( )( ) ( )( )
 

   

mn mn mn mn

mn mn mn mn mn mn mn mn

q t q t

q q q q q q q q

             (38) 

Inversion of Eq. (26) by means of the Fourier sine and 

Laplace transforms and using Eq. (38), results in 

1
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Where 2 1 M m and 2 1 N n . 

3. CALCULATION OF TANGENTIAL 

STRESS 

Applying Laplace transform to Eqs. (15) and (16), we 

have the expressions 

2
3 4

1 2
1 2

( , , )( 1+ q+ q ) w x y q
(x, y,q)= 
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 
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


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Using Eq. (26) in the above expressions, we have 
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Let us take 

2
3 4

2
1 2
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( 1+ q+ q )

 

 
,                                       (44) 

which can also be written in the form 
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Where 2
1 24 0   . 

 

Applying the inverse Laplace transform to Eq. (45), we 

obtain 

2 3 1 1A(t) =a +a cosh(b  t) exp(-a t)  

4 1 1exp+a sinh(b  t) (-a t).                                        (47) 

Let 

(M, N, t)= ( A  B )(t)  

0
t

= A(t-q) B(M,N,q) dq ,                                            (48) 

Using Eqs. (38) and (47) in the above equation, we 

obtain 
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Finally, inversion of Eqs. (42) and (43) by Laplace 

transform and using Eq. (49), give 

1

, 0

sin( )16
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4. RESULTS AND DISCUSSIONS 

In the above work, exact solutions for velocity field and 

associated tangential stresses for MHD flow of 

generalized Burgers' fluid through rectangular cross-

section have been established. The motion is generated 

by the velocity sawtooth pulses applied on the duct. 

Laplace and double Fourier sine transforms have been 

used in this order as mathematical tools to solve the 

present problem. The effects of pertinent parameters are 

seen on the velocity profile by plotting several graphs.  

The influence of material constants 1 2 3, ,    and 4  on 

velocity profile verses y  is shown in Figs. (1)-(4). 

According to the nature of pulses applied on the duct, 

developing flow corresponds to 0.5t and the  
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Fig. 1. Velocity profiles for duct motion induced by sawtooth pulses for Generalized Burgers' fluid for different values of 

1
 . Other parameters and values are taken as    2 3 4x 0.5, 4, 2, 8,         1, 0.1, 0.1, 0.5.T t  

 

Fig. 2. Velocity profiles for duct motion induced by sawtooth pulses for Generalized Burgers' fluid for different values of 

3 . Other parameters and values are taken as    1 2 4x 0.5, 17, 4, 8,         1, 0.1, 0.1, 0.5.T t  

 
Fig. 3. Velocity profiles for duct motion induced by sawtooth pulses for Generalized Burgers' fluid for different values of 

2 . Other parameters and values are taken as     1 3 4x 0.5, 3, 2, 8,         1, 0.1, 0.1, 0.5.T t  
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Fig. 4. Velocity profiles for duct motion induced by sawtooth pulses for Generalized Burgers' fluid for different values of 

4 . Other parameters and values are taken as      1 2 3x 0.5, 3, 4, 2, 1,  T      0.1, 0.1, 0.5.t  

 

retarding flow corresponds to 2t .  Figs. (1a) and (1b) 

show that the magnitude of velocity profile is an 

increasing function of 1  for developing and retarding 

flows in the presence of side walls. Figs. (1c) and (1d) 

show that the effect of 1  on the velocity profile for 

both developing and retarding flow in the absence of 

side walls is same as in the presence of side walls. It is 

seen that the magnitude of velocity profile increases for 

both the developing and retarding flows. From these 

Figures it is also clear that the magnitude of velocity 

profile in the absence of side walls is greater than the 

magnitude of velocity profile in the presence of side 

walls. Fig. (2) displays the variations of the retardation 

time 3  from 9 to 16 on the velocity profile. It is seen 

that the magnitude of velocity profile decreases for both 

the developing and retarding flows in the presence as 

well as in the absence of side walls. Thus, both the 

parameters, 1  and 3  as expected, have opposite 

effects on the magnitude of velocity profile. Figs. (3) 

and (4) display the variations of the material parameters 

2  and 4 on the velocity profile. It is seen that the 

magnitude of velocity profile is an increasing function 

with respect to 2 and a decreasing function with 

respect to 4 for all the four cases.  

 

Figures 5, 6 and 7 are sketched in order to compare the 

various fluid types. Also, the influence of magnetic 

field, permeability and the period of saw-tooth pulses 

on the velocity fields is studied by means of numerical 

calculus and graphical illustrations. In these figures we 

have considered the following values of dimensionless 

coefficients: 1 2.9, 2 4, 3 0.35, 4 3,  

0.4,x and 0.2y . Fig. 5 shows the diagrams of 

velocity w(x,y,t) , verses t , for the porosity 

parameter =0.5 , the pulses period T = 0.8 and for three 

values of the magnetic parameter 1.3,2.8,6  . In 

figure 5, we observe that there is a time- interval in 

which the velocity has an oscillating behavior for all 

kinds of fluids. After this moment, velocities tend to a 

common value (the differences between velocities of 

different fluids are insignificant). For low values of the 

magnetic field strength, amplitudes of the velocity 

oscillations are smaller for the generalized Burgers, 

Oldroyd-B and Newtonian fluids and much larger for 

Maxwell and Burgers fluids (see diagrams for 1.3 ). 

If the magnetic field is stronger, the velocity amplitudes 

of Maxwell and Burgers fluids decrease while, the 

velocity amplitudes of generalized Burgers and 

Newtonian fluids increase (case 6  ). It is important 

to note that, velocities of the fluids tend to a common 

value in shorter time if the magnetic field is stronger. 

Figure 6 is plotted for fixed values of magnetic field 

strength and period of pulses, 2, 0.8  T and for three 

values of the porosity parameter 0.4,0.75,1 . In this 

case, amplitudes of the velocity oscillations of 

generalized Burgers, Oldroyd-B and Newtonian fluids 

are lower than those corresponding to the Burgers and 

Maxwell fluids. Increasing permeability leads to the 

increasing of the velocity amplitudes.  
 

The effect of pulses period T  on the velocity fields is 

shown in Figure 7. This figure is sketched for 

0.5, 2.5   , and three values of the parameter T, 

0.5,1,1.25T . The Burger fluid oscillates with larger 

amplitudes, while other fluids have oscillations with 

amplitudes close as order of magnitude. For low values 

of the parameter T, velocities tend to a common value 

in a shorter time than in the case of large values of the 

parameter T . 
 

In order to study the influence of the magnetic 

parameter  and porous parameter   on the velocity 

field, we use a numerical procedure for the inverse 

Laplace transforms, namely the Stehfest’s algorithm, 

Stehfest (1970). If we denote by ( , , )W x y q  the inverse 

Fourier transform of the function given by Eq. (26), 

then, in accordance with Stehfest’s algorithm, the 

inverse Laplace transform, namely the velocity field 

w(x,y,t) is given by  
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Fig. 5. Diagrams of the velocity w(x, y, t) for different values of magnetic parameter Ω.  

Comparison between five models for 1 2.9,  2 4,  3 0.35,  

 4 3,   0.4,x  and  0.2y . 
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Fig. 6. Diagrams of the velocity w(x, y, t) for different values of the porosity parameter  .  

Comparison between five models for 1 2.9,  2 4,  3 0.35,  

 4 3,   0.4,x  and  0.2y . 
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Fig. 7. Diagrams of the velocity ( , , )w x y t  for different values of the parameter T . 

 Comparison between five models for 1 2.9, 2 4, 3 0.35,  

4 3,  0.4,x and  0.2y . 
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s is a positive integer number and [ ]r  denotes the 

integer part of the real number r . The influence of the 

magnetic parameter  on the velocity field is shown in 

Figure 8. From these diagrams, we observe that the 

influence of magnetic field is significant into a short 

interval of time after which, the differences between the 

velocities corresponding to different values of the 

magnetic parameter are insignificant. Also, be noted 

that for a strong magnetic field, the fluid flows faster. 

The velocity values increase from the wall to inside of 

the channel. Figure 9 is drawn to show the effect of 

porosity on the fluid velocity. Note that, after a certain 

moment of time, the influence of the porosity parameter 

on the fluid velocity is insignificant. 

5. CONCLUSSIONS 

Here we obtained analytical solutions for the 

magnetohydrodynamic flow of a generalized Burgers' 

fluid through a porous rectangular cross-section. The 

expressions for the velocity field and the corresponding 

tangential stresses induced by the velocity saw tooth 

pulses are obtained by means of the Laplace and double 

Fourier sine transforms in this order. The main findings 

are summarized as follows: 

 The magnitude of velocity profile is an increasing 

function with respect to 1 2,  and a decreasing 

function with respect to 3 4,  for both developing 

and retarding flows in the absence as well as in the 

presence of side walls.  

 The magnitude of velocity profile is greater in the 

absence of side walls as compared to that in the 

presence of side walls. 

 Magnitudes of velocity profiles tend to a common 

value in shorter time as the magnetic field becomes 

stronger. 

 Increasing permeability leads to increase the 

velocity amplitudes. 

 For low values of the time period T , velocities 

Fig. 8. The influence of magnetic parameter  

on the velocity field 

for T = 4,  =1.5,  = 0.5, 1=2, 2= 0.7, 

 3=13, 4=3 

 

Fig. 9. The influence of porous parameter  

on the velocity field 

for T = 4,  =1.5,  = 10, 1=2, 2= 0.7, 

 3=13, 4=3 
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tend to a common value in a shorter time as 

compared to large values of the parameter T . 

 For a much strong magnetic field, the fluid flows 

faster. 
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